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This document contains the supplementary materials which accompany the paper Gavagnin

et al. [2020]. Sections S.1, S.2 and S.3 contain some details of the mathematical derivation of the

analytical formula for the envelope of two standard deviation Q. In Section S.4 we explain the

method adopted to parametrise our multi-stage model from the experimental images. Section S.5

contains the computation of the relative entropy between an Erlang and a Gaussian distribution.

S.1 The OU approximation

We can simplify the Langevin model given by equation (8) of the main document by replacing

the dependence on x in the correlator of η(t) with E [x] = KueKλt. The resulting equation

consists of the high-dimensional non-autonomous Ornstein-Uhlenbeck (OU) process

dx̂
dt = KSx̂+K

√
eKλt

N0
Sψ(t) , (S.1)

∗Corresponding author: e.gavagnin@bath.ac.uk

1



where ψ(t) is a K-dimensional white noise vector with correlator E[ηi(t)ηj(t′)] = uiδijδ(t − t′).

We test the behaviour of the two models, the OU process given by equation (S.1), and the

Langevin equation (8) of the main document in Figure S.1. The results suggest that the OU

process is an accurate approximation of the Langevin equation, in particular the presence of

the oscillations is evident in both the modelling regimes (Figure S.1(a)). In Figure S.1(b), we

compare the distributions of Q(t) at times t = 1, 3 and 5 obtained by averaging over 1000

independent simulations, which show good agreement between the two models.

S.2 The correlation matrix

For a stochastic initial condition, x0, as described in Section 2.3 of the main document, we can

compute the correlation matrix at time t = 0, as

C0 = E [xi(0)xj(0)] =


uiuj for i 6= j

u2
i + ui

N0
for i = j

. (S.2)

We can rewrite this as C0 = uuT + 1
N0
M , where M = Diag(u).

We then focus on computing the correlation matrix C(t, t′) = E
[
x̂(t) x̂T (t′)

]
for the OU

process (S.1), as an approximation for the correlation matrix of the Langevin model. By applying

general results for OU processes (See Section 4.5 of [Gardiner, 2009]) we have:

C(t, t′) = eKtSC0e
Kt′ST + K

N0

∫ min(t,t′)

0
eK(t−τ)SS

(
MeKλτ

)
ST eK(t′−τ)ST dτ . (S.3)

We can use expression (5) of the main document and the fact that eKtSuuT eKt′ST = uuT eK(t+t′)λ,
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Figure S.1: Comparison of OU process and the Langevin equation model. Panel (a) shows two
evolutions of Q for the OU process (red) and the Langevin equation (blue). The two trajectories
are realised using Euler-Maruyama method with time step ∆t = 10−3 and the same randomly
generated numbers. The parameters are the same as Figure 2 of the paper and time is normalised
with reference to the average cell-cycle time. In panel (b) we plot the distribution of Q at three
time points (t = 1, t = 3 and t = 5). The two overlaid histograms represent the distributions of
1000 independent simulations of the OU process (red) and the Langevin Equation (blue). The
black line represent the distribution N(Q∗, σQ(t)). All the parameters are the same as Figure 2
of the paper. Panel (c) shows the asymptotic value of CVG and CVN for a range of parameters
choices, N0 and K. The red dot corresponds to the parameters inferred from the data in Section
S.4, indicating that Q will be Gaussian distributed for biologically realistic parameter values.
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to write down the (i, j) element of (S.3) for t < t′ as

Ci,j(t, t′) =uiujeK(t+t′)λ + 1
N0K2

K∑
k,l,m=1

1
(1 + λk)i−m

1
(1 + λl)j−m

2λ
(1 + λ)m e

K(tλk+t′λl)

+ 1
N0K

K∑
k,l,m=1

λk
(1 + λk)i−m

λl
(1 + λl)j−m

2λ
(1 + λ)m

∫ t

0
eK[(t−τ)λk+(t′−τ)λl+λτ ] .

(S.4)

Substituting the expressions (3) of the main text for uk and vk, using the formula
∑K
m=1(1 +

λk)m(1 + λl)m/(1 + λ)m = (1 + λk)(1 + λl)/[(1 + λk)(1 + λl) − (1 + λ)] and upon rearranging

terms, we obtain

Ci,j(t, t′) = 4λ2

(1 + λ)i+j e
K(t+t′)λ + 2λ

N0K2

K∑
k,l=1

(1 + λl)1−j

(1 + λk)i−1
1

(λk + λl − λ)

[
eK(tλk+t′λl)

− λkλl
(1 + λk)(1 + λl)− (1 + λ)e

K((t′−t)λl+tλ)
]
.

(S.5)

S.3 The envelope of two standard deviations of Q

We recall the definition of the envelope of two standard deviations of Q(t) as Ω(t) = [Q∗ −

2σQ(t), Q∗ + 2σQ(t)], where σQ(t) denotes the standard deviation of Q(t). To compute σQ we

employ the OU approximation (see Section S.1). From a fixed initial condition, the solutions of

(S.1) evolve as a Gaussian process with mean x̄(t)/N0. We can write G(t) ∼ N (µG(t), σG(t))

and N(t) ∼ N (µN (t), σN (t)) where

µG(t) = Q∗e
Kλt, σ2

G(t) =
αK∑
i,j=1

Ci,j(t, t)−Q2
∗e

2Kλt,

µN (t) = eKλt, σ2
N (t) =

K∑
i,j=1

Ci,j(t, t)− e2Kλt .

(S.6a)

(S.6b)

Notice that, Q is defined as a ratio between two Gaussian distribution and, in general, this

does not imply that Q(t) is Gaussian. However, Hayya et al. [1975] showed that the ratio of two
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Gaussian can be well approximated as a Gaussian, under certain conditions on the coefficient of

variation (CV) of the numerator and denominator. Precisely, provided that

CVN = σN
µN

< 0.39 and CVG1 = σG1
µG1

> 0.005 (S.7)

Hayya et al. [1975] demonstrate that Q is close to a Gaussian distribution. Moreover, we can

approximate the variance of Q by Taylor expanding to the second order which leads to

σ2
Q ≈ σ2

N

µ2
G

µ4
N

+ σ2
G

µ2
N

− 2ρµG
σNσG
µ3
N

= 1
µ2
N

[
σ2
NQ

2
∗ + σ2

G − 2σNσGQ∗ ρ [G,N ]
]
, (S.8)

where ρ denotes the correlation coefficient, defined as

ρ [Y1, Y2] = E [Y1Y2]− E [Y1]E [Y2]√
Var [Y1] Var [Y2]

. (S.9)

Notice that we can compute E [G(t)N(t)] in equation (S.9) in terms of the correlation matrix C

as

E [G(t)N(t)] =
K∑
i=1

αK∑
j=1

Ci,j(t, t) .

We now need to check that the conditions (S.7) are satisfied for biologically relevant parameter

choices. By studying the expressions (S.5) and (S.6), we obtain that CVN (0) = 1/
√
N0 and

CVG(0) = 1/
√
Q∗N0 which satisfy the conditions (S.7) for α ∈ [0, 1] and N0 ∈ [10, 104]. In order

to check the validity of the conditions in the long-term, we look at the leading terms of the

expression (S.5). We find that

lim
t→+∞

CVN (t) = lim
t→+∞

CVG(t) = 1 + λ

Kλ
√

2N0
. (S.10)
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In Figure. S.1(c) we evaluated this expression for any K ∈ [1, 100] and N0 ∈ [20, 500]. Our

findings show that the limit of CVG and CVN for t → +∞ lies in the interval (0.01, 0.32) for

the range of parameters considered which suggests that the conditions (S.7) are satisfied for

biologically relevant choices of the parameters. Notice that the plots in Figure S.1(b) provide

further confirmation of this by showing good agreement between the distribution of Q and the

Gaussian distribution N (Q∗, σQ(t)).

S.4 Parameter inference

To infer the parameters of the multi-stage model, we simultaneously fit the distribution of the

total cell-cycle time and of the G1 duration of 200 randomly selected cells.

Let HT and HG1 denote the histogram representations of the probability density function

(pdf) of the total cell-cycle time and the G1 duration, respectively, with a bin width of one hour.

For example, (HT )i denotes the proportion of cells with a cell-cycle time in the interval [ih, (i+

1)h). We denote with HE(K,β) the histogram obtained by discretising an Erlang distribution

with parameters (K,β) with the same bin width, i.e. (HE(K,β))i = βK

(K−1)!
∫ i+1
i xK−1e−βxdx.

For a given combination of parameters, (K,β, α), one can consider the statistic

I(K,β, α) = ‖HT −HE(K,β)‖1 + c ‖HG1 −HE(αK,β)‖1 , (S.11)

where c > 0 is a constant and ‖ − ‖1 denotes the 1-norm. Notice that the constant c can be

interpreted as a weight to give more (c > 1) or less (c < 1) priority at the fitting of the G1

distribution compared to the one of the total cell-cycle time distribution. For simplicity we

choose c = 1, which corresponds to equal levels of priority for the two distribution fits.

To determine the parameter combination which provides the best simultaneous fit of the two

distribution, we evaluated the function I in the parameter range K ∈ [10, 150] β ∈ [1, 10] and

α ∈ [0, 1]. We find that the combination K∗ = 92, β∗ = 4.96 and α∗ = 33/92 minimises the
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statistic I in the parameter region considered and, hence, we select these parameters for the

multi-stage model.

To infer the average population size at the moment of the initial sampling, N0, we first

measure the average population size at the beginning of the recording, N24 = 381.1, averaged over

the 30 experiments. Since the average population size grows exponentially at rate λ, we project

back from time t = 24h and we obtain the average sample size as N0 = N24 exp(−24λ) ≈ 155.

S.5 The Kullback Leibler divergence between Erlang and Gaus-

sian distribution

We compute the relative entropy (Kullback-Leibler divergence, DKL) between an Erlang and a

Gaussian distribution as a measure of the distance between the two distributions.

For two distributions, p(x) and q(x), the KL divergence is defined as:

D(p, q) =
∫ ∞
−∞

p(x) log
[
p(x)
q(x)

]
dx . (S.12)

We set p(x) to be the probability density function (pdf) of an Erlang(K,β) and q(x) to be the

pdf of a Gaussian with same mean and variance, i.e. N
(
K
β ,

K
β2

)
. We then obtain
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D(K,β) =D
(
p (K,β) , q

(
K

β
,
K

β2

))
= βK

(K − 1)!

∫ ∞
0

xK−1e−βx log
[
βK−1√2πK

(K − 1)! xK−1e
β2
2K

(
x−K

β

)2
−βx

]
dx

= log
[
βK−1√2πK

(K − 1)!

]
βK

(K − 1)!

∫ ∞
0

xK−1e−βxdx

+ (K − 1) βK

(K − 1)!

∫ ∞
0

xK−1 log(x)e−βxdx

+ βK

(K − 1)!

∫ ∞
0

[
−βx+ β2

2K

(
x− K

β

)2
]
xK−1e−βxdx .

(S.13)

Notice that the first integral of Equation (S.13) is exactly the pdf of an Erlang, which simplifies

to unity. The second and third integral in (S.13) require more work. By using integration by

parts and upon simplification, we get to the final expression

D(K,β) = log
[
βK−1√2πK

(K − 1)!

]
+ (K − 1) (HK−1 − log(β)− γ)−K + 1

2 , (S.14)

where HK−1 =
∑K−1
i=1

1
i is the (K−1)-th harmonic number and γ = limn→+∞

(∑n
i=1

1
i − log(n)

)
denotes the Euler-Mascheroni constant.

Using the expression (S.14) it is possible to show that D(K,β) is a decreasing function of K

and D(K,β) ∼ O(K−1) for K → +∞. This is not a surprise, since by central limit theorem we

know that the Erlang distribution converges to a Gaussian with same mean and variance. Since

the CV of an Erlang(K,β) is given by K−
1
2 , we can rephrase by saying that the KL divergence

scales proportionally to the square of the CV of the Erlang distribution.

Figure S.5 shows the plot of D(K,β) with β = K for different values of K. In the overlaid

panels the two distributions are compared for K = 5, 10, 20, 30 and 60. The results highlight the

good level of similarity between the Erlang and Gaussian distributions for large K - small values

8



0 10 20 30 40 50 60 70

K

0

0.05

0.1

0.15

0.2
D

(K
,K

)

0 1 2 3

x

0

1

2

3

K=30

0 1 2 3

x

0

1

2

3

K=60

0 1 2 3

x

0

0.5

1

1.5

2

2.5

3

3.5
K=100 1 2 3

x

0

1

2

3

K=5

Figure S.5: The Kullback Leibler (KL) divergence between an Erlang distribution and Gaussian
distribution. The black dotted line in the main panel shows the KL divergence between an
Erlang distribution of parameters (K,K) and a Gaussian distribution of parameters (1, 1/K) as
function of K. The four overlaid panels show the comparison of the two distributions, Erlang
(blue) and Gaussian (Red), for K = 5, 10, 30 and 60 (from left to right).

of the CV. For example, for K > 25, i.e. CV< 0.2, we have D(K,K) < 0.02 which corresponds

to good agreement between the two distributions.
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Figure S.5: Comparison 30 time series obtained from the data (blue lines), together with the
envelope of two standard deviations, Ω (light grey regions) predicted using the multi-stage model.
The parameters of the multi-stage models are obtain by fitting the distribution of the total cell-
cycle time and G1 duration (see Section S.4): K = 92, αK = 33, β = 4.96h−1 and N0 = 155.
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