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Abstract9

Microbiome dynamics influence the health and functioning of human physiology and the10

environment and are driven in part by interactions between large numbers of microbial taxa,11

making large-scale prediction and modeling a challenge. Here, using topological data analysis,12

we identify states and dynamical features relevant to macroscopic processes.We show that13

gut disease processes and marine geochemical events are associated with transitions between14

community states, defined as topological features of the data density. We find a reproducible15

two-state succession during recovery from cholera in the gut microbiomes of multiple patients,16

evidence of dynamic stability in the gut microbiome of a healthy human after experiencing17

diarrhea during travel, and periodic state transitions in a marine Prochlorococcus community18

driven by water column cycling. Our approach bridges small-scale fluctuations in microbiome19

composition and large-scale changes in phenotype without details of underlying mechanisms,20

and provides a novel assessment of microbiome stability and its relation to human and envi-21

ronmental health.22

Introduction23

Complex microbial ecosystems (‘microbiomes’) inhabit a diversity of environments in the biosphere,24

including the global ocean [47], soil [13], and the human gut [48]. Large-scale alterations in the com-25

position of microbiomes is often associated, whether as driver or consequence, with environmental26

processes such as seasonal geological cycling and nutrient fluctuations [15]; physiological processes27

such as menstrual cycles [16]; and clinical phenotypes such as irritable bowel syndrome [2]. Anal-28

ysis and prediction of the large-scale dynamics of microbiome composition is thus a pressing issue29

in multiple fields of study.30

As with many biological systems, understanding of the dynamics of microbiomes is complicated31

by their high dimensionality. Numerous variables define the state of a microbiome; these include32

frequencies of microbial taxa and their genetic alleles, which are decoupled due to genomic plasticity33

and horizontal gene transfer [36, 38], and environmental conditions such as temperature, pH, and34

biochemical concentrations. A microbiome thus has a vast number of potential configurations in35

which it may, in principle, fluctuate on a short time scale. By contrast, systemic phenotypes, such36

as human gut infections or aquatic algal blooms, persist for much longer than bacterial generation37

time, and community compositions may be diverse within a phenotype [15]. Furthermore, due38

to the diverse biology of microbiomes across habitats, it may be desirable to have a quantitative39

framework that can be generalized across biological systems.40

One approach to analyzing microbiome dynamics has been to infer the network of underlying41

pairwise interactions between taxa by calculating the inverse covariance matrix from time series42

data, often as a basis for modeling population dynamics using Lotka-Volterra equations [14, 28,43

46]. Such approaches are useful for predicting fine-grained taxon-taxon interactions of importance,44

and are challenged by the compositional nature of microbiome data [44] and possible role of higher-45

order interactions [3]. Notably, it is impossible to fit Lotka-Volterra models to compositional data46
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without information regarding the total population size [26]. A complementary coarse-grained47

approach is to cluster samples according to compositional similarity, and conceptualize dynamics48

as stochastic transitions between clusters [1, 9]. Such approaches can be used to identify large-49

scale shifts in compositional state, with the implicit assumption that each temporal sample can be50

assigned to one of a finite number of discrete categories.51

In our approach to microbiome dynamics, we were motivated by the concept of potential land-52

scapes in physics. The potential landscape formalism considers a high-dimensional phase space, in53

which coordinates represent system states, and system dynamics correspond to trajectories through54

phase space. The dynamics are envisioned as being influenced by features of a landscape in phase55

space, the height of which corresponds to the value of a potential energy function: for example,56

local minima of the potential may represent stable states, and valleys probable dynamics of the57

system. In biology, the potential landscape and related concepts have proved useful in theoretical58

and experimental studies of ecological dynamics [6, 7, 41]; cell phenotypes in differentiating stem59

cells [50, 52] and cancer cells [25, 30]; and states of brain activity [20].60

In principle, potential landscapes predict an inverse relationship between the value of the po-61

tential and the probability of observing the corresponding system state, and thus between the62

potential in a region of phase space and the density of observations in that region. In reality,63

certain landscape features and dynamics may lead to the persistence of transient states and the64

illusion of stability [22, 35], and strong external perturbations may cause the dynamics to deviate65

from those predicted by the potential landscape, in particular in biological applications. For ex-66

ample, perturbations to the gene expression of a differentiating stem cell may cause it to lose or67

fail to attain a differentiated phenotype [24]. While the potential landscape formalism may not68

be directly applicable to microbiomes due to the open nature of the system and rapid turnover69

relative to currently-practical sampling frequency, we speculated that creating a representation of70

the density of data points in the compositional phase space of microbial ecosystems could lead to71

useful insights for analyzing, and eventually predicting, microbiome dynamics. Specifically, we hy-72

pothesized that local maxima of the data density could form a basis by which to infer characteristic73

metastable states of microbiome composition, allowing the association of observations with states74

and the representation of dynamics as metastable state transitions while retaining the continuity75

of the underlying phase space.76

To characterize features of the microbial phase space, we used topological data analysis (TDA),77

specifically the Mapper algorithm [39, 45], which has recently found application in microbiome78

research [31]. TDA is a class of methods for inferring properties of data, represented as a point79

cloud, in high-dimensional phase-space, that seeks to be robust to factors such as scale and res-80

olution. Briefly, Mapper represents the underlying distribution of data in a metric space as an81

undirected graph, where each vertex comprises a non-exclusive subset of data points spanning a82

patch of phase space. An edge is drawn between each two vertices that share at least one data83

point (Fig. 1A), representing connectivity between patches. We complement Mapper with a novel84

graph-theoretical analysis using k-nearest neighbor (kNN) distance to estimate the density of data85

points over each patch of phase space represented by a vertex, determine local maxima, and define86

metastable community states (Fig. 1B). In contrast to established methods such as hierarchical87

clustering, our method preserves the notion of a continuous underlying density distribution, with88

the states representing a discrete coarse-graining, and recognizes low-density regions of phase space89

unassociated with any metastable state. In addition, it is possible for a data point to be associated90

with more than one vertex in the Mapper graph and thus with more than one state, allowing91

identification of samples that fall between or are in transition between metastable states.92

We used our method to infer the density and associated topological features of the point clouds93

for three published microbial time series data sets, two human gut microbiomes—one of stool94

samples collected from seven cholera patients from disease through recovery [23], one from two95

mostly healthy adult males [8]—and one of marine Prochlorococcus communities spanning multiple96

depths collected from one site in the Atlantic Ocean (BATS) and one in the Pacific (HOT) [32].97

(For details on the sampling frequency and duration for each data set analyzed, see Supporting98

Information Table 1.) We selected these data sets in part to test our method by recapitulating99

biology known from the original studies, and in part to discover novel features not addressed by100

prior methods. In both human gut and marine systems, we find that significant physiological101

and environmental events, including recovery from infection and geochemical cycling, correspond102

to recurrent successions of state transitions. We show that these successions are an informative103

coarse-grained view of microbiome dynamics, with implications for the assessment of ecological104
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resilience.105

Results106

Dynamics of human gut microbiome recovery from cholera infection107

We found the cholera phase space to be partitioned by clinical phenotype, i.e. diarrhea or recovery108

(Fig. 2A). Division of the phase space into states found that vertices within a state tended to consist109

of either samples from the diarrhea phase or from the recovery phase, rather than a mixture of both110

(Supporting Information Fig. 6). The original study [23] recognized phases of progression according111

to equal-time divisions of the diarrhea and recovery periods, respectively, of each patient. Our112

identification of disease substates,in contrast, is based on community composition and integrated113

across data from all patients. We found the diarrhea region was further subdivided into two states,114

2 and 7 (Fig. 2B). Patients C, E, and G occupied state 7 for prolonged durations immediately before115

clinical recovery; patients A, B, and F stably occupied state 7 for approximately 20 hours, but116

switched to other states for the last few time points before clinical recovery (Fig. 2C). In the case of117

patient A, the final few time points were associated with state 5, which represented an intermediate118

region of the phase space between the diarrhea- and recovery-associated neighborhoods. These119

results suggest that state 2 constituted a universal ‘early’ diarrhea state, and state 7 a universal120

‘late’ diarrhea state, with distinct community compositions. The original study noted taxa which121

consistently changed in abundance between the start and end of the diarrhea phase, for example122

Streptococcus and Fusobacterium [23], here we show that these compositional shifts are observable123

on the whole-community scale.124

Generally, patients occupied state 7 for longer than they did state 2, suggesting that the stability125

of the late state in a given patient influences disease duration. To quantify stability, we calculated a126

temporal correlation function for each state-patient pair during the diarrhea phase (see Methods).127

Monotonically decreasing correlation functions indicate metastability, showing that the system128

transiently occupies a state before transitioning to a different state; slopes become more negative129

with decreasing stability. While this analysis revealed that all patients transiently occupied state130

2, with greatest persistence in patient C, patients A, C, and E had non-monotonic correlation131

functions for state 7, coinciding with prolonged times to recovery compared to the rest of the cohort,132

with patients B and F exhibiting the expected monotonic decrease (Fig. 2D). This indicated that133

patients A, C, and E repeatedly entered and exited state 7, suggesting that prolonged diarrhea in134

these three patients may have been additionally influenced by the instability or inaccessibility of135

alternative, healthy states, and that (re-)assembly of the healthy microbial community constitutes136

a non-trivial step in recovery.137

Dynamics of two healthy adult microbiomes with transient diarrhea138

In contrast to the cholera data set, the two healthy adult gut microbiome time series from David139

et al. [8] were separated by subject (Fig. 3A). Despite being clinically healthy for most of the140

observation period, both subjects’ microbiomes experienced perturbations: subject A traveled141

from his residence in the United States to southeast Asia, twice experiencing traveller’s diarrhea;142

and subject B, also based in the US, suffered an acute infection by Salmonella. Previous studies [8,143

19] noted that, while the microbiome of A returned to its original state after travel, recovery from144

Salmonella left the microbiome of B in an alternative state. Confirming this, we found that subject145

A occupied the same regions of phase space before and after travel, while subject B occupied disjoint146

regions before and after infection. We further found that the post-Salmonella samples of subject147

B distributed over several connected components, showing that the gut microbiome of subject B148

remained in flux across several distinct compositional substates even after being clinically marked149

as having recovered (Fig 3B). Division of the phase space into states found that vertices within a150

state tended to be dominated by samples from a single subject (Supporting Information Fig. 7).151

The large connected components representing the pre- and post-travel healthy samples of sub-152

ject A and the pre-Salmonella healthy samples of subject B were each divided into several states153

(Supporting Information Fig. 1), suggesting that the clinical ‘healthy’ phenotype of an individual154

is a probability over multiple compositionally distinct states. The existence of states in microbiome155

phase space proposes a novel metric for microbiome resilience: comparing the distribution of sam-156

ples across states between time windows. Subject A occupied states with identical probability157
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before and after travel, exhibiting resilience; in contrast, subject B post-infection did not restore158

the pre-infection probability across states, despite some samples sharing states with pre-infection159

healthy samples (Fig. 4A). Thus, the restoration of the microbial community to a ‘healthy’ state160

cannot be confirmed with a single time point.161

Temporal correlation functions further showed that subject A, as well as subject B before162

infection, repeatedly visited the same set of states; in contrast, subject B after infection transiently163

occupied several states without repetition (Fig. 4B). This shows that not only did the microbiome164

of subject B enter an alternative state, or probability across states, post-infection, but that this165

alternative state was not fully stabilized. It is possible that the pre-infection probability across166

states was restored in subject B after the end of the observational period.167

Recurrent seasonal dynamics of Prochlorococcus communities in the Pa-168

cific and Atlantic169

Compared to the phase spaces of human gut microbiomes, which may be discretized by individual170

or phenotype, the Prochlorococcus phase space was organized by gradients of depth (Fig. 5A)171

and temperature (Supporting Information Fig. 4), indicating that, in these environments, small172

changes to environmental conditions result in small changes to community structure. In contrast to173

the two human gut microbiome data sets, division of the Prochlorococcus phase space into states174

found the mean depth per vertex in each state to vary continuously (Supporting Information175

Fig. 8). The phase space possessed multiple states (Fig. 5B), with state 4 largely representing176

shallow fractions of the water column ≤ 100m; states 2, 3, and 6 deeper fractions; and state 1177

intermediate depths. State 5 represented an infrequently-occupied region sampled only by the178

140m fraction at BATS on January 27, 2004, and by the 125m fraction at HOT on January 31,179

2008 (Fig. 5C). As such, state 5 possibly constitutes an alternative state for deep water fractions in180

mid-winter. Communities differing in depth rarely shared compositions, and transitioned between181

states, in many cases periodically across calendar years (Fig. 5C), showing that some communities182

experienced abrupt periodic shifts in environmental conditions due to geochemical events.183

Despite the graduated variation of composition with depth and temperature, the range of184

compositional dissimilarity across the range of environmental conditions is sufficient to constrain185

given depth fractions to a neighborhood of phase space, such that shallow- and deep-fraction186

Prochlorococcus communities rarely occupy the same compositional states over time (Fig. 5C).187

However, it is known that the BATS water column undergoes an annual late winter upwelling [32],188

intermixing communities that otherwise inhabit different depths, and homogenizing environmental189

conditions across depths. We predicted that mixing would drive communities at all depths at BATS190

to converge on a common state, while no convergence would be observed at HOT. Accordingly,191

we observed a transition to state 1 by all depths at BATS in January of each year. After June,192

depths 1-20m and 120-200m relax toward states characteristic of shallow and deep depth fractions,193

respectively, while state 1 persists longer in intermediate depths 40-100m. By contrast, no such194

upwelling occurs at HOT, and the probability of a given depth fraction occupying any state remains195

uniform over the calendar year; the distribution is especially stationary for shallow depths (Fig. 5C).196

This periodicity was also evident in periodic correlation functions for BATS, and non-periodic for197

HOT (Fig. 5D).198

Robustness of phase space characterization199

Given that the data sets analyzed here are among the largest longitudinal microbiome data sets200

currently available, we asked whether the biological hypotheses could have been obtained from201

sparser data sets. We focused on our finding that microbiome phase spaces are structured by202

latent variables representing host phenotypes or environmental conditions, and examined whether203

this structuring was robust to data rarefaction. We found that the partitioning of the phase204

space by clinical phenotype in the case of the cholera patients, by subject in the case of the two205

healthy adult humans, and the gradation by depth in the case of Prochlorococcus communities,206

are robust to all rarefaction tests performed. In the case of cholera patients, nodes remained207

divided into those representing mostly samples from the diarrhea phase and those representing208

the recovery phase, with edges being more dense between nodes of the same phenotype than209

those of different phenotypes (Supporting Information Fig. 3). In the case of the two healthy210

adult humans, nodes were consistently dominated by samples from one subject, with edges being211
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more dense between nodes representing the same subject than those representing different subjects212

(Supporting Information Fig. 4). For the Prochlorococcus data set, nodes aggregating samples213

from similar depth fractions were more densely connected than those representing disparate depths214

(Supporting Information Fig. 5).215

216

Comparison with hierarchical clustering and principal component analy-217

sis218

To compare our method with standard methodologies, we performed hierarchical clustering and219

principal component analysis (PCA) on the OTU tables for each data set. We found that, while220

PCA confirmed the global partitioning of data by diarrhea or recovery within the cholera data set,221

partitioning by subject within the two adult gut microbiomes data set, and gradation by depth222

within the Prochlorococcus data set, it failed to make evident finer-grained features such as the223

existence of early- and late- diarrhea states in the cholera data set, and the distinction of pre- and224

post-Salmonella states for subject B in the two human gut microbiomes data set. Furthermore, the225

reduction of dimensionality to two dimensions through PCA made the visual separation between226

hierarchical clusters unclear, particularly for the cholera and two human gut microbiome data227

sets, and for the Prochlorococcus data set introduced a strong ‘horseshoe’ effect [33] (Supporting228

Information Fig. 9).229

Discussion230

We identified unrecognized dynamics governing large-scale phenotypes in microbial time series data231

by using TDA to infer the shape of data density from 16S and ITS ribosomal RNA time series data.232

While analyses from the original studies identified bacterial taxa that were differed in abundance233

across host phenotypic or environmental states—for example the loss of Firmicutes in subject B234

post-Salmonella infection [8]—our method, by contrast, aims to identify transitions between global235

compositional states defined across all taxa without reference to metadata. Our results reveal the236

role of latent physiological and environmental variables [34], such as disease phenotype and phase of237

geochemical cycles, in organizing microbiomes over time. We observed common dynamics across238

instances of ecological processes in the two gut and one environmental timeseries datasets we239

studied. Using our approach, one can thus begin to infer general mechanisms that determine240

large scale phenotypes of clinical and environmental importance. The elements of our method—241

the definition of a metric phase space using the square root of the Jensen-Shannon divergence,242

the representation of the phase space using TDA, and the characterization of topological features243

using the adapted kNN density estimator and shortest graph distance searches—are specifically244

advantageous for analyzing high-dimensional compositional data. Relative abundances provide245

incomplete information on a system, and a system may be compositionally stable while remaining246

dynamic in absolute abundance [49]. Our method can be readily adapted to work with absolute247

abundance where such data are available. Compared to representational methods such as PCA,248

our method benefits from using all distance information; and compared to clustering techniques,249

our method does not require specifying the number of states, such as required in k-means.250

While subjects in both human gut data sets experienced transient infection by bacterial pathogens,251

the large-scale dynamics differed between the two groups. We found that multiple cholera patients252

followed a trajectory of early- to late-stage disease states. In contrast, the two healthy subjects253

from the year-long data set experienced apparently random jumps between states during Salmonella254

infection and traveler’s diarrhea, respectively, that did not result in the stabilization in a repro-255

ducible alternate state during the course of disease. This discordance between the two human gut256

microbiome datasets suggests that microbial infections can potentially be classified into ‘ordered’257

and ‘disordered’ types. Ordered infections are characterized by a reproducible trajectory through258

phase space, while disordered infections are characterized by unpredictable progression through259

phase space. The latter case represents a version of the ‘Anna Karenina principle,’ meaning indi-260

vidual microbiomes are more dissimilar during a particular perturbation than during health [51],261

while the former represents an inversion of the principle. Scale is likely important in this dis-262

tinction: independent of the deterministic or stochastic nature of the perturbation induced by263

an infection, if its magnitude is smaller than ‘baseline’ fluctuations of the healthy microbiome,264

variations between individuals will remain the dominant variable in organizing the phase space. If265
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the magnitude of the perturbation is larger, it may overwhelm individual variability and cause the266

phase space to instead appear organized by phenotype. Thus, data on the variability of healthy267

microbiomes over time between and within individuals will be crucial to characterizing the impact268

of a given disease on the microbiome. We also note that our conclusions are influenced by sampling269

frequency: our method cannot capture dynamics on a shorter time scale than that of sampling,270

and systems that seem noisy on a particular time scale may have ordered dynamics on longer time271

scales.272

Our analysis of the David et al. data set shows that the microbiome of a healthy individual273

transitions between states over time. While key dominant taxa may persist, no single large-scale274

compositional state defines healthy physiology. However, an individual microbiome may occupy275

states with the same probability during two separate ‘healthy’ time windows. Integrating the276

information over time for each of the healthy periods, the physiological phenotype can be inferred277

to be stable despite the system state being dynamic. Put differently, if one interprets states as278

microstates of the microbiome composition, a systemic clinical or environmental phenotype could279

then be regarded as a macrostate, and a resilient ‘healthy’ microbiome will remain in a stable280

macrostate over time.281

This notion of resilience as identical probability across states before and after a perturbation282

can be generalized to a notion of dynamic stability, defined as stationary probability across states283

over time. Dynamically stable microbiomes do not necessarily stabilize within a single state,284

but revisit a given set of states with fixed probability. Our temporal correlation analysis shows285

that dynamically stable microbiomes, such as subject A and subject B pre-infection from the286

study in [8], are characterized by non-monotonic temporal correlation functions, indicating the287

microbiome revisits the same states over time. In contrast, unstable microbiomes, such as subject288

B post-infection, exhibit monotonically decaying correlation functions, indicating the microbiome289

transiently occupies compositional states without recurrence. Dynamical instability can persist290

after infection even in the microbiome of an individual clinically marked as having recovered from291

infection, as in the case of subject B, revealing additional nuances to the association between292

stability and health in human microbiomes. The ability to assess resilience from data in the absence293

of detailed knowledge of the underlying network of microbe-microbe interactions complements294

model-based methods that analytically solve for fixed points and linear stability [5]. Alternate295

means of estimating stability and resilience may be possible, for example by quantifying the degree296

to which consecutive time points are associated with the same or adjacent Mapper vertices.297

For the two human gut microbiome data sets, we observe some of the same phenomena as the298

original studies: for the seven cholera patients, certain taxa were differentially abundant throughout299

the progression of disease [23]; and for subject B of the two healthy males, that the pre-Salmonella300

microbiome composition was not recovered by the end of the experiment [8]. In the first case, we301

remark that differential abundance of individual taxa does not necessarily imply the existence of302

large-scale compositional states consistent across patients and disease phases, such as we describe303

here. In the second case, we additionally found multiple states in the pre- and post-perturbation304

healthy phases of both subjects, and showed that restoration of a healthy and resilient microbiome is305

associated with the recovery not of a specific composition but of a distribution across compositional306

states.307

We point out several caveats regarding our method. First, though we defined the phase space308

using the Jensen-Shannon distance, other metrics may be used, and the results of analysis using309

different metrics for the same data should be compared in future applications. Second, due to310

the lack of an established protocol for selecting Mapper hyperparameters, we used a heuristic311

method to choose their values for our analyses. A more rigorous optimization method is desirable,312

especially one developed against synthetic data from de novo simulations where the ‘ground truth’313

of the parameters, and thus the shape of the density, are known a priori. Third, we use Mapper to314

create a representation of the density, but question of whether it is effective to analyze microbiome315

dynamics via the topology of the density in a given case is independent of Mapper and TDA, and316

other methods may be used. Fourth, we assume the data accurately represent the compositions317

of the sampled communities, when in fact challenges exist with translating sequencing data into318

compositions [18, 17]; addressing these challenges is outside the scope of this manuscript.319

In addition to offering a novel quantitative description of microbiome states and dynamics, we320

hope our analysis will, in time, facilitate predictive modeling of the dynamics and forecasting of321

major state transitions in the microbiome. As an example, our approach to identifying states from322

microbial time series can be used to infer state transition probabilities under different conditions,323

6



and thus can serve as a basis for fitting the parameters of Markov chain models [9, 12]. The324

concept of the potential landscape that motivated our study is closely linked to the theory of325

critical transition forecasting [6, 7, 29, 40, 42]: as perturbations destabilize a system, it ascends326

the potential gradient and eventually reaches a tipping point from where it can rapidly enter into327

an alternative stable state. Topological analyses, in turn, may eventually facilitate characterization328

of the potential landscape based on past observations, and real-time estimation of its stability and329

state transition probability. Both of these approaches allow modeling and prediction of major330

dynamical events without detailed knowledge of underlying mechanisms, and may prove pivotal to331

understanding complex, data-rich biological systems not limited to microbiomes, but also including,332

for instance, gene regulatory networks and animal ecosystems.333

Methods334

Human gut microbiome data and preprocessing335

The publicly available data that we re-analyzed here were generated by David et al [8] accessible336

on the European Nucleotide Archive (ENA) under the accession number ERP006059, and by Hsiao337

et al [23] on the NCBI Short Read Archive (SRA) under the accession number PRJEB6358. The338

downloaded reads were trimmed with V-xtractor version 2.1 [21] (a HMM scan based method of339

isolating variable regions from 16S rRNA sequences) to ensure the amplicon sequences could be340

aligned across consistent fractions of the 16S rRNA variable regions. Trimmed reads were then341

clustered into OTUs using usearch v9.2.64 [11] with a minimum cluster size of two. Representative342

sequences from each OTU were classified using mothur v1.36.1 [43] and the RDP reference 16S343

rRNA sequences v16 [4].344

Prochlorococcus data345

Data from Malstrom et al [32] was obtained from the Biological and Chemical Oceanography Data346

Management Office (https://www.bco-dmo.org), accession number 3381.347

Mapper348

Conceptually, the Mapper algorithm accepts as input a matrix of distances or dissimilarities be-349

tween data, and aims to represent the shape of the distribution of data points in high-dimensional350

phase space as an undirected graph. In this graph, vertices represent neighborhoods of phase space351

spanned by subsets of adjacent data points, and edges represent connectivity between neighbor-352

hoods. In brief, it does this by dividing the data into overlapping subsets that are similar according353

to the output of at least one filter function that assigns a scalar value to each data point, perform-354

ing local clustering on each subset, and representing the result as an undirected graph, where each355

vertex represents a local cluster of data points, and edges between vertices represent at least one356

shared data point between clusters.357

Distance matrix358

We interpreted microbiome relative abundances to be probability distributions, and thus used the359

square root of the Jensen-Shannon divergence as a metric [27]. However, it is important to note360

that any other metric can be used in place of the Jensen-Shannon distance, such as the Aitchison361

distance [37], calculated from centered [28] or isometric [44] log-transformed relative abundances.362

Filter functions and binning363

For the filter functions used by Mapper to bin data points, we performed principal coordinate364

analysis (PCoA, also known as classical multidimensional scaling) in two dimensions on the pairwise365

distance matrix, and used the ranked values of principal coordinates (PCo) 1 and 2 as the first and366

second filter values for Mapper, following Rizvi et al. [39]. PCo ranks are an appropriate filter for367

our purposes, as it assigns similar filter values to points that are relatively close together in the368

original phase space. We wish to note that while PCoA leads to loss of information, the following369

local clustering step is performed using subsets of distances from the original distance matrix, and370
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is thus not affected. The data points were then binned by overlapping intervals of the two ranked371

principal coordinates. For hyperparameters specifying these bins and their overlaps, see Table 1.372

Local clustering373

The algorithm first performs hierarchical clustering from all pairwise distances between data points374

within a bin of filter values. Then, it creates a histogram of branch lengths using a predefined375

number of bins, and uses the first empty bin in the histogram as a cutoff value, separating the376

hierarchical tree into single-linkage clusters. The algorithm thus finds a separation of length scales377

within each neighborhood of phase space represented by a bin of the filter values. We used the378

default number of histogram bins, 10, for each data set (Table 1).379

Creating the undirected Mapper graph380

The final output is produced by representing each local cluster of data points as a vertex, and381

drawing an edge between each pair of vertices that share at least one data point. When plotting,382

the size of each vertex represents the number of data points therein.383

Selection of hyperparameters384

The Mapper algorithm is relatively new, and there are currently no standard protocols to optimize385

the values of the hyperparameters. For our purposes, it was important that the algorithm achieved386

a sufficiently high resolution in partitioning data, but also adequately represented connections387

between regions of phase space. We thus used the following heuristic to set the number of intervals388

and percent overlap for each data set.389

1. The largest vertex in the resultant Mapper graph should represent no more than ≈ 10% of390

the total number of data points in the set;391

2. the number of connected components representing only one data point should be minimized.392

We acknowledge that a heuristic determination of appropriate hyperparameter values leaves393

much to be desired; as such, we recommend future in-depth theoretical explorations of how the394

Mapper output depends on the choice of hyperparameters.395

Density estimation396

We estimated the inverse density for each vertex by calculating the k-nearest neighbors (kNN)
distance [10] for each constituent data point i:

kNN(i, k) =

∑k
j dij

k
(1)

where dij is the distance between points i and j, choosing k equal to 10% of the number of samples
in each data set, rounded to the nearest integer. For a vertex V representing n points, we define
its inverse density as

Dinv(V ) =

∑
i∈V kNN(i, k)

n2
(2)

The n2 term in the denominator compensates for the differing sizes of vertices. Finally, we invert
the inverse density to obtain the estimated density:

D(V ) =
1

Dinv
(3)

397
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State assignment398

We then defined states as topological features of the density surrounding local maxima of D. We
designated each vertex with higher D than its neighbors to be a local maximum of the potential.
Connected vertices tied for maximumD were each assigned to be a local maximum. To approximate
a gradient, we converted the undirected Mapper graph to a directed graph, with each edge pointing
from the the vertex with lower D to the one with higher D. For each non-maximum vertex, we
found the graph distance dg to each local maximum constrained by edge direction. We defined the
state Bx of a maximum Vx as the set of vertices V with uniquely shortest graph distance to Vx:

V ∈ Bx if dg(V, Vx) < dg(V, Vy) (4)

for all y 6= x and Vy ∈M , where M is the set of all local maxima (Fig 1B). Vertices equidistant to399

multiple maxima were defined to be unstable regions unassigned to any state. Multiple connected400

maxima were defined as belonging to the same state. Notably, one data point may be associated401

with multiple vertices and states, or an unstable region and at least one state: we interpreted this402

to mean that the point is near a saddle point separating states, and as the ‘true’ coordinates of the403

saddle point are unknown, the data point is assigned to all such states and/or an unstable region404

with uniform weight.405

Calculating the temporal correlation function406

Given that a system occupied state Bx at time t, we defined the temporal correlation to be the
probability that it will still (or again) occupy state Bx at time t+ τ :

fx(t+τ) =

{
1 if system is associated with state Bx at time t+ τ

0 otherwise.
(5)

corrx(τ) = 〈fx(t+ τ)〉 (6)

We calculated the correlation function for each state x visited by a subject during a characteristic407

period and for all sampled intervals between pairs of samples of length τ , where the subject was408

in state Bx in the sample at the start of the interval. For the cholera data set, we calculated409

correlation functions for each state visited by each subject over the disease period. For the data410

set of two healthy adult males, we calculated correlation functions for each state visited by each411

subject in each healthy period, either before or after infection. For the Prochlorococcus data set,412

we calculated correlation functions for each state at each depth fraction at either site. Where a413

data point is associated with multiple states, we weigh the association with each state as f ′x(t) =414
1
pfx(t), with p the total number of unique states associated with the system at time t, with the415

unassigned/unstable state regarded as a single distinct state. Notably, this means f ′x(t + τ) can416

have values of 1, 12 ,
1
3 . . .417

Rarefaction test418

We created random subsets of each data set representing 90%, 50%, and 10% of the original data419

points, repeating 10 times for each data set and downsampling ratio. We then created Mapper420

graphs representing the rarefied data using the same hyperparameters as for each of the full data421

sets. We colored the vertices to indicate the same features as for the full data sets: for the cholera422

data set, by fraction of samples belonging to the diarrhea or recovery phase; for the two healthy423

adult gut microbiomes data set, by fraction of samples obtained from each subject; and for the424

Prochlorococcus data set, by the mean depth from which samples originated. We ordered the425

vertices by feature value and used a circularized linear layout algorithm, such that vertices with426

similar feature values are adjacent. Finally, we used shading to display edge densities.427

Software and data428

The main repository for the study can be found on GitHub, at http://github.com/kellylab/429

microbial-landscapes.430

An open-source implementation of Mapper in R, TDAmapper, was used for the main analysis431

and can be found at http://github.com/wkc1986/TDAmapper. This package was forked from the432

original implemented by Daniel Müllner which is maintained by Paul T. Pearson and can be found433

at https://github.com/paultpearson/TDAmapper.434
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Figure 1: Using Mapper to characterize the microbial phase space. A. Cartoon of use of the
Mapper algorithm to infer the probability density of a toy ecosystem. The mutually antagonistic
interaction between species X and Y leads to denser sampling of the phase space where either X
or Y is abundant and the other is rare than in other regions; configurations in which X and Y are
similar in abundance are unstable, as small uncertainties in numerical advantage will eventually
lead to the dominance of one species over the other. Mapper infers a ‘skeleton’ of density from
the data represented as a point cloud. This representation preserves major features of the density
such as the two densely-sampled clusters separated by a sparsely-sampled region. Size of vertices
indicates number of data points aggregated in each vertex. B. Identification of local maxima and
metastable states in the Mapper graph shown in A. Data density for each vertex is estimated by the
inverse of the mean kNN distance (see Methods) for samples associated with that vertex. Shading
indicates mean kNN distance over all data points included in a vertex. The graph is converted
to a directed graph, with each edge pointing in the direction of increasing estimated density. A
local maximum, highlighted in pink, is defined as a vertex that has higher density than all its
neighbors. Finally, the state associated with a local maximum is defined as the set of vertices that
have uniquely shortest directed graph distance to that maximum. Non-maxima vertices with equal
graph distances to multiple local maxima are unassociated with any state (grey).
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Figure 2: The phase space of the cholera gut microbiome. A. Mapper representation of the
combined cholera data reveals disease- and healthy-associated neighborhoods of the phase space.
Color: fraction of samples in each vertex associated with diarrhea. Connected components of the
Mapper graph representing only one sample are not shown. Disjoint regions of phase space are
represented as separate connected components. B. Partitioning of the phase space into metastable
states. Vertices unassigned to any state are colored in grey. C. Left: progression of subject
compositions during the diarrhea phase by state, showing persistence of states over time. Y axis
and color indicate state index, with color indexing as in B. Where a sample was associated with
multiple states, all were included. Right: frequency of samples associated with each states during
the diarrhea phase for each subject with colors as in B. D. Temporal correlation function for the
diarrhea phase of each subject. Dots: raw values of f ′x for pairs of samples (see Methods). Lines:
smoothed empirical mean of f ′x. Ribbons: standard error of the mean. Values outside the range
of 0 ≤ y ≤ 1 omitted.
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Figure 3: The phase space of two healthy adult male gut microbiomes. A. Mapper representation
of the combined daily time series of two healthy adult human gut microbiomes. Connected com-
ponents of the Mapper graph representing only one sample are not shown. B. Regions of phase
space occupied by each subject before after perturbation.
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Figure 4: States and dynamics of two healthy adult male gut microbiomes. A. Frequency of states
for healthy periods before and after perturbation. X axis: state index. Y axis: frequency of
samples. B. Temporal correlation functions for the three most probable states during each event in
the ‘healthy’ phases of each subject. Dots: raw values of f ′x for pairs of samples. Lines: smoothed
empirical mean of f ′x. Ribbons: standard error of the mean.
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Figure 5: The combined phase space of two Prochlorococcus communities inhabiting the Atlantic
and Pacific Oceans, respectively. Connected components of the Mapper graph representing only
one sample are not shown. A. Vertices colored by mean depth in meters of represented samples.
B. Partitioning of the phase space into states. C. Successions of states for each site-depth fraction
combination. Dotted lines indicate samples during January. Colors indicate states as in B. D.
Temporal correlation functions for each state per site-depth fraction combination. Dots: raw
values of fx for pairs of samples. Lines: smoothed empirical mean of f ′x. Ribbons: standard error
of the mean.
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Tables641

Data set # intervals for (rank(PCo1), rank(PCo2)) % overlap # bins
Cholera (15, 15) 70 10

Two healthy adult males (30, 30) 50 10
Prochlorococcus (20, 20) 60 10

Table 1: Hyperparameters used to generate the Mapper representation of each data set.

Additional Files642

Supporting information643

644

• Supporting methods describing PCA and hierarchical clustering.645

• Supporting table showing sampling frequency and duration for each of the data sets analyzed.646

• Supporting figure showing the states of the two human gut microbiomes data set.647

• Supporting figure showing the temperature gradients across the Prochlorococcus phase space.648

• Supporting figures showing the results of the data rarefaction test.649

• Supporting figures showing the mean physiological or environmental properties per state for650

each data set.651

• Supporting figure showing the results of PCA and hierarchical clustering.652

653

Supporting data654

• Taxonomy tables showing the mean composition of each state for each data set.655
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