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METHODS

1 Finite capacity model

We consider a two-stage decision process in a multi-alternative decision-making

problem modeled as a partially observable Markov decision process. There are

N alternatives, defined each by a Bernoulli random processes, whose trial by

trial (t = 1, ...) outcomes follow sti ∼ Bern (pi), s
t
i ∈ {0, 1} = {failure, success},

i = 1, ..., N . The outcomes are independently distributed for all trials t. The

values of the success probabilities are unknown to the decision-maker, and fol-

low a prior distribution pi ∼ Beta(α, β) i.i.d. for all alternatives, with known

hyperparameters (α, β). Allowed actions follow a two-stage decision process. In

the first stage, the decision-maker can draw a total of C = N samples at once,

namely, a one-go decision is considered [1, 2, 3]. We consider the case where

the total number of alternatives N exhausts sampling capacity C, but the re-

sults are equivalent if the number of alternatives is larger than capacity, with

the addition of more rejected or non-sampled alternatives. The action space

is AL = {~L : Li ≥ 0 ∀i,
∑
i Li = C}, where ~L = (L1, ..., LN ) is the number of

samples drawn from each of the alternatives, with the constraint
∑
i Li = C (we

often refer to the vector ~L as sample allocation). Note that the decision-maker

can decide to sample the same alternative several times (i.e., Li > 1 for some
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i), and also decide not to sample from several alternatives (i.e., Li = 0 for other

i). In general, M ≤ C = N alternatives are sampled. If just a few alternatives

are sampled (M ∼ 1), many samples can be allocated to each. If C alternatives

are sampled, only one sample could be allocated to each of them. Outcomes

of the samples from the sampled alternatives are revealed all at once, not se-

quentially. In the second stage of the decision-making process, after outcomes

are observed, the decision-maker should decide what alternative to choose. We

initially assume that it is only possible to choose only among the sampled al-

ternatives. Thus, the action space in the second stage is defined by the set

AC = {c : Lc > 0} of size M , ordered as {c1, ..., cM}. The sufficient statistics of

the outcomes of the Bernoulli processes to infer the success probabilities are the

counts of successes for each of the M sampled alternatives, ~n = (nc1 , ..., ncM ),

with nj =
∑Lcj

t=1 s
t
cj , and thus the decision of what option to choose should be a

function of those counts and on the sample allocation vector ~L, which together

constitute the information state of the decision process. The counts, conditioned

on the success probabilities, follow ni ∼ Bin(pi, Li). Note that the dimension

of the vector ~n depends on the number of samples alternatives (those satisfying

Li > 0) and thus the consideration set changes sizes depending on the first stage

decision.

We define the utility of a choice i ∈ AC as the hidden value of the suc-

cess probability of the corresponding Bernoulli variable, Ui = pi. We assume

that the decision-maker maximizes expected utility. This involves determining

the optimal allocation of samples ~L∗ to be used in the first stage followed by

defining an optimal decision rule that selects one of the sampled alternatives

based on ~n. A decision rules maps an observation ~n, given the allocation vector

~L, into an element of the action space AC. By considering all possible deci-

sion rules, δ = {δ(~n, ~L) : (~n, ~L) → AC}, we show in Sec. (5) that the optimal
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decision rule, δ∗(~n, ~L), is the one that selects always, for any sample alloca-

tion ~L, the alternative with the maximum posterior mean success probability

E(pi|ni, Li) = ni+α
Li+α+β

, i ∈ AC , or chooses any of the maximum ones if there are

ties. Therefore, the expected utility for a given sample allocation ~L following

the optimal decision rule is

U(~L) =
∑
~n

p
(
~n|~L, α, β

)
max
i∈AC

(
ni + α

Li + α+ β

)
, (1)

where the joint posterior over ~n factorizes into beta-binomial distributions as

p
(
~n|~L, α, β

)
=
∏
i∈AC

Bb(ni|Li, α, β). Then, the optimal sample allocation ~L∗

equals

~L∗ = arg max
~L∈AL

U(~L) = max
~L∈AL

∑
~n

p
(
~n|~L, α, β

)
max
i∈AC

(
ni + α

Li + α+ β

)
, (2)

and the corresponding maximum expected utility becomes

U∗ = max
~L∈AL

U(~L). (3)

Finding the optimal solution in Eq. (2) is hard because of the large number

of sample allocations that it is possible to form out of C samples. The number

of unique partitions of C samples equals the number of integer partitions of C

(not to be confused with the Bell number), for which we are not aware of simple

exact expressions. We should only consider unique partitions because all the

alternatives are initially (before sampling) indistinguishable. Therefore, without

loss of generality, we can always assume that we sample the alternatives by using

the sample allocation ~L ∈ AL where we impose the additional constraint that

Li ≥ Li+1 for i = 1, ..., N − 1. That is, we sample the first alternative with
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more or the same number of samples as the second alternative, the second

alternative with more or the same number of samples as the third one, and so

forth. We describe a gradient descent approach bellow in Sec. (4) to find the

optimal sample allocation exactly for small capacity C and approximately for

large capacity. To find useful analytical expressions for Eqs. (2, 3), we restrict

ourselves further by first looking for optimal even sample allocations, that is,

allocation of samples across M ≤ C options with the same number of samples L

per alternative. Optimal even sample allocation across alternatives is discussed

in Sec. (2).

2 Analytical expressions for optimal even sam-

ple allocation

Because the space of actions AL = {~L : Li ≥ 0 ∀i,
∑
i Li = C} is very large,

we restrict ourselves to a subset of possible actions, consisting in dividing the

capacity C into M alternatives equally sampled with L samples each. Without

loss of generality, we assume that we sample the first M alternatives and we

ignore the rest of N −M alternatives. Even splitting of the capacity is only

possible if C = M × L holds exactly, so we will only examine the pairs (M,L)

that satisfy that condition. The advantage of working in this subset of actions

is that it is possible to obtain useful, exact analytical expression that will re-

veal non-trivial properties of the decision process. Methods for finding globally

optimal sample allocation strategies are provided in Sec. (4). In the main re-

sults we also show that optimal sample allocations are not greatly better than

the optimal even ones, so that even sample allocation is close-to-optimal. For

an even capacity split, the optimal L∗ under the constraint C = ML can be

obtained by specializing Eq. (2) to this case as
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L∗ = arg max
L

∑
~n

M∏
j=1

p (nj |L,α, β) max
i

(
ni + α

L+ α+ β

)
, (4)

where i ∈ {1, ...,M} and p (nj |L,α, β) = Bb(nj |L,α, β). Naturally, the optimal

number of alternatives to be sampled is M∗ = C/L∗

A particularly simple expression results from the case α = β = 1, correspond-

ing to a uniform prior over the success probabilities of the Bernoulli variables.

This is because p (nj |L, 1, 1) = Bb(nj |L, 1, 1) = 1
L+1 , thus becoming a discrete

uniform distribution over nj ∈ {0, ..., L}, independent of nj . Then, replacing

this expression in Eq. (4), the optimal even sample allocation simplifies to

L∗ = arg max
L

U(L),

U(L) =
1

(L+ 1)M

L∑
n1,...,nM=0

max
i

(
ni + 1

L+ 2

)
(5)

=
1

(L+ 1)M (L+ 2)

(
(L+ 1)M +

L∑
n1,...,nM=0

max(n1, ..., nM )

)

=
1

(L+ 1)M (L+ 2)

(
(L+ 1)M +

L∑
s=0

(
(s+ 1)M − sM

)
s

)
(6)

= 1−
∑L
s=0(s+ 1)M

(L+ 1)M (L+ 2)
, (7)

with M = C/L. Eq. (6) in the derivation results from realizing that the sum

over maxi(ni) contains exactly 1M−0 zeros, 2M−1 ones, 3M−2M twos, etc. The

sum in Eq. (7) is the sum of the M − th powers of the first L+1 integers, and it

can be computed using Faulhaber’s formula. Eq. (7) confirms the intuition that

the expected utility U(L) for any L is smaller than one. Finally, the optimal
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number of evenly allocated samples (over the sampled options) can be written

as

L∗ = arg min
L

∑L
s=0(s+ 1)M

(L+ 1)M (L+ 2)
(8)

It is interesting to examine some limits of Eq. (7) by relaxing the constraint

C = M × L. For large M and L = 1, the expected utility in Eq. (7) becomes

limM→∞ U → 2
3 . This observation is not surprising, as when a very large

number of alternatives is sampled with just one sample, it is very likely that at

least one of them will have a successful outcome. Therefore, the expected utility

of that alternative under the uniform prior will be 2
3 . This limit is visible in the

rightmost point of Fig. 2a. In the opposite scenario, when only one alternative

is sampled, M = 1, then the expected utility is 1
2 for all L. That is, if just one

alternative is sampled, then the expected probability of success of the sampled

alternative is 1
2 , which equals the prior mean. This limit is visible in the leftmost

point of Fig. 2a.

A more general way of performing the integrals involved in Eq. (4) is

by using cumulative distribution function of the beta-binomial distributions,

φ(n|L,α, β) =
∑
m≤n Bb(m|L,α, β), and write the optimal even sample allo-

cation in Eq. (4) in terms of extreme value distribution φM (n) − φM (n − 1)

as

L∗ = arg max
L

L∑
n=0

[
φM (n|L,α, β)− φM (n− 1|L,α, β)

]( n+ α

L+ α+ β

)
, (9)

Note that the extreme value distribution φM (nmax) − φM (nmax − 1) is the

distribution of nmax = max(n1, ..., nM ) where ~n follows the above factorized
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beta-binomial distribution. In other words, the extreme value distribution for

nmax is the probability that no alternative has more than nmax successful sam-

ples (hence the first term φM (nmax)) but removing the cases where there is no

alternative with more than nmax−1 successful samples (hence the second nega-

tive term φM (nmax−1)). For the uniform prior case, α = β = 1, we recover Eq.

(8), for which the cumulative can be exactly computed. For arbitrary values of

α and β, Eq. (9) is solved numerically. These solutions are used in Fig. 2d.

The general Eq. (2) valid for any allocation of samples, and the specific

Eq. (9) valid for even sample allocations, assume that a choice is made from

the sampled alternatives, while non-sampled alternatives are excluded from the

choice set. However, if none of the sampled alternatives turns to be good ones

(e.g., because ni � Li for i ∈ AC), then it would be better to choose randomly

from any of the non-sampled alternatives. This is particularly so if the expected

utility of any of the sampled alternatives, ni+α
Li+α+β

, is smaller than α
α+β , which

is the default expected utility of the non-sampled alternatives given that the

success probabilities are drawn from a B(α, β). It is straighforward to generalize

these results by adding a default alternative, assumed to have utility p0. In this

case, the optimal even allocation of samples obeys

L∗ = arg max
L

L∑
n=0

(
φM (n|L,α, β)− φM (n− 1|L,α, β)

)
max

(
n+ α

L+ α+ β
, p0

)
.

(10)
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3 Asymptotic behavior for large capacity: the

square root sampling law

It is possible to derive an approximation for the limiting behavior of the optimal

number of sampled alternatives M∗ and their associated optimal number of

samples per alternative L∗ by using Eq. (5) for large capacity C in the case of

the uniform prior distribution. For large capacity C, we assume that L∗ grows

to infinity. This assumption is confirmed later, when the asymptotic optimal

L∗ is derived. If L is large, then Eq. (5) can be approximated by

U(L) =
1

(L+ 1)M

L∑
n1,...,nM=0

max
i

(
ni + 1

L+ 2

)
(11)

=
1

(L+ 2)

(
1 +

1

(L+ 1)M

L∑
n1,...,nM=0

max(n1, ..., nM )

)

≈ 1

(L+ 2)

(
1 + L

∫ 1

0

dx1...

∫ 1

0

dxM max(x1, ..., xM )

)
,

where the sum in the second equation has been approximated in the third equa-

tion by an integral in the interval [0, 1]M over a uniform distribution by using

the transformation ni = Lxi for i = 1, ...,M . The continuous approximation is

valid when L is large, as assumed, since then the transformation delivers values

of xi that are dense in the unit interval. The integral can be rewritten as

∫ 1

0

dx1...

∫ 1

0

dxM max(x1, ..., xM ) =

∫ 1

0

dxmaxxmaxf(xmax),

where we have defined the extreme value xmax = max(x1, ..., xM ). The ex-

treme value follows the extreme value distribution f(xmax) = (F (xmax)M )′ =
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MxM−1max , where we have used that F (x) = x is the cumulative of the continuous

uniform distribution in [0, 1]. Therefore,

U(L) ≈ 1

(L+ 2)

(
1 + L

∫ 1

0

dxmaxMxMmax

)
=

1

(L+ 2)

(
1 +

ML

M + 1

)
. (12)

Finally, by maximizing U(L) as a function of L with the constraint C = ML we

obtain the asymptotic optimal number of sampled alternatives M∗ and optimal

number of samples per sampled alternative L∗

lim
C→∞

M∗ =
√
C, lim

C→∞
L∗ =

√
C,

which corresponds to the square root sampling law.

In the above derivation we have assumed that L∗ grows with C. To see that

this corresponds to the only valid assumption to obtain L∗, let us assume now

that L∗ does not grow with C, that is, it is a constant or decreases with C. For

any fixed value L, using Eq. (7) we see that U(L) ≤ 1− 1/(L+ 2). This utility

is smaller than the one obtained by using the square root law, which converges

to 1, as can be easily derived from Eq. (12). Therefore, the square root law

delivers the highest utility.

4 Optimal sample allocation

For low capacity C ≤ 7 we found the globally optimal sample allocation strategy

by exhaustive search over all possible sample allocations. For larger capacity, we
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searched the optimal sample allocation by using Monte Carlo gradient descent.

With this method, we confirmed that for values up to C ≤ 20 the globally

optimal sample allocations were correct up to a precision in expected utility of

10−4.

We started the algorithm by selecting the optimal even sample allocation

if C ≤ 7, and the square root law if the capacity was larger (we considered

the possibility that the resulting square root was not an integer, and thus we

allocated the residual number of samples to a randomly chosen additional alter-

native; we call this allocation scheme ’even allocation’). At every iteration, we

computed the expected utility of the current best sample allocation ~L through

a Monte Carlo simulation of the Bernoulli variables and averaging utility over

4 × 105 repetitions for C ≤ 20 and 5 × 104 for larger capacity values. A per-

turbed sample allocation was proposed by randomly selecting two alternatives.

One sample was removed from the first alternative and added to the second one,

but only if the first alternative had already assigned at least one sample. To

exploit symmetry, we only consider changes of one sample from one alternative i

to another j > i if Lj−1 ≥ Lj and Li ≥ Lj . If j < i, there were not restrictions.

With the proposed sample allocation, we computed the expected utility using

the same Monte Carlo method. If the new expected value was larger than

the previous one, then the proposed perturbed sample allocation became the

current best sample allocation. This process was iterated 2 × 104 times for

C ≤ 20 and 3 × 103 for larger capacity values. Because at each iteration we

reevaluate the expected value of the current best sample allocation, we avoid

the possibility of getting stuck in a random fluctuation leading to a spuriously

large expected value. The Monte Carlo gradient descent method found optimal

sample allocations that were identical to those found with the exhaustive search

for low capacity. We confirmed that the optimal sample allocations found were
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stable against different random number seeds and initial conditions. Figs. 3 and

4 use the above method. Percentage points increase in Fig. 4b is computed as

100(U∗−Ueven)/Ueven, where U∗ is the utility estimate of the globally optimal

allocation and Ueven is the estimate of the even allocation.

We also used another version of the Monte Carlo gradient descent that

avoided sampling the Bernoulli variables to estimate expected utility. This

method was used to confirm robustness of the previous results. In this Markov

Chain Monte Carlo estimation of utility, we define

U∗ = max
~L

∑
~n

p(~n|~L, α, β) max
i

(
ni + α

Li + α+ β

)
. (13)

We thus can design a Markov Chain Monte Carlo method to sample from the

probability distribution

p(~n|~L, α, β) =
∏
j

Bb(nj |~L, α, β)

appearing in the sum of Eq. (13) as follows (these samples can be then used

to approximate the sum). Detailed balance imposes that the probability of

transitioning from a state with ~n to ~n′ is the same as the converse,

P~n,~n′ p(~n|~L, α, β) = P~n′,~n p(~n
′|~L, α, β).

By proposing a change to a single arm n′j = nj±1, we can get a simple expression

for the acceptance rate r(~n→ ~n′). If n′j = nj + 1 the acceptance rate is

r(~n→ ~n′) = min

(
1,

(nj + α)(Lj − nj)
(Lj − nj + β + 1)(nj + 1)

)
,
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while if n′j = nj − 1, it becomes

r(~n→ ~n′) = min

(
1,

(Lj − nj + β)nj
(nj + α− 1)(Lj − nj)

)
,

where we have made use of the Metropolis-Hastings algorithm. These two

changes are proposed with equal probability and randomly across all the op-

tions. Utilities are estimated using 106 samples. The search over ~L is made

using 50× C iterations for C ≤ 50 and 2500 iterations for 50 < C < 5000.

5 Consistency

Perhaps intuitively, but wrongly, we might assume that by always opting for the

alternative with larger number of successful outcomes (larger ni in Eq. (2)), this

would result in ’cherry picking’, that is, in selected a spuriously good option.

This, in turn, would mean that we would obtain a reward that is lower than the

expected utility in Eq. (3). Here we show, however, that the decision rule of

choosing always the alternative with the highest posterior mean is both optimal

and delivers on average a reward that is equal to the expected utility. This is

a well-known result in statistical decision theory [4, 5, 6]. Here we show the

derivation for completeness.

Consider any possible decision rule ~d = δ(~n) that assigns the counts of suc-

cesses for theM sampled alternatives, ~n, to a decision ~d ≡ ~d(~n) = (dc1(~n), ..., dcM (~n)),

encoded as a one-hot vector of length M (i.e., dci = 1 if alternative ci is chosen,

and dci = 0 otherwise; we omit the potential dependence of the decision rule

on ~L to avoid cluttered notation). If the success probabilities of the sampled

alternatives, ~p, are known, then by using the decision rule δ the decision-maker

would have an expected utility
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U(~p, ~L, δ) =
∑
~n

∏
i∈AC

Bin(ni|Li, pi) pdi(~n)i ,

where ~L is the allocated number of samples over the alternatives. Note that the

expected utility is an average over the values of the chosen pi given the decision

rule averaged across all possible outcomes given the allocated number of samples

over alternatives. As probabilities are unknown, they are marginalized out with

their prior beta distributions, resulting in the overall expected utility

U(~L, δ) =
∑
~n

∏
i∈AC

Γ(Li + 1)

Γ(ni + 1)Γ(Li − ni + 1)

Γ(α+ β)

Γ(α)Γ(β)

×Γ(ni + α+ di)Γ(Li − ni + β)

Γ(Li + α+ β + di)
. (14)

We note that for each term in the sum over ~n, there is only one value of i for

which di = 1 in the product, while dj = 0 for j 6= i. The term i in the product

with di = 1 gives an extra factor ni+α
Li+α+β

(by expanding the gamma functions

just one step) that is not present in the product terms with dj = 0. Therefore,

the product is maximized iff di = 1 for the alternative i with maximum ni+α
Li+α+β

(if the maximum is not unique, any alternative with the maximum value will

give exactly the same result). This result proves that the optimal decision rule

δ∗ is the one that chooses always the alternative with the highest posterior

expected utility given ~n.

Now, we can show that for the optimal decision rule δ∗, the expected utility

is the same as that in Eq. (3). We can rewrite Eq. (14) as
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U(~L, δ∗) =
∑
~n

max
i∈AC

(
ni + α

L+ α+ β

) ∏
i∈AC

Γ(Li + 1)

Γ(ni + 1)Γ(Li − ni + 1)

Γ(α+ β)

Γ(α)Γ(β)

×Γ(ni + α)Γ(Li − ni + β)

Γ(Li + α+ β)
,

which is identical to the maximum expected utility U(~L) in Eq. (3), that is,

U(~L, δ∗) = U(~L). This shows that ’cherry picking’ is optimal.
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