Title: HflX controls hypoxia-induced non-replicating persistence in slow growing mycobacteria.

Authors: NGAN Jie Yin Grace¹,², PASUNOOTI Swathi³, TSE Wilford³, MENG Wei³, NGAN So Fong Cam³, NG Sze Wai¹,², JAAFAR Muhammad Taufiq¹,², JIA Huan³, CHO Su Lei Sharol¹,², LIM Jieling¹,², KOH Hui Qi Vanessa¹,², ABDULGHANI Noradibah¹,², PETHE Kevin³,⁴, SZE Siu Kwan⁵, LESCAR Julien³ and ALONSO Sylvie¹,².

Affiliations: ¹Department of Microbiology and Immunology; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ²Life Sciences Institute, Immunology programme, National University of Singapore, Singapore; ³School of Biological Sciences, Nanyang Technological University, Singapore; ⁴Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.

*Corresponding author: Center for Life Sciences, 28 Medical Drive, Immunology programme, Singapore 117456, Singapore. Email: micas@nus.edu.sg
Abstract

GTPase HflX is highly conserved in prokaryotes and is a ribosome splitting factor during heat shock in *E. coli*. Here we report that HflX produced by slow growing *M. tuberculosis* and *M. bovis* BCG is a GTPase that plays a critical role in the pathogen’s transition to a non-replicating, drug-tolerant state in response to hypoxia. Indeed, HflX-deficient *M. bovis* BCG (KO) replicated markedly faster in the microaerophilic phase of a hypoxia model, that precipitated entry into dormancy. The KO displayed the hallmarks of dormant mycobacteria including phenotypic drug resistance, altered morphology, low intracellular ATP and up-regulated dormancy dos regulon. KO-infected mice displayed increased bacterial burden during the chronic phase of infection, consistent with the higher replication rate observed *in vitro* in microaerophilic phase. Unlike fast-growing mycobacteria, BCG HflX was not involved in antibiotic resistance under normoxia. Proteomics, pull-down and ribo-sequencing supported that mycobacterial HflX is a ribosome binding protein that controls the translational activity of the cell. Collectively, our study provides further insights into the mechanisms deployed by mycobacteria to adapt to their hypoxic microenvironment.

Key Words: HflX; GTPase; ribosome splitting factor; dormancy; dos regulon.
Introduction

GTP binding proteins are found across all living kingdoms and are involved in the regulation of many cellular processes. Among which, the small GTPases act as molecular switches that are active or "on" when binding GTP and inactive or "off" when binding GDP. Universally conserved prokaryotic GTPases (ucpGTPases) are a core group of GTPases which are conserved in most prokaryotes, hinting at a critical function in biology (Verstraeten, 2011), though the actual physiological role of most of them has remained elusive. ucpGTPases are characterized by the presence of highly conserved motifs or domains, including the phosphate-loop (P-loop) within the G-domain, a characteristic site where GTP binding and hydrolysis occur (Bourne, 1990; Sprang, 1997).

High frequency of lysogenization X (HflX) protein belongs to the superfamily of the Obg-HflX-like ucpGTPases, class of Translation Factors (TRAFAC), which have been described to participate in protein translation, likely by providing energy for protein synthesis, or by facilitating the recycling of factors involved in translation (Laalami, 1996; Verstraeten, 2011). HflX was first reported as part of the hflA locus in Escherichia coli that controls the phage lysis–lysogeny decision process and was thus initially thought to play a role in transposition (Dutta, 2009). However, more recent work has shown that E. coli HflX acts as a ribosome-splitting factor under heat shock stress, whereby it binds to and splits stalled 50s ribosomal subunits (Coatham, 2016; Zhang, 2015). In Staphylococcus aureus, HflX binds to and dissociates hibernating 100S ribosomes (homodimeric 70S) into 50S and 30S subunits, thereby recycling the pool of ribosomes for new rounds of translation during the stationary phase (Basu, 2017). A recent study has reported a similar ability for HflX expressed by Mycobacterium abscessus and M. smegmatis to bind to and split ribosomal subunits (Rudra, 2020).

In Mycobacterium tuberculosis (Mtb), responsible for human tuberculosis, hflX has been categorized as a non-essential gene using a Transposon transposon site hybridization (TraSH) library (Sassetti, 2003). Other studies found that hflX gene expression was influenced by a variety of stressors ranging from antibiotics and chemical exposure, to environmental stresses such as nutrient starvation (Andreu, 2008; Boshoff, 2004; Dutta, 2010; FU, 2009; Manjunatha, 2009; Morris, 2005; Sherrid, 2010). Consistently, we previously reported that hflX is over-expressed in Mtb exposed to the hostile lysosomal environment of macrophages (Lin, 2016). Transcription of hflX was found to be linked with whiB7, a transcriptional
regulator that controls intrinsic antibiotic resistance and redox homeostasis in Mtb (Burian, 2012; Morris, 2005). Exposure to antibiotics targeting the ribosomal complex including streptomycin, erythromycin, tetracycline, and pristinamycin was found to induce both *whiB7* and *hflX* expression (Hartkoorn, 2012).

Consistently, absence of HflX in fast growing mycobacteria species *M. abscessus* and *M. smegmatis* increased antibiotic resistance to macrolide-lincosamide antibiotics (Rudra, 2020).

In this study, we investigated the physiological role of HflX in tubercle bacilli *M. bovis* BCG and *M. tuberculosis*. We report that Mtb/BCG HflX is a GTPase that is involved in response to hypoxia-induced persistence, a non-replicating state that allows tubercle bacilli to persist inside their host for extended periods and become phenotypically antibiotic-resistant (Gold, 2017; Kester, 2014). We provide experimental evidence that HflX interacts with ribosomal subunits and plays a master regulatory role in protein translation during transition to hypoxia.
Results

Mycobacterial HflX is a GTPase with minimal ATPase activity.

In the prokaryotic kingdom, HflX is widely distributed and conserved across species (Leipe, 2002; Verstraeten, 2011). The amino acid sequence of *M. tuberculosis* (Mtb) HflX is 100% and 84.5% identical to *M. bovis* BCG HflX and *M. leprae* HflX, respectively, while it shares about 45% identity within the GTPase catalytic site of *E. coli* HflX, including the P loop, Switch I-II, and G1-G5 domains (Appendix, Fig. S1A). A three-dimensional computational model was constructed by adopting a previously described strategy (Fischer, 2012). The Phyre2.0 modeling platform was employed to compare the predicted structure of Mtb HflX to that of *E. coli* HflX, whose crystal structure is available (PDB entry: 5ADY) (Zhang, 2015). As expected from the high level of amino-acid identity, a high degree of homology was observed visually and from the low root-mean-square-deviation (RMSD) score, which supports the conservation of HflX structure and function between these two evolutionarily distant prokaryotes (Appendix, Fig. S1B).

To investigate whether mycobacterial HflX is a GTPase, codon-optimized BCG/Mtb HflX was expressed in and purified from, *E. coli* (Appendix, Fig. S2A&B). Significant GTPase activity in the presence of MgCl₂ but limited ATPase activity could be observed (Fig. 1A&B; Appendix, Fig. S2C). A mutant harboring a triple amino acid substitution (AAY) in the predicted GTPase catalytic site was also generated (Appendix, Fig. S2A) and was found to be unable to hydrolyze GTP (Fig. 1A). Furthermore, direct interaction between mycobacterial HflX and GTP hydrolysis product GDP, was demonstrated by isothermal titration calorimetry (ITC) with a dissociation constant Kd at 1.89 µM and a 1:1 stoichiometry (Fig. 1C&D). On the other hand, no significant interaction between the triple mutant HflX and GDP was observed. These data thus establish that HflX produced by Mtb and *M. bovis* BCG is a GTPase with minimal ATPase activity.

Mycobacterial HflX is involved in adaptation to hypoxia

E. coli HflX has been reported to be a ribosome splitting factor responding to heat shock (Dey, 2018; Zhang, 2015). We thus investigated whether HflX from tubercle bacilli would have a similar function. A *M. bovis* BCG HflX null mutant (*ΔhflX*) and its complemented strain (*ΔhflX::pHflX*) were constructed (Appendix, Fig. S3A). RT-PCR revealed undetectable levels of *hflX* mRNA in BCG *ΔhflX*, while the
complemented strain displayed \textit{hflx} mRNA level similar to the parental strain (Appendix, Fig. S3B).

Comparable growth kinetics were observed amongst WT, \textit{hflx}, and \textit{hflx::phflX} strains when cultured in standard 7H9 liquid culture medium (Appendix, Fig. S3C), supporting that HflX is non-essential for \textit{in vitro} growth in rich aerated (normoxic) culture medium at 37\(^\circ\)C.

Mycobacterial HflX was not found to play a role during heat shock as evidenced by comparable number of colony-forming units (CFU) amongst the WT, \textit{hflx}, and complemented strains (Fig. 2A). Furthermore, codon-optimized BCG HflX or homologous \textit{E. coli} HflX were expressed in \textit{hflx} \textit{E. coli} under the control of an arabinose-inducible promoter (\textit{E. coli hflx::pBCGhflX} and \textit{E. coli hflx::hflX}). The \textit{hflX} mRNA levels in both strains were comparable and about 100 times higher than the endogenous level measured in WT \textit{E. coli} (Appendix, Fig. S3D). Upon heat shock, expression of homologous HflX partially restored parental survival, while codon-optimized BCG HflX did not confer protection to the \textit{hflX} \textit{E. coli} strain (Fig. 2B). Thus together, these observations support that mycobacterial HflX is unlikely to be involved in the heat shock response.

To probe a possible physiological role of mycobacterial HflX during adaptation to other stresses, the BCG WT, \textit{hflx}, and complemented strains were grown under various conditions, including macrophage infection, nutrient starvation (Loebel \textit{in vitro} model), and gradual oxygen depletion (Wayne \textit{in vitro} model).

No significant difference among the three strains was observed during macrophage infection and under nutrient starvation (Appendix, Fig. S4A&B). Growth profiles were then monitored in the gradual oxygen depletion model (aka Wayne model). In this \textit{in vitro} model, mycobacteria growth is characterized by two stages, namely the non-replicating persistence stage 1 (NRP-1) or microaerophilic stage, during which mycobacteria slow-down replication while oxygen gets progressively depleted in the sealed tube (<1.0\% \textit{O}_2); and the non-replicating persistence stage 2 (NRP-2), characterized by an oxygen tension below 0.06 \% and where mycobacteria have stopped replicating and enter a dormant state (Wayne, 1996; Wayne, 2001). In this model, during the NRP-1 stage (days 3-8), the BCG \textit{hflx} culture was found to grow faster than the WT and complemented strains, as evidenced by significantly higher \textit{OD}_{600nm} values and CFU counts (Fig. 2C&D). The growth of BCG \textit{hflx} ceased on day 8 onwards as evidence by plateaued \textit{OD}_{600nm} values, and reached the NRP-2 stage at day 14 (as indicated by complete decolorization of methylene blue indicator), while the WT and complemented strains reached NRP-2 by day 18 and 17,
respectively (Fig. 2C&D). The differential growth kinetic profile observed in the Wayne model with the HflX-deficient strain thus pointed at a role for HflX in controlling growth rate during the microaerophilic phase and entry of mycobacteria into the non-replicating state.

Changes in cell morphology have been reported previously for non-replicating mycobacteria grown under hypoxic conditions and external acidification, including thickening of the cell wall, size reduction, and ovoid cell formation (Jakkala, 2019; Shleeva, 2011; Velayati, 2011). The size and morphology of BCG ΔhflX mycobacteria grown in the Wayne model were studied by scanning electron microscopy. A 43% reduction in size was observed with BCG ΔhflX at day 8 (NRP-1) compared to its size at day 0, while the average size of WT and complemented strains was comparable to day 0 (Fig. 2E,F). At day 21 (NRP-2), the size of WT and complemented strains decreased significantly compared to the NRP-1 stage and day 0, reaching a size that was similar to that measured with ΔhflX strain (Fig. 2E,F). These observations, therefore, suggested that the ΔhflX mutant displayed a non-replicative phenotype earlier than the WT and complemented strains.

We were next interested to test whether HflX impacts mycobacterial growth in a mammalian host where oxygen saturation ranges between 1-14% depending on the organ, thereby likely exposing mycobacteria to microaerophilic environments (Carreau, 2011; Liu, 2011). Upon intratracheal infection, the number of CFUs recovered at weeks 2 and 4 from the lungs, spleen and lymph nodes of mice infected with WT, ΔhflX and complemented strains were mostly comparable (Appendix Fig. S4E). In contrast, from week 8 onwards, which corresponds to the chronic phase of infection triggered by the host adaptive immunity (Köhler, 1975; Nicolle, 2004), the bacterial loads measured in these organs were consistently higher in mice infected with ΔhflX compared to the parental and complemented strains (Fig 2G). These findings were consistent with the higher replication rate observed with ΔhflX mutant during microaerophilic phase of the in vitro hypoxic Wayne model, and supported a role for HflX in the physiological response of mycobacteria to low oxygen tension environments that are encountered during the course of infection in the human host.

Absence of HflX impairs the energetic status of hypoxic mycobacteria.
We previously reported that under gradual oxygen depletion, the intracellular ATP level drops significantly in mycobacteria (Rao, 2007). We thus monitored the intracellular ATP levels in BCG ∆hflX grown in the Wayne model. While comparable intracellular ATP levels were measured at day 0 for the WT, ∆hflX, and complemented strains, significantly lower ATP levels were obtained with the ∆hflX strain at all the subsequent time points (Fig. 3A). Furthermore, we also determined the membrane potential (Δψ) of the three strains using cationic fluorescent dye DiOC₂, as previously described (Rao, 2007; Vaara, 1992). Negative controls consisted of cultures incubated with proton-ionophore cyanide m-chlorophenyl hydrazine (CCCP) that dissipates the transmembrane proton gradient (ΔpH) component of proton motive force (PMF). BCG ∆hflX displayed an overall 17-46 % increase of Δψ values compared to WT and complemented strains, with a 2-fold increase on day 3 (Fig. 3B), suggesting that the plasma membrane of BCG ∆hflX is hyperpolarized during growth in the Wayne model. Of note, the addition of CCCP only caused a slight reduction of RFU, presumably reflecting an incomplete depolarized state of the membrane.

Altogether, our data indicated that under gradual oxygen depletion, BCG ∆hflX displays significantly lower ATP levels compared to WT and complemented strains that could explain its earlier entry into a non-replicating state. The membrane hyperpolarization observed may reflect a compensatory mechanism to maintain the PMF for de novo ATP synthesis critical for mycobacterial survival (Srinivasa PS Rao et al., 2007).

BCG ∆hflX exhibits phenotypic drug resistance in NRP-1 that correlated with up-regulation of the dos regulon.

The phenotypes displayed by ∆hflX in Wayne model prompted us to investigate the drug susceptibility profile of this mutant. Phenotypic drug resistance of non-replicating mycobacteria induced under hypoxia, nutrient starvation, or stationary phase has indeed been well described (Franzblau, 2012; Lakshminarayana, 2015; Rao, 2007). This phenomenon is believed to explain the prolonged chemotherapy necessary to achieve sterility and cure in TB patients (Davies, 2010; McCune, 1966; McCune, 1956; Nuermberger, 2004). Here, we investigated the susceptibility of BCG ∆hflX to various anti-mycobacterial drugs with different mechanisms of action, namely bedaquiline BDQ, isoniazid INH,
streptomycin STM, rifampicin RIF, chloramphenicol CM, and ethambutol ETB. WT, \(\Delta hflX \) and complemented strains grown under aerobic conditions displayed comparable minimum inhibitory concentrations (MIC) (Appendix, Table S1). In NRP-1 of the Wayne model, however, BCG \(\Delta hflX \) displayed high resistance to BDQ, INH, and STM, with only 1-2 log\(_{10} \) decrease in CFU/mL compared to the drug-free control, while WT and complemented strains displayed between 3-8 log\(_{10} \) reductions in CFU/mL when exposed to these drugs (Fig. 3C). Of note, BCG \(\Delta hflX \) did not display increased drug resistance to RIF compared to WT and complemented strains. In the NRP-2 stage, all three strains were resistant to BDQ, INH, and STM and remained susceptible to RIF (Fig. 3D), consistent with previous studies reporting that RIF is very effective at killing non-replicating mycobacteria (Iacobino, 2017; Iacobino, 2016; Tomasz, 1970). The lack of killing efficacy of non-replicating mycobacteria observed with BDQ, previously shown to kill both actively replicating and non-replicating mycobacteria (Andries, 2005; Haagsma, 2011), may be explained by the fact that this drug exerts a delayed killing (Koul, 2014), and that 5-day incubation may not be sufficient to observe significant killing of non-replicating mycobacteria (Piccaro, 2015).

Furthermore, the two-component system DosS/T-R has been known to mediate mycobacteria transition to a non-replicating state in response to various stresses, including low oxygen tension (Bretl, 2011; Gautam, 2014; Kendall, 2004; Sharma, 2016). The sensory kinases DosS or DosT activate transcriptional regulator DosR by phosphorylation, leading to the transcription of a 48 gene-regulon (aka dos regulon) (Bagchi, 2005; Roberts, 2004; Saini, 2004; Sousa, 2007). We thus examined the transcriptional activity of the dos regulon in BCG \(\Delta hflX \). A significant increase in the transcription level of a number of dos regulon genes (\(dosR, dosS, dosT, \) and \(hspX \)) was found with the \(\Delta hflX \) mutant in the NRP-1 phase (day 8) of the Wayne model with average fold-increases of 5X, 3X, 1.5X and 6X respectively compared to WT (Fig. 3E and Appendix Fig. S4 C&D).

Together, both the phenotypic drug resistance profile and up-regulation of the dos regulon in the NRP-1 stage of the Wayne model, further supported that in this gradual oxygen depletion model, BCG \(\Delta hflX \) enters a non-replicating state earlier than its parental counterpart.
As a ribosome-splitting factor, *E. coli* HflX influences the translational activity in this bacterium. To understand the mechanisms by which HflX plays a role in triggering the non-replicating state in tubercle bacilli, we employed tandem mass tag mass spectrometry (TMT-MS) to analyze the relative protein abundance in \(\Delta hflX \) BCG compared to the parental strain when grown under hypoxic conditions. Results indicated differential protein content between WT and \(\Delta hflX \) at all the time points tested (day 0, day 8, and day 17) (Fig. 4; Appendix; Tables S2-S4). At day 0, 66 and 56 proteins were down- and up-regulated in BCG \(\Delta hflX \), respectively (Fig. 4A). According to gene ontology analysis, significant enrichment was found for down-regulated proteins involved in lipid biosynthesis and metabolism, cell wall components biogenesis and assembly, leucine biosynthesis, protein folding and response to copper ion (Fig. 4D). At day 8, extensive differential protein abundance was seen between the BCG \(\Delta hflX \) and WT, with 151 up-regulated and 201 down-regulated proteins (Fig. 4B). Among the 151 up-regulated proteins, 15 were encoded by genes from the dos regulon (Appendix, Table S3, bolded), in line with the observed up-regulation of dos regulon genes at the transcriptional level. Furthermore, and consistent with a potential regulatory role of HflX in translational activity of the bacterium, the day-8 \(\Delta hflX \) sample was enriched in ribosomal subunits (Appendix, Table S3, highlighted in yellow) and in proteins involved in formation of the hibernating ribosome (HPF, RafH) (Appendix, Table S3, highlighted in green). Also, in that sample, many of the up-regulated proteins were assigned to central metabolism (PfkB, Gap, FabG1, CitA, AceA, Icd2, and SdhB) (Appendix, Table S3). The proteins that were down-modulated at day 8 were similar to those down-regulated at day 0 (Fig. 4E). Interestingly, at day 0 and day 8, BCG \(\Delta hflX \) displayed significantly lower amounts of seven proteins (Mas, FadD26, FadD29, FadD22, PpsB, PpsC, PpsD) (Appendix, Table S2) encoded by the operon involved in the synthesis of phenolphthiocerol and phthiocerol dimycocerosates (PDIM), a major long-chain fatty acid component of the cell wall in mycobacteria (Azad, 1997; Jackson, 2014; Jackson, 2007). Finally, at day 17, where both strains have reached a non-replicating state (NRP-2), 15 proteins involved in the response to starvation and copper ion were found to be up-regulated in BCG \(\Delta hflX \), while 27 proteins involved in sulfur compound metabolism, cysteine synthesis, and oxidoreductase activity were down-regulated (Fig. 4C&F, Appendix, Table S4).
Together, this proteomic approach revealed massive changes at the protein level in the BCG ΔhflX mutant compared to WT, particularly at day 8 of the Wayne model, which supports a master regulatory role for HflX in response to hypoxia.

Mycobacterial HflX interacts with ribosomal subunits and regulates protein translation

E. coli HflX binds at the E-site of 70S bacterial ribosomes and induces split into 50S/30S ribosomal subunits upon GTP hydrolysis (Coatham, 2016). Using a biochemical approach, a recent study reported that HflX produced by _M. abscessus_ and _M. smegmatis_ is also a ribosome splitting factor (Rudra, 2020).

To investigate whether HflX expressed by slow growing _M. bovis_ BCG interacts with ribosomal subunits, we conducted a cell-based pull-down experiment combined with LC/MS analysis using a home-made anti-HflX monoclonal antibody (Appendix, Fig S2D&E). Results showed that the pull-down fraction was enriched in ribosomal proteins, namely S6 and S17 of the 30S ribosomal subunits; and L27 and L30 of the 50S ribosomal subunits, thus supporting that HflX binds to ribosomes (Table 1).

To further confirm the regulatory role of mycobacterial HflX in protein translation in response to hypoxia, BCG ΔhflX or WT bacteria were harvested at day 8 in the Wayne model and were analyzed by ribo-sequencing. This approach revealed the presence of ribosomally protected footprints covering canonical non-coding RNAs (ncRNAs) such as tRNAs and rRNAs, a feature previously reported in a ribo-seq study conducted in _Mycobacterium abscessus_ (Miranda-CasoLuengo, 2016). We found an enrichment in tRNA ribosome footprints in the BCG ΔhflX compared to WT, while total RNA-seq indicated that the percentages of reads mapped to the respective regions (tRNA, rRNA, CDS and Other) were similar between both strains (Fig.5A, Appendix Fig. S6). Otherwise, the percentage of reads mapped to rRNA, CDS and 5’ and 3’ untranslated regions (Others) by Ribo-seq were generally higher in WT (Fig. 5A). The translation efficiency (TE) of 1,361 coding sequences (CDS) was found to be significantly (Log2TE>1, Log2TE<-1) different between ΔhflX and WT, among which 781 had a lower TE in ΔhflX, representing approx. 60% of the CDS (Fig. 5B). Interestingly, genes coding for ribosomal subunits were those with the greatest increase in TE in ΔhflX (Fig. 5C). This finding was consistent with our proteomics data, and suggested that in the absence of HflX, less free ribosome subunits are available inside the cell, leading bacteria to up-regulate the corresponding genes. Genes involved in metabolic pathways including carbon
metabolism, citrate cycle and oxidative phosphorylation were also found to have their translation efficiency up-regulated in ΔhflX (Fig 5C). This again may represent a feedback response to the lower ATP pool measured in ΔhflX. Among the genes whose translation efficiency was significantly down-regulated in ΔhflX, the PPE family genes, genes involved in response to stimuli, and two-component systems were enriched (Fig. 5D).

Together, these data support that mycobacterial HflX interacts with ribosomes and plays a regulatory role in protein translation under hypoxic stress.
Discussion

Mtb can survive for decades in a dormant state, causing a clinically asymptomatic, non-infectious form of the disease that is known as latent TB infection (LTBI) (Dye, 1999; Parrish, 1998). It is estimated that about one-third of the world’s population has LTBI, providing a large reservoir for reactivation to active, contagious disease (WHO., 2019; Veatch and Kaushal., 2018). The ability of dormant *Mtbc* to exhibit a form of non-inheritable resistance to most of the currently available anti-TB drugs (aka phenotypic drug resistance) explains the long treatment regimen needed to achieve sterilization, and has impeded the efforts in TB elimination (Bloom, 1992; Gomez, 2004; Parrish, 1998). During latent infection, non-replicating *Mtbc* bacilli localize within granuloma, an organized structure of immune cells intended to constrain the infection (Dheda, 2005; Orme, 2014; Russell, 2007). The hypoxic microenvironment of granuloma is believed to trigger replication arrest in pathogenic mycobacteria (Dannenberg, 1993; Manabe, 2006; Rustad, 2009; Wayne, 2001). The dormancy survival regulon, aka *dos* regulon, is regulated by the two-component system *DosS/T* and *DosR* and comprises 48 genes, which have been shown to be essential for hypoxic survival (Boon, 2002; Leistikow, 2010; Park, 2003; Roberts, 2004; Sherman, 2001). However, the molecular mechanisms involved in the hypoxic response and replication arrest of pathogenic mycobacteria have remained elusive. Our present work has identified the highly conserved GTPase *HflX* as a novel mycobacterial factor that plays an important role in the pathogen’s response to its hypoxic environment. Our findings are in line with previous reports on the role of *HflX* in stress adaptation in other distantly related microorganisms (Basu, 2017; Zhang, 2015). However, instead of heat shock, mycobacterial *HflX* responded specifically to oxygen limitation, a physiologically relevant stress that mycobacteria encounter in their host environment. Our data support that *HflX* regulates the translational activity in slow growing pathogenic mycobacteria, and controls entry into the non-replicating state. We further showed that BCG/Mtb *HflX* is a ribosome-interacting protein, as evidenced by the enrichment in ribosomal subunits in the pull-down fraction (Table 1). This was consistent with the ribosome-splitting activity of *HflX* described in *E. coli* and *S. aureus* (Basu, 2017; Zhang, 2015), as well as in fast growing mycobacteria species (NTM) *M. abscessus* and *M. smegmatis* (Rudra, 2020). Interestingly, while the latter study reported that *HflX*-deficient *M. smegmatis* and *M. abscessus* displayed resistance to macrolide-lincosamide, we did not observe any drug resistance phenotype with Δ*hflX* BCG.
mutant grown in normoxia, including macrolides such as erythromycin (Table S1). Macrolide-lincosamide has been used effectively to treat non-tuberculous mycobacteria (NTM) infections (Binder, 2013; Maxson, 1994; Mushatt, 1995). However, mycobacteria from the Mtb complex (which includes *M. tuberculosis*, *M. bovis* BCG and others, but not *M. smegmatis* or *M. abscessus*) have been found to be intrinsically resistant to macrolides due to the presence of Erm methyltransferase (ErmMT) that confers resistance to macrolide-lincosamide-streptogramin (MLS) by methylation of 23S rRNA (Andini, 2006; Buriánková, 2004). Of note, part of the *ermMT* locus has been deleted in the vaccine strain *M. bovis* BCG Pasteur, making this strain susceptible to erythromycin. Maintenance of erythromycin susceptibility in BCG Δ*hflX* mutant suggests a differential role of HflX between tubercle bacilli and NTM in adaptation to stress.

The hallmark of non-replicating bacilli includes low energy profile and global protein synthesis down-regulation (Hu, 1998; Ignatov, 2015; Schnappinger, 2003; Shi, 2005). In *E. coli*, global translation shut down is associated with ribosome dimerization into a 100S ribosome species, which is translationally inactive when conditions are not favorable for bacterial growth (Gohara, 2018; Starosta, 2014; Wada, 1995; Yamagishi, 1993). Under hypoxic stress, Mtb 70S ribosomes do not dimerize into 100S but associate with hibernating promoting factor (HPF) and ribosome-associated-factor-during-hypoxia (RafH) into a stable complex (Li, 2015; Mishra, 2018; Trauner, 2012). Ribosome stabilization is a strategy deployed by bacteria for stress management, so when cellular conditions become favorable, the hibernating ribosomes get disassembled and quickly recycled for new rounds of translation (El-Sharoud, 2004; Gohara, 2018). The plasticity of hibernating ribosome disassembly has been proposed to play an essential role in the TB disease reactivation process (Sawyer, 2018; Trauner, 2012). It has been shown that *E.coli* and *S. aureus* HflX rescued stalled ribosomes and hibernating 100S ribosomes by splitting them into the 50S and 30S subunits, allowing translation to resume (Basu, 2017; Zhang, 2015). Our proteomics and ribo-seq data indicated an increased abundance in HPF and RafH, and downregulation of 30% of the total translatome, respectively, in BCG Δ*hflX* under oxygen limitation. We thus propose a model whereby under hypoxia, HflX controls the amounts of ribosomal subunits available for translation by splitting hibernating ribosomes and/or stalled ribosomes, thereby controlling the overall translational activity, hence entry into the non-replicating state (Fig. 6). Absence of HflX leads to accumulation of hibernating and stalled ribosomes, precipitating entry into a non-replicating state. The fact that HflX is
dispensable in normoxia suggests that either the amount of hibernating ribosomes and stalled ribosomes is negligible, or other splitting factors are at play. The increased amount of individual ribosomal subunits observed in the HflX-deficient mutant could result from a compensatory mechanism that aims to overcome the overall translation shutdown. Alternatively or in addition, Mtb/BCG HflX may also be directly involved in the biogenesis of ribosomal subunits as proposed for several bacterial GTPases, among which many are from the TRAFAC class (Bennison, 2019; Britton, 2009; Campbell, 2008). Furthermore, the extensive changes in proteomic and Ribo-seq profiles observed with BCG ΔhflX (including proteins involved in various cellular processes such as central metabolism and cell wall synthesis), coupled with the higher replication rate during the microaerophilic phase and the increased bacterial burden in the chronic phase of infection in mice, suggest a master regulatory role for HflX in mycobacteria’s response to their hypoxic environment. Consistently, some of the TRAFAC-GTPases have been implicated in various cellular processes such as cell wall metabolism, chromosome segregation, and cell division initiation (Britton, 2000; Britton, 1998; Caldon, 2003; Cladière, 2006; Foti, 2007; Gollop, 1991). Whether these pleiotropic effects are a downstream consequence of the regulatory role of HflX in the bacterium’s translational activity or are independent of it remains to be investigated.

Overall, our work uncovers the physiological role of the highly conserved HflX GTPase in slow growing pathogenic mycobacteria, and provides further insights into the mechanisms by which this pathogen adapts to its environment. Such fundamental knowledge may help design alternative strategies to accelerate or potentiate the killing efficacy of current TB drugs.
Methods

Strains, Plasmids and Growth Conditions

Bacterial strains, plasmids, and primers used are listed in Appendix Tables S5 and S6. Mycobacteria were grown in Middlebrook 7H9 liquid medium (BD Difco™, CAT No.: 271310) supplemented with 0.5 % (v/v) glycerol, 0.05 % (v/v) Tween 80 and 10 % (v/v) Albumin and Dextrose; and plated on Middlebrook 7H11 Agar Base (BD Difco™, CAT No.: 271310) supplemented with Middlebrook OADC (BD Difco, CAT No.: 212351). When appropriate, hygromycin (50 μg/ml) (Roche, CAT No.: 10843555001) and kanamycin (50 μg/ml) (Thermo-Fisher Scientific, CAT No.: 11815032) was added to the media.

E. coli K-12 ΔhflX strain was purchased from Keio Collection (JW4131-1). E. coli strains were grown in Luria-Bertani (LB) broth (Sigma-Aldrich, CAT No.: L3022) and agar (BD Difco™, CAT No.: 244520). All pre-cultures were grown from frozen stock seeded in LB and cultured at 37 °C overnight under shaking conditions. Antibiotic ampicillin (100 μg/ml) (Sigma-Aldrich, CAT No.: A9518) was added into the medium where necessary for plasmid maintenance. Arabinose (Sigma-Aldrich, CAT No.: 10850) was added to the cultures when indicated for gene induction. Information on strains is provided in Appendix Table S5.

Construction of knock-out and complemented strains

M. bovis BCG ΔhflX was generated via a double homologous recombination event, as previously described (Bardarov, 2002). Briefly, homologous regions (HR) flanking the 5’ and 3’ ends of hflX were amplified from the WT BCG genome using primers described in Table S2, and cloned into the pYUB854 vector (Bardarov, 2002) with a hygromycin-resistance (hygr) cassette lies between both HRs. Transformants were plated onto 7H11 agar plates containing hygromycin, and resistant colonies were selected after 3 weeks of incubation for further validation. Successful knockouts were verified at the genomic level by PCR and at the transcriptional level by qRT-PCR.

The BCG ΔhflX mutant strain was complemented by reintroducing WT hflX open-reading frame (ORF) under the control of constitutive hsp60 promoter (BCG ΔhflX :: phflX) back into the genome using pMV306 integrative plasmid (Stover, 1991). Transformants were plated onto kanamycin-7H11 agar plates, and resistant colonies were selected for further screening after 3 weeks incubation. Successfully
complemented ΔhflX clones were validated at the genomic level by PCR and at the transcriptional level by qRT-PCR.

E. coli K-12 ΔhflX strain was complemented by reintroducing hflX ORF using pBAD replicative plasmid (Invitrogen, CAT No.: V44001) E. coli hflX locus was amplified from WT E. coli K-12 genome (E. coli ΔhflX :: pflX), while BCG hflX sequence was codon-optimized for E. coli expression (Stothard, 2000) and synthesized by GenScript (New Jersey, USA) (E. coli ΔhflX :: pBCGhflX). Both ORFs were expressed under the control of inducible arabinose promoter (ara), and the final plasmid vectors were electroporated into ΔhflX E. coli. Transformants were plated onto LB plates containing ampicillin. Resistant colonies were picked and verified at the transcriptional level by qRT-PCR.

Heat Shock assay

Mid-log phase WT, ΔhflX, and hflX complemented E. coli cultures (OD_{600nm} 0.6) were diluted down to OD_{600nm} 0.1 with fresh LB broth. The bacterial cultures were then exposed to a temperature at 55°C for 10 minutes as previously described (Zhang et al., 2015). Bacterial viability was determined by plating on LB plates and incubated at 37°C, and the colony forming units (CFU) were enumerated. The same parameter of heat shock was applied to ΔhflX, and hflX complemented BCG cultures.

Wayne model

The protocol was performed based on the previously described Wayne hypoxia model (Wayne, 1996). In short, mid-log phase BCG cultures (OD_{600nm} 0.6) were maintained in supplemented Dudos media and diluted to a final volume of 17mL (OD_{600nm} 0.005) in a glass tube containing a magnetic stir bar. The ratio between headspace and culture volume was also kept constant, as previously described (Wayne, 1996). The tubes were then tightly sealed with an airtight silicone seal cap and several layers of Parafilm M® to prevent oxygen diffusion. The tubes were incubated on a magnetic platform set at 170 rpm at 37°C for 3 weeks. Methylene blue was added at 0.015 µg/mL as a hypoxia control. At indicated time points (days 0, 3, 6, 8, 10, 14, 17 and 21), the airtight seal was broken open to measure turbidity (OD_{600nm}) and enumerate CFU by plating appropriate dilutions of bacterial cultures on 7H11 agar plates to determine bacterial viability after hypoxic exposure.
To test antibiotics susceptibility, antibiotics [BDQ: Bedaquiline; INH: Isoniazid (Sigma-Aldrich, CAT No.: PHR1937); STM: Streptomycin (Sigma-Aldrich, CAT No.:S6501); RIF: Rifampicin (Sigma-Aldrich, CAT No.:R3501); CM: Chloramphenicol (MP-Bio, CAT No.:02190321); ETM: Ethambutol (Sigma-Aldrich, CAT No.:E4630)] were quickly injected into the tubes using a needle syringe, and the tubes were sealed back with several layers of parafilm. The bacterial cultures were incubated for another 5-days period on the magnetic platform with constant agitation at 100 rpm at 37 °C before plating onto 7H11 agar plates and incubation for 3 weeks at 37°C and 5% CO₂. CFU were enumerated and compared to the drug-free control.

Mice Infection

Animal experiments were approved by the Institutional Animal Care and Use Committee of the National University of Singapore (NUS) under protocol R16-0531 and were performed in the AALAAC-accredited animal facilities at NUS. Adult (7–8 weeks old) female Jackson C57BL/6 mice were purchased from InVivos (Singapore) and were intratracheally (IT) infected with ~10⁶ CFU of M. bovis BCG strains (WT, ΔhflX, and ΔhflX :: phflX). At the indicated time points, lungs, lymph nodes, and spleens from euthanized mice were harvested and homogenized in PBS + 0.1% Triton X-100. Appropriate dilutions of the organ homogenates were plated onto 7H11 agar plates for CFU determination after 2 weeks incubation at 37°C and 5% CO₂.

Quantification of Intracellular ATP

A previously described method was followed (Rao, 2007). Briefly, intracellular ATP was quantified by using the BacTiter-Glo Microbial Cell Viability Assay Kit (Promega CAT No.: G8230). Aliquots of 100 µl of bacterial culture were collected at various time points and mixed with an equal volume of the BacTiter-Glo reagent and incubated for 5 min in the dark. The emitted luminescence was detected by using M200 Pro plate reader and was expressed as relative luminescence units.

Measurement of the Membrane Potential
A previously described method was followed (Rao, 2007). Briefly, the membrane potential (ψ) was detected by using Baclight™ Bacterial Membrane Potential Kit (Invitrogen™ CAT No.: B34950). 100 µl of bacterial cultures were collected at various time points and mixed with an equal volume of 60 µM DiOC2 (3,3-diethyloxa-carbocyanine iodine, fluorescent dye). After for 30 min at 37°C, the suspensions were analyzed using M200 Pro plate reader (Tecan Trading AG, Switzerland) at green fluorescence (ex: 488nm, em: 530nm) and red fluorescence (ex: 488nm, em: 630nm). Data were expressed as relative fluorescence units (RED/GREEN ratio). CCCP (Carbonyl cyanide m-chlorophenyl hydrazine) (Sigma-Aldrich, CAT No.:C2759) at a final concentration of 10 µM, was used as a positive control for membrane potential disruption.

Turbidity-based growth inhibition assay

Mid-log *M. bovis* BCG cultures (OD$_{600nm}$ 0.6) were diluted to OD$_{600nm}$ 0.05 in 7H9 media. Bacterial suspensions were then dispensed in a transparent U-bottom 96-well plate (Greiner-Bio, CAT No.: 650180) (200 µL/well), containing 2-fold serially diluted antibiotic. The plates were incubated for 5 days at 37˚C. Bacterial suspensions were manually resuspended before OD$_{600}$ was measured using M200Pro plate reader (Tecan Trading AG, Switzerland). The minimum inhibition concentration 50 (MIC$_{50}$), defined as the drug concentration that is required to inhibit 50% of bacterial growth (compared to drug-free control) was calculated.

RNA extraction, cDNA synthesis, and qRT-PCR

Both *E. coli* and BCG cultures were treated with RNAprotect Cell Reagent (Qiagen, CAT No.:76526) before lysis. Treated bacterial cells were then centrifuged, and the pellet was resuspended in TE buffer with 20 mg/ml of lysozyme (Sigma-Aldrich, CAT No.:L7651) at room temperature for 20 minutes. BCG cultures had an additional disruption step using bead-beating before RNA extraction. The total RNA was isolated using the RNeasy®Mini Kit (Qiagen, CAT No.:74104), according to the manufacturer’s protocol. Extracted total RNA was further treated with TURBO DNA-free™ kit (Invitrogen™, CAT No.: AM1907) to remove genomic DNA contamination, according to the manufacturer’s protocol. RNA concentration and purity were determined using the NanoDrop 1000 Spectrophotometer™, and aliquots were stored at -
80°C. Complementary DNA (cDNA) from extracted RNA was obtained using the iScript™ cDNA Synthesis Kit (Bio-rad, CAT No.:1708890) according to the manufacturer’s protocol. Relative mRNA abundance was then measured using the iTaq™ SYBR® Green Supermix (Bio-Rad, CAT No.:1725151) (refer to Table 2 for gene-specific primer sequences), and the 7500 Fast Real-Time PCR System (Applied Biosystems). Both the reaction mix and PCR cycling conditions followed the manufacturer’s instructions. The relative abundance of each *E. coli* and mycobacterial gene target was determined using house-keeping genes *rssA* or *sigA*, respectively, to normalize mRNA levels. The mRNA level of each target gene in the KO strain was expressed relative to the mRNA level measured in WT.

Scanning electron microscopy (SEM)

Mycobacteria grown in the Wayne model were harvested at the indicated time points and coated on polylysine-coated glass coverslips, and fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer for 1 h (pH 7.4) at room temperature. The coverslips were then treated with 1% osmium tetroxide (Ted Pella Inc) at room temperature for 1 h, and then dehydrated through a graded ethanol series from 25% to 100% and critical point dried using a CPD 030 critical point dryer (Bal-Tec AG, Liechtenstein). The cell surfaces were coated with 15 nm of gold by sputter coating using a SCD005 high-vacuum sputter coater (Bal-Tec AG). The coated samples were examined with a field emission JSM-6701F Scanning Electron Microscope (JEOL Ltd., United States) at an acceleration voltage of 8 kV using the in-lens secondary electron detector.

Tandem Mass Tag (TMT) mass spectrometry

Mycobacterial cultures was harvested at the indicated time points and washed twice with 1X PBS. Proteins were extracted using lysis buffer (8 M urea, 2 M thiourea, 4% CHAPS, 40mM DTT) supplemented with Halt protease inhibitor complete cocktail (Thermo Fisher) by bead beating (50 Hz for 3 five-minute cycles, TissueLyzer II (Qiagen) with 0.1 mm silica beads). Bead beating chambers were chilled at 4 °C before and between cycles. Extracts were centrifuged at 14,000 g for 15min at 4 °C and the supernatant was collected. Overnight trichloroacetic acid/acetone precipitation was performed with 2D Clean-Up kits (GE Healthcare) as instructed by the manufacturer. Air-dried protein pellets were
resuspended in 10 mM triethylammonium bicarbonate (TEAB) buffer (pH 8.5) with 8M urea. Protein concentrations were determined by BCA assay (Thermo Science). Protein quality and quantities were checked by SDS-PAGE electrophoresis (12% polyacrylamide gels) and UV spectrometry (Nanodrop, Thermo Scientific). A total of 100 μg protein from each condition was subjected to in-solution trypsin digestion before labelling the resultant tryptic peptides using the TMT-6plex Isobaric Label Reagent Set (Thermo Scientific, Rockford, IL, USA) according to the manufacturer’s protocol. The labeled samples were combined prior to fractionation using a high pH reverse phase HPLC on a Xbridge™ C18 column (4.6 × 250 mm, Waters, Milford, MA, USA) and subsequent analysis by LC-MS/MS.

The fractionated peptides were separated and analyzed using a Dionex Ultimate 3000 RSLCnano system coupled to Q Exactive tandem mass spectrometry (Thermo Fisher Scientific, MA, USA). Separation was performed on a Dionex EASY-Spray 75 μm × 10 cm column packed with PepMap C18 3 μm, 100 Å (Thermo Fisher Scientific) using solvent A (0.1% formic acid) and solvent B (0.1% formic acid in 100% ACN) at flow rate of 300 nL/min with a 60 min gradient. Peptides were then analyzed on the Q Exactive apparatus with the EASY nanospray source (Thermo Fisher Scientific) at an electrospray potential of 1.5 kV. A full MS scan (350–1,600 m/z range) was acquired at a resolution of 70,000 and a maximum ion accumulation time of 100 ms. Dynamic exclusion was set as 30 s. The resolution of the higher energy collisional dissociation (HCD) spectra was set to 350,00. The automatic gain control (AGC) settings of the full MS scan and the MS2 scan were 5E6 and 2E5, respectively. The 10 most intense ions above the 2,000 count threshold were selected for fragmentation in HCD, with a maximum ion accumulation time of 120 ms. An isolation width of 2 m/z was used for MS2. Single and unassigned charged ions were excluded from MS/MS. For HCD, the normalized collision energy was set to 30. The underfill ratio was defined as 0.3%. Raw data files from the three technical replicates were processed and searched using Proteome Discoverer 2.1 (Thermo Fisher Scientific). The raw LC-MS/MS data files were loaded into Spectrum Files (default parameters set in Spectrum Selector) and TMT 6-plex was selected for the Reporter Ion Quantifier. The SEQUEST HT algorithm was then used for data searching to identify proteins using the following parameters; missed cleavage of two; dynamic modifications were oxidation (+15.995 Da) (M) and deamidation (+0.984 Da) (NQ). The static modifications were TMT-6plex
(+229.163 Da) (any N-terminus and K) and Carbamidomethyl (+57.021 Da) (C). The false discovery rate for protein identification was <1%. The Normalization mode was set based on total peptide amount.

Cloning, expression and purification of recombinant HflX proteins

M. tuberculosis (Mtb) *hflX* gene sequence encoding amino acids 1-435 was cloned into a pNIC-CH2 expression vector with a His6 tag at its C-terminus by Protein Production Platform (PPP), NTU. pNIC-CH2 HflX was mutated with PCR-based mutagenesis to produce HflX AAY expression plasmid. *E. coli* HflX expression plasmid was also generated by PPP, NTU. Mtb HflX, Mtb HflX AAY, and E.Coli HflX constructs were transformed into BL21(DE3)- T1R competent cells (Sigma-Aldrich, CAT No.:B2935) for protein expression. For protein expression, 10 mL of overnight starter bacterial culture was added to 1L of LB media supplemented with kanamycin and chloramphenicol and cultured at 37°C on a shaker to OD600 of 0.8 prior to addition of 0.5 mM IPTG and overnight incubation at 18°C. After centrifugation, the bacterial pellet was resuspended in cold lysis buffer (100 mM Na Hepes, pH 7.5, 500 mM NaCl, 10 mM imidazole, 1 mM TCEP, and 10% glycerol), and lysed using LM20 microfluidizer with a pressure of 20,000 psi. Clarified lysates were collected after centrifugation for three-step purification, including nickel affinity chromatography, ion-exchange chromatography, and size exclusion chromatography. The protein was eluted in gel filtration buffer (20 mM Hepes, pH 7.5, 300 mM NaCl, 1 mM TCEP,10% glycerol) and concentrated using Vivaspin turbo with a 10 kDa molecular mass cutoff concentrator (Sartorius) to a final concentration of 1 mg/mL. Protein quality and purity were assessed by SDS-PAGE, and the suspensions were stored at -80°C.

Generation of anti-HflX monoclonal antibody

BALB/c mice (females, 6 weeks old) were injected intraperitoneally with 25 µg of purified Mtb HflX protein as described above, mixed with incomplete Freund’s adjuvant (Sigma-Aldrich, USA) in a 1:1 volumetric ratio for three cycles at 2-week intervals. A final booster immunization consisted of administering intravenously 25 µg of the same antigen without adjuvant. Three days later, the splenocytes from the euthanized BALB/c mice were obtained and fused with myeloma cells NS-1 using standard hybridoma methods (Köhler, 1975; Yokoyama, 2013). Screening of hybridoma cells and titer analysis were carried
out as described previously (Köhler, 1975; Yokoyama, 2013). The monoclonal antibody selected was confirmed to detect Mtb/BCG HfIIX in an ELISA assay and by dot blot, but was unable to detect HfIIX in Western blot, indicating that this antibody likely recognized a conformational epitope.

Immunoprecipitation and LC/MS

Mid-log BCG WT and KO cultures (7H9) were harvested and the bacteria pellets were washed twice with 1X PBS, before proceeding to protein extraction. Bacterial lysates were suspended in Pierce™ IP lysis buffer (Thermo Fisher Scientific, CAT No.:87787) and supplemented with 1X EDTA and 1X Halt Protease inhibitor cocktail (Thermo-Scientific, CAT No.:78440) and were lysed using bead beating (50 Hz for 3 five-minute cycles, TissueLyzer II (Qiagen) with 0.1 mm silica beads). 800 µg of lysates were then co-incubated with monoclonal anti-HfIIX that was pre-treated with Dynabeads Protein G (Thermo Fisher Scientific, CAT No.:1004D) for immunoprecipitation. The dynabeads were washed 3X with 1X PBS and 0.05% Tween20. Co-IP elutes were extracted with 1X NUPAGE™ LDS sample buffer (Thermo Fisher Scientific, CAT No.: N0007). The proteins were separated on an 8–20% gradient SDS-PAGE and subjected to in-gel digestion. The peptides were separated and analyzed using a Dionex Ultimate 3000 RSLCnano system coupled to a Q Exactive instrument as described in the Tandem Mass Tag (TMT) mass spectrometry section above. Raw data files were converted to mascot generic file format using Proteome Discoverer 1.4 (Thermo Fisher Scientific). The Mascot algorithm was then used for data searching to identify proteins. emPAI value reported by Mascot was used for label free protein quantitation and proteins identified in the WT only (after minus the background proteins identified in the hfIIX KO strain) were shortlisted for further analysis.

GTPase/ATPase hydrolysis assay

GTP/ATPase hydrolysis was quantified using malachite green phosphate assay kit (Sigma-Aldrich, CAT No.: MAK307) according to the manufacturer protocol. Briefly, a 300 µL of reaction mixture was prepared consisting of the respective purified proteins at a final concentration of 1 µM, 300 µM GTP or ATP and reaction buffer (50 mM Tris-HCl, pH 8.0, 200 mM NaCl, 1 mM DTT and 5 mM MgCl₂). 80 µL of the reaction mixture were collected at 1 hr, 3 hr, and overnight respectively, and mixed with 20 µL of
malachite green phosphate assay reagent. After 5 minutes incubation at room temperature for 5 min, OD_{620nm} was measured with a Tecan multimode microplate reader (Tecan Trading AG, Switzerland).

Isothermal titration calorimetry (ITC) assay

ITC assay was performed to evaluate the direct interaction between HflX protein with ligands involved in GTPase hydrolysis, including GDP, GTP, and GMP-PNP. Both HflX protein and the ligands were prepared in (20 mM Hepes, pH 7.5 and 300 mM NaCl). Briefly, 800 µM of GDP, GTP or GMP-PNP was loaded into the syringe while 100 µM of Mtb HflX protein was loaded into the experimental cell. Titrations were performed at 25 °C consisting of an initial injection at 0.5 µL and 19 injections at 2 µL of GDP, GTP or GMP-PNP into Mtb HflX protein until saturation was reached. Thermodynamic data were analyzed with a single-site fitting model using MicroCal PEAQ-ITC analysis software provided by the manufacturer.

Ribo-sequencing

Extraction of RNA and ribosomes- Mycobacterial cultures grown in the Wayne model were harvested at day 8 and treated with 100 µg/mL Chloramphenicol (Sigma Aldrich, CAT No.: C0378) for 3 min before centrifugation at 4,500 g for 10min at 4 °C followed by one wash with chilled 1X polysome buffer (20mM Tris HCl, 100mM NaCl, 5mM MgCl₂, 100 µg/mL Chloramphenicol). Cell pellets were resuspended in ice-cold lysis buffer (1X polysome buffer, 1% Triton X 100, 1mM DTT, 20 U/mL Turbo DNAse, 0.1% NP40, 100 µg/mL Chloramphenicol) and flash frozen in liquid nitrogen. The frozen cells were pulverized using Cell Crusher tissue pulverizer (Cell Crusher, CAT No.: 607KSL) according to the manufacturer's protocol. The grinding jar was pre-chilled in liquid nitrogen. The extracts were centrifuged at 14,000 g for 20min at 4 °C and the supernatant was collected. RNA concentration was determined by Qubit™ RNA HS assay kit (Thermo Fisher, CAT No.: Q32852).

Ribosome profiling- Pulverized cells were thawed and the soluble cytoplasmic fraction was isolated by centrifugation at top speed for 20 min at 4 °C (Oh, 2011). Supernatant was collected and the clarified lysates were digested with RNase I for 1h at room temperature. Digestion was stopped with SuperaseIN and monosomes purified by size exclusion chromatography on MicroSpin S-400 HR columns (GE Healthcare) as described (Shamimuzzaman, 2018). Size selection of footprints with length 15-40 nt was
performed by electrophoresis on 15% TBE-urea gels. 3’ termini of ribosome footprints were
dephosphorylated with T4 polynucleotide kinase. Illumina ready RIBO-seq libraries were prepared using
SMARTer smRNA kit (TakaraBio). Library concentrations were measured by Qubit fluorometer and their
quality assessed on a Agilent 2100 bioanalyzer. RIBO-seq libraries were sequenced on a Illumina
Novaseq 6000 sequencer.

RNA-sequencing- To obtain matched RNA-seq libraries, total RNA was purified from an aliquot of cell
lysate, rRNA was depleted using RIBO-Minus transcriptome isolation kit (Invitrogen) following
manufacturer’s instructions. mRNA fragmentation was conducted for 25 min at 94 °C to generate RNA
fragments of similar sizes as those of the ribosome footprints. SMARTer smRNA kit (TakaraBio) was
used to generate Illumina ready RNA-seq libraries. Library concentrations were measured by Qubit
fluorometer and their quality assessed on a Agilent 2100 bioanalyzer. RNA-seq libraries were sequenced
on a Illumina Novaseq 6000 sequencer.

Loebel nutrient starvation model
The starvation model follows a previously described method (Betts, 2002; Loebel, 1933). Briefly, mid-log
phase (OD_{600nm} 0.6) M. bovis BCG cultures grown in 7H9 were washed thrice with sterile DPBST (1 X
PBS supplemented with 100 mg/L CaCl$_2$ and 100 mg/L MgCl$_2$·6H$_2$O and 0.05% Tween 80). The pellet
was then resuspended in 50 mL sterile at an OD_{600nm} of 0.1 within a one-liter roller bottle (Corning® Roller
Bottles, Tissue Culture Treated, 490 cm², cap plug seal, CAT No.: CLS430195-40EA). The cultures were
then incubated at 37 °C on a rolling platform for 2 weeks. At the indicated time points (days 0, 6, 9, 14),
turbidity was measured at OD_{600nm}, and CFU were enumerated onto 7H11 agar plates.

THP-1 macrophage infection assay
THP-1 cells (American Type Culture Collection) were grown in RPMI 1640 (Gibco CAT No.: 22400-15)
supplemented with 10% fetal bovine serum (Gibco CAT No.: 10270-106), 0.01 mM sodium pyruvate
(Gibco CAT No.: 11360-070), 1% Glutamax (Gibco CAT No.: 35050-061) and 0.5 µM Beta-
mecaptoethanol (Gibco CAT No.: 21985-023). THP-1 were seeded in 24-wells plate at 5 X 104 cells/well.
THP-1 cells differentiated with 100 ng/mL phorbol-12-myristate 13-acetate (PMA) (Sigma-Aldrich, CAT
No.:79346) were allowed to adhere for 24 hours before infection. Dispersed bacilli were incubated with differentiated THP-1 cells at a multiplicity of infection (MOI) of 2 for 1h at 37°C, 5% CO₂. The cells were then washed thoroughly twice with pre-warmed PBS and then incubated for 1 to 5 days at 37°C and 5% CO₂. After incubation, cells were lysed, and bacteria were harvested and plated on 7H11 agar plate for CFU enumeration 3 weeks later.

Computational modeling

Web-based protein modeling platform Phyre 2.0 was used (Kelley, 2015). The Mtb H37Rv HflX primary protein sequence was obtained from the NCBI Gene database and entered into the Phyre 2.0 with the modeling mode set to “Intensive”. Homology modeling uses the *E. coli* HflX crystal structure (PDB entry: 5ADY) as a template to produce the model. Model homology was individually assessed based upon the parameters set for each platform. Phyre 2.0 utilizes a Confidence score based on HHsearch, which uses a profile hidden Markov model to assess the quality of model alignment with the template (Soding, 2005).

Statistical analysis

Statistical analyses were generated from Prism 7.0 (GraphPad, USA) and tests used are indicated in the figure legends. One-way and two-way ANOVA were conducted on experiments comparing across different groups under single and multiple conditions, respectively, with Bonferroni correction as post-hoc test. Results with *p*-values <0.05 were defined as statistically significant.
Acknowledgements

This work was supported by a grant from the Ministry of Education (Singapore) allocated to SA. We would like to thank the Antibody Core Facility at the Life Sciences Institute, for their assistance in generating the anti-HflX monoclonal antibody; and TB-SEQ, Inc (Palo Alto, USA) for performing library preparation, ribosome sequencing and bioinformatics services. We would also like to thank Dr. Rohan Williams from SCELSE (NUS) for his insightful comments on data analyzing.

Conflict of interest declaration

The authors declare that they have no conflict of interest.

Author contributions

- NGAN Jie Yin Grace, PAUNOOTI Swathi, PETHE Kevin, SZE Siu Kwan, LESCAR Julien, and ALONSO Sylvie designed the experiments, and analyzed the data.
- NGAN Jie Yin Grace, PAUNOOTI Swathi, MENG Wei, NG Sze Wai, JAAFA Muhammad Taufiq, JIA Huan, CHO Su Lei Sharol, LIM Jieling, KOH Hui Qi Vanessa, ABDUL GHANI Noradibah, performed the experiments.
- TSE Wilford, NGAN So Fong Cam, analyzed data.
- NGAN Jie Yin Grace, ALONSO Sylvie wrote the manuscript.

Conflict of Interests

The authors declare that they have no conflict of interest.

Hu Y, Butcher, PD., Sole, K., Mitchison, DA., Coates, AR. (1998) Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock. *FEMS Microbiol Lett* **158**: 139145

Loebel R, Shorr, E., Richardson, HB. (1933) The Influence of Foodstuffs upon the Respiratory Metabolism and Growth of Human Tubercle Bacilli. *J Bacteriol* **26**: 139-166

Saini D, Malhotra, V., Dey, D., Pant, NH., Das, TK., Tyagi, JS. (2004) DevR–DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microb 150: 865-875

Shleeva M, Kudykina, YK., Vostroknutova, GN., Suzina, NE., Mulyukin, AL., Kaprelyants, AS. (2011) Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification. *Tuberculosis (Edinb)* **91**: 146-154

Figure Legends

Figure 1. GTPase and ATPase activities of purified mycobacterial HflX.

A. Quantification of inorganic phosphate (IP\textsubscript{4}) released over time in the presence of GTP with Mtb HflX, GTPase-abrogated Mtb HflX AAY or \textit{E.coli} HflX. Data show mean ± SD of three independent experiments.

B. Quantification of inorganic phosphate (IP\textsubscript{4}) released over time in the presence of ATP with Mtb HflX, GTPase truncated Mtb HflX AAY or \textit{E.coli} HflX. Data show mean ± SD of three independent experiments.

C, D. Binding of HflX to GDP. (C) Representative differential power (DP) trace of the isothermal titration calorimetry (ITC) experiment. (D) Binding curve of the same experiment, obtained by integrating the DP signal. Two independent experiments were performed. Results from one representative of two independent experiments are shown.

Figure 2. Infection profile of BCG \textminus HflX in the mouse model.

A. CFU counts from BCG WT, ΔhflX and complemented strains before and after heat shock stress as described in methods. Data show mean ± SD of three independent experiments.

B. CFU counts from \textit{E.coli} WT, ΔhflX, and ΔhflX complemented with homologous HflX or with BCG codon-optimized HflX after heat shock stress as described in methods. Data show mean ± SD of three independent experiments.

C. OD\textsubscript{600} of BCG WT, ΔhflX and complemented strains in the gradual hypoxia Wayne model. Red arrow, WT reached NRP-1; Blue arrow, WT reached NRP-2. Data show mean ± SD of four independent experiments.

D. CFU from BCG WT, ΔhflX and complemented strains in the gradual hypoxia Wayne model. Data show mean ± SD of four independent experiments.

E. Representative images of BCG WT, ΔhflX and complemented strains obtained by scanning electron microscopy on day 0, 8 and 17 of the Wayne model. Scale bar = 1\textmu m.

F. Average length of BCG WT, ΔhflX and complemented strains based on 20 bacteria counted for each strain and on day 0, 8 and 17 of the Wayne model.

G. CFU counts from C57BL/6 mice infected with BCG WT, ΔhflX and complemented strains. Organs were harvested at week 8, 12 and 16 post-infection. One representative experiment out of two is shown.

Data information: All data show mean ± SD *P < 0.05, **P < 0.01, ***P < 0.001. Panels (B, F, G) one-way ANOVA with Bonferroni post-test.

Figure 3. Energetic status, drug susceptibility and expression of the dos regulon in BCG \textminus HflX.

A. Intracellular ATP level in BCG WT, ΔhflX and complemented strains grown in the Wayne model. Data show mean ± SD of three independent experiments.
B. Membrane potential of BCG WT, ΔhflX and complemented strains grown in the Wayne model. + CCCP as a membrane disruptor positive control. One representative of two independent experiments shown.

C. CFU from BCG WT, ΔhflX and complemented strains on day 8 of the Wayne model treated with various drugs. Data show mean ± SD of two independent experiments.

D. CFU from BCG WT, ΔhflX and complemented strains on day 17 of the Wayne model treated with various drugs. Data show mean ± SD of two independent experiments.

E. Relative gene expression of a subset of dos regulon genes measured by RT-PCR in BCG ΔhflX compared to WT on day 8 of the Wayne model. Data show mean ± SD of two independent experiments.

Figure 4. Differential protein expression in BCG ΔhflX in response to hypoxia.
A-C. Volcano plot of differentially expressed proteins in BCG ΔhflX compared to WT on day 0 (A, normoxia), day 8 (B, NRP-1) and day 17 (C, NRP-2) of Wayne model.
D-E. Gene ontology analysis (biological functions) of the differentially expressed proteins in BCG ΔhflX compared to WT on day 0 (D, normoxia), day 8 (E, NRP-1) and 17 (F, NRP-2) of Wayne model with false discovery rate < 0.05.

Figure 5. Translational activity in BCG ΔhflX.
A. Ribosome sequencing data showing the percentage of mapped reads to respective regions of BCG ΔhflX compared to WT on day 8 (NRP-1) of Wayne model. CDS: coding sequence; Other: 5’ and 3’ untranslated regions (UTR). Data show mean ± SD of two independent experiments.
B. Volcano plot of differential translation efficiency (TE) between BCG ΔhflX and WT on day 8 (NRP-1) of Wayne model. Highlighted in light grey: False discovery rate <0.05.
C-D. Gene ontology analysis and KEGG pathways analysis of the differentially translated genes in BCG ΔhflX compared to WT on day 8 (NRP-1) of Wayne model. Enriched pathways were selected where false discovery rate was <0.05.

Figure 6. Illustration of the role of mycobacterial HflX in the hypoxic stress. As oxygen tension decreases, accumulation of stalled ribosomes and translation-incompetent hibernating ribosomes results in lower translational activity that eventually leads to bacterial replication arrest. By splitting stalled ribosomes and hibernating ribosomes, HflX controls the pool of translationally active ribosomes, thereby controlling the overall translational activity of the bacterium, and entry into the non-replicating state.
Table 1. Protein candidates identified from pull-down experiment with anti-HflX antibody.

<table>
<thead>
<tr>
<th>Accession</th>
<th>Gene</th>
<th>Protein Name</th>
<th>Mass (Da)</th>
<th>co-IP score (emPAI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0A0H3M750</td>
<td>hflX</td>
<td>GTPase HflX</td>
<td>53467</td>
<td>3.47</td>
</tr>
<tr>
<td>A1KKF4</td>
<td>pup</td>
<td>Prokaryotic ubiquitin-like protein Pup</td>
<td>6940</td>
<td>0.78</td>
</tr>
<tr>
<td>A0A0H3M2V9</td>
<td>rpsQ</td>
<td>30S ribosomal protein S17 rpmQ</td>
<td>14863</td>
<td>0.74</td>
</tr>
<tr>
<td>A1KGK3</td>
<td>rpmD</td>
<td>50S ribosomal protein L30 rpmD</td>
<td>7342</td>
<td>0.73</td>
</tr>
<tr>
<td>A0A0G2Q9J0</td>
<td>BCG_3320c</td>
<td>Probable transcriotional regulatory protein (Probably asC-family)</td>
<td>16586</td>
<td>0.65</td>
</tr>
<tr>
<td>A1KLD7</td>
<td>rpmA</td>
<td>50S ribosomal protein L27 rpmA</td>
<td>8963</td>
<td>0.57</td>
</tr>
<tr>
<td>A0A0H3M4W6</td>
<td>BCG_1022</td>
<td>Uncharacterized protein</td>
<td>10257</td>
<td>0.49</td>
</tr>
<tr>
<td>A0A0H3M700</td>
<td>BCG_2330</td>
<td>Uncharacterized protein</td>
<td>10648</td>
<td>0.47</td>
</tr>
<tr>
<td>A1KEM1</td>
<td>rpmF</td>
<td>30S ribosomal protein S6 rpmF</td>
<td>10928</td>
<td>0.46</td>
</tr>
<tr>
<td>A0A0H3M4Y6</td>
<td>BCG_1046c</td>
<td>Conserved hypothetical serine rich protein</td>
<td>11679</td>
<td>0.42</td>
</tr>
<tr>
<td>A0A0H3M2K2</td>
<td>BCG_0617c</td>
<td>Uncharacterized protein</td>
<td>12826</td>
<td>0.38</td>
</tr>
<tr>
<td>A0A0H3M725</td>
<td>glyS</td>
<td>Glycine-tRNA ligase glyS</td>
<td>53019</td>
<td>0.37</td>
</tr>
<tr>
<td>A0A0H3M6K7</td>
<td>argD</td>
<td>Acetylornithine aminotransferase argD</td>
<td>41055</td>
<td>0.36</td>
</tr>
<tr>
<td>A0A0H3MGK2</td>
<td>BCG_2879c</td>
<td>Probable short-chain type dehydrogenase/reductase</td>
<td>27016</td>
<td>0.36</td>
</tr>
<tr>
<td>A0A0H3M2I4</td>
<td>BCG_0590c</td>
<td>Uncharacterized protein</td>
<td>14337</td>
<td>0.34</td>
</tr>
<tr>
<td>A0A0H3M2Q7</td>
<td>BCG_0685</td>
<td>Uncharacterized protein</td>
<td>14895</td>
<td>0.32</td>
</tr>
<tr>
<td>A0A0H3M568</td>
<td>BCG_2020c</td>
<td>Uncharacterized protein</td>
<td>31315</td>
<td>0.31</td>
</tr>
<tr>
<td>A0A0G2Q9F9</td>
<td>cwsA</td>
<td>Cell wall synthesis protein CwsA</td>
<td>15671</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Bolded – ribosomal subunits
Appendix Figure Legends

Figure S1.
A. Protein sequence alignment of mycobacterial and *E. coli* HflX. Protein motifs important for GTPase function were also identified (red boxes). G1–5 boxes (circled), Switch I and II regions (boxed).
B. Computational modelling of Mtb H37Rv HflX superimposed with *E. coli* HflX crystal structure. Model quality was determined by the percentage of residues that were successfully modelled (Model Coverage). Alignment quality for complete models and their individual domains were quantified by an RMSD score where 0 indicates perfect alignment.

Figure S2.
A. Schematic illustration of Mtb pHflX, abrogated GTPase Mtb pHflX AAY and *E. coli* HflX.
B. Coomassie gel showing purified Mtb pHflX.
C. GTPase activity of purified Mtb HflX in the presence or absence of magnesium ion.
D. ELISA validation of the anti-HflX monoclonal Ab with coated HflX antigen. Data show mean ± SD of two independent experiments.
E. Dot blot validation of anti-HflX monoclonal Ab detecting purified Mtb HflX.

Figure S3.
A. Schematic representation of the genetic construct of BCG Δ*hflX* and complemented strains as described in the methods.
B. Expression level of *hflX* in BCG WT, Δ*hflX* and complemented strains determined by RT-PCR. Data show mean ± SD of two independent experiments.
C. Growth profile of BCG WT, Δ*hflX* and complemented strains grown in 7H9 medium (normoxia). Data show mean ± SD of two independent experiments.
D. Expression level of *hflX* determined by RT-PCR in *E. coli* WT, Δ*hflX* and Δ*hflX* complemented with homologous HflX or codon-optimized BCG HflX.

Figure S4.
A. CFU from BCG WT, Δ*hflX* and complemented strains grown in Loebel starvation model as described in the methods. Data show mean ± SD of two independent experiments.
B. CFU from THP-1 macrophage infected with BCG WT, Δ*hflX* and complemented strains (MOI: 2) as described in the methods. Data show mean ± SD of three independent experiments.
C-D. Expression of dos regulon genes determined by RT-PCR in BCG WT and Δ*hflX* on day 0 (C) or day 17 (D) of the Wayne model. Data show mean ± SD of two independent experiments.
E. CFU counts from C57BL/6 mice infected with BCG WT, Δ*hflX* and complemented strains. Organs were harvested at week 2 and 4 post-infection. LOD, limit of detection.
Data information: All data show mean ± SD, *P < 0.05. Panels (E) one-way ANOVA with Bonferroni post-test.

Figure S5.

RNA sequencing data showing the percentage of mapped reads to respective regions of BCG Δ*hflX* compared to WT on day 8 (NRP-1) of Wayne model. CDS: coding sequence; Other: 5’ and 3’ untranslated regions (UTR). Data show mean ± SD of two independent experiments.
Appendix Table S1. Minimum Inhibitory Concentration of drugs against BCG WT, ΔHflX and complemented strains grown in 7H9 medium (normoxia).

<table>
<thead>
<tr>
<th>Strains</th>
<th>MIC50 (µM)</th>
<th>BDQ</th>
<th>INH</th>
<th>RIF</th>
<th>ETM</th>
<th>STM</th>
<th>CM</th>
<th>ERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG WT</td>
<td></td>
<td>0.05</td>
<td>1.25</td>
<td>0.1</td>
<td>8</td>
<td>1</td>
<td>25</td>
<td>3.125</td>
</tr>
<tr>
<td>BCG ΔhflX</td>
<td></td>
<td>0.06</td>
<td>1.25</td>
<td>0.1</td>
<td>6.25</td>
<td>1.25</td>
<td>30</td>
<td>6.25</td>
</tr>
<tr>
<td>BCG ΔhflX :: phflX</td>
<td></td>
<td>0.05</td>
<td>1.25</td>
<td>0.06</td>
<td>6.25</td>
<td>1</td>
<td>25</td>
<td>4</td>
</tr>
</tbody>
</table>

BDQ: Bedaquiline; INH: Isoniazid; RIF: Rifampicin; ETM: Ethambutol; STM: Streptomycin; CM: Chloramphenicol; ERT: Erythromycin
Fig 1.

A. GTPase Activity

B. ATPase Activity

C. DP (μcal/s) over time (min)

D. ΔH (kcal/mol) vs. Molar Ratio

- [Cell] (M) = 100 e-6
- [Syr] (M) = 800 e-6
- N (sites) = 1.01 ± 7.0 e-3
- KD (M) = 1.89 e-6 ± 179 e-9
Fig 2.

A. Graph showing CFU/mL over time for BCG WT, BCG ΔhflX, and BCG ΔhflX::phflX.

B. Graph comparing CFU/mL for E. coli WT, E. coli ΔhflX, E. coli ΔhflX::phflX, E. coli ΔhflX::phflX + 0.012% ara, E. coli ΔhflX::phflX + 0.002% ara.

C. Graph showing Log CFU/mL levels over days, with BCG WT, BCG ΔhflX, and BCG ΔhflX::phflX indicated.

D. Graph showing CFU/mL over days for BCG WT, BCG ΔhflX, and BCG ΔhflX::phflX.

E. Images of BCG WT, BCG ΔhflX::phflX, and BCG ΔhflX for Day 0, Day 8, and Day 17.

F. Graph showing cell length in microns for Day 0, Day 8, and Day 17 for BCG WT, BCG ΔhflX, and BCG ΔhflX::phflX.

G. Scatter plots showing CFU/mL in Lung, Spleen, and Lymph Node over weeks for BCG WT, BCG ΔhflX, and BCG ΔhflX::phflX.
Fig 3.
Fig 4.

A

-Log_{10} p-Values

Log_{2} Fold Change

B

C

D

E

F

Aerobic

NRP-1

NRP-2

Biological Processes

Biological Processes

Biological Processes

Fatty acid biosynthesis

Fatty acid metabolism

Glycolysis/gluconeogenesis

Response to hypoxia

Response to stress

Response to osmotic stress

Response to starvation

Response to external stimulus

Response to metal ion

Response to compound

Cytochrome P450 activity

Oxidoreductase activity

Number of genes involved

down-regulated

up-regulated

up-regulated
down-regulated

down-regulated
Fig 5.

A. Ribo-seq

B. -Log_{10} False Discovery Rate (FDR) vs Log2 Translation Efficiency (TE)

C. -Log_{10} FDR for various categories

D. -Log_{10} FDR for different biological processes
Fig 6.

Hypoxia

Active translation

Quiescent translation (replication arrest)

GDP GTP

mRNA HflX RafH HPF

Hybernating ribosome 70S 70S 70S 70S 70S 70S 70S 70S

Stalled ribosomes
Appendix Figures
Appendix Fig S2.
Appendix Fig S3.

A

WT

ΔhflX

ΔhflX:: phflX

B

C

D

Relative Fold Change (wrt BCG WT)

OD_{600}

Relative Fold Change (wrt E. coli WT)
Appendix Fig S4.
Appendix Fig S5.

RNA-seq

% mapped reads in region

rRNA tRNA CDS Other

- BCG WT
- BCG ΔhfdX