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ABSTRACT 

In shotgun proteomics, it is essential to accurately determine the proteolytic 

products of each protein in the sample for subsequent identification and quantification, 

because these proteolytic products are usually taken as the surrogates of their parent 

proteins in the further data analysis. However, systematical studies about the commonly 

used proteases in proteomics research are insufficient, and there is a lack of easy-to-use 

tools to predict the digestibilities of these proteolytic products. Here, we propose a 

novel sequence-based deep learning model – DeepDigest, which integrates 

convolutional neural networks and long-short term memory networks for digestibility 

prediction of peptides. DeepDigest can predict the proteolytic cleavage sites for eight 

popular proteases including trypsin, ArgC, chymotrypsin, GluC, LysC, AspN, LysN 

and LysargiNase. Compared with traditional machine learning algorithms, DeepDigest 

showed superior performance for all the eight proteases on a variety of datasets. Besides, 

some interesting characteristics of different proteases were revealed and discussed.  
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INTRODUCTION 

The protein proteolytic digestion is a key step in shotgun proteomics, and the 

proteolytic products of their parent proteins are usually taken as surrogates in 

subsequent identification and quantification protocol1. Till now, trypsin is the most 

popular and widely used protease in proteomics because of its high specificity, ease of 

use and cost efficiency, and it generates mass spectrometry (MS)-favored proteolytic 

peptides which have detectable masses and charges by tandem mass spectrometry 

(MS/MS)2,3. However, the sole use of trypsin may hinder our ability to explore the full 

proteome, missing particular cleavage sites or protein segments2. Therefore, some 

alternative proteases are also used to complement trypsin, such as ArgC, chymotrypsin, 

GluC, LysC, AspN, LysN and LysargiNase. But, regardless of which protease is used, 

the proteolytic digestion can be hardly complete. For example, it was reported that 

about 40% of unique identified peptides digested by trypsin contained one or more 

missed cleavages4. 

In MS/MS-based protein identification by database searching, it is necessary to 

match the experimental spectrum with the theoretical spectra of the in silico digested 

peptides. Thus, the ultimate goal of in silico digestion is to simulate the experimental 

proteolytic process as accurately as possible5. In the label-free protein quantification, 

the abundance of a protein is usually inferred from the mass spectrometric signals of its 

digested peptides. Thus, the quantitative value of a protein would be underestimated if 

incomplete proteolytic digestion is not considered. Therefore, accurate prediction of 

proteolytic digestion is essential to both identification and quantification of proteins. 

By now, a series of studies on predicting the protein cleavage sites have been 

published, especially for the trypsin protease6,7. For example, Keil et al.7,8 summarized 

the rules, called “Keil rules”, of missed cleavage sites for trypsin, mainly consisting of 

1) Arginine (R)/Lysine (K) is followed by Proline (P); 2) two successive R/K is close 

to each other; 3) Aspartic acid/glutamic acid residues is adjacent to the positively 

charged residue. However, the “Keil rules” were empirical and not based on MS data. 

Rodriguez et al.9 reported discrepant results about these rules: the number of peptides 
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produced by supposedly “illegitimate” [RK].[P] cleavages was higher than the number 

of peptides produced by legitimate [RK].[C] cleavages. Actually, it should be noted that 

proteolytic digestion is a complicated probability problem, i.e., one digestion site may 

be cleaved with a certain probability, more than a simple binary “cut or not cut” problem. 

Unfortunately, these empirical rules cannot accurately calculate the peptide digestibility, 

which is defined as the probability of the peptide being digested by the protein digestion 

process10. Thus, computational models and algorithms were introduced. Siepen et al.11 

predicted missed cleavage sites by information theory, with up to 90% accuracy using 

amino acid sequences alone. Lawless et al.12 then built a missed cleavage site predictor 

using the support vector machine (SVM) algorithm with an overall validated area under 

the ROC curve (AUC) of 0.88. CP-DT was developed to predict tryptic cleavages based 

on decision tree ensembles and achieved an AUC of at least 83% on all the test datasets7. 

Despite these developments, the prediction accuracy of tryptic sites is still far from 

satisfactory; moreover, there are fewer related works for other proteases than trypsin3,13. 

Meanwhile, there is not yet a specialized tool for predicting cleavage sites of various 

common proteases in proteomics. 

In this study, we present a deep learning-based protein proteolytic digestion predictor, 

named DeepDigest, which integrates the merits of convolutional neural networks 

(CNNs) and long-short term memory (LSTM) networks. Two convolutional layers 

extract the local sequence features and an LSTM layer explores the long-term 

dependencies between amino acids. On a variety of test sets, DeepDigest showed 

superior performance over traditional machine learning algorithms (logistic regression, 

random forest and SVM) with the same training sets. Our experiments involved eight 

proteases, i.e., trypsin, ArgC, chymotrypsin, GluC, LysC, AspN, LysN and 

LysargiNase14–21. The results demonstrated that DeepDigest retained good predictive 

power on independent test sets. In addition, some interesting characteristics of different 

proteases were revealed and discussed. For example, our results confirmed that the C-

terminal amino acids of the cleavage sites had greater impact on proteolytic digestion 

than N-terminal amino acids for the C-terminal proteases, and the opposite for the N-

terminal proteases. 
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EXPERIMENTAL SECTION 

Datasets and Database Searching. Nineteen public large-scale datasets, covering 

eight typical proteases, i.e., trypsin, ArgC, chymotrypsin, GluC, LysC, AspN, LysN, 

and LysargiNase, were utilized in this study (Table 1). These datasets were from 

samples of four organisms including E. coli, yeast, mouse and human. The proteolytic 

digestion was performed overnight as described in their original papers14,16–21. To learn 

adequate sequence patterns, the first eight datasets were used as training sets, while the 

other eleven were test sets. The raw MS files were downloaded and reanalyzed as 

follows. 

 

Table 1. Summary of the public datasets used for training and testing DeepDigest. 

 

Dataset Protease Instrument 
Identified 

proteins 

Identified 

peptides 

Missed 

cleavage  

sites 

Cleavage 

sites 

 

 

 

Training 

set 

2019Wang_Trypsin_Human14 Trypsin Q Exactive Plus 8,820 102,313 22,702 137,999 

2019Wang_ArgC_Human14 ArgC Q Exactive HF 7,468 35,551 1,403 58,324 

2019Wang_Chymotrypsin_Human14 Chymotrypsin Q Exactive HF 7,044 55,010 50,397 74,561 

2019Wang_GluC_Human14 GluC Q Exactive HF 6,089 31,196 9,753 48,313 

2019Wang_LysC_Human14 LysC Q Exactive HF 8,000 55,581 2,224 88,735 

2019Wang_AspN_Human14 AspN Q Exactive HF 7,068 37,765 9,935 48,236 

2019Wang_LysN_Human14 LysN Q Exactive HF 7,644 55,471 9,449 74,694 

2019Xu_LysargiNase_Yeast16 LysargiNase LTQ Orbitrap Velos 3,001 23,205 3,303 35,895 

 

 

 

 

Test 

set 

2016Schmidt_Trypsin_Ecoli17 Trypsin LTQ Orbitrap Elite 2,632 37,436 2,198 43,850 

2014Hebert_Trypsin_Yeast18 Trypsin Orbitrap Fusion 3,939 41,885 8,942 59,140 

2016Malmström_Trypsin_Mouse19 Trypsin Q Exactive Plus 5,184 52,946 5,895 76,426 

2019Miller_Trypsin_Human20 Trypsin LTQ Orbitrap Velos 4,613 27,102 6,703 41,801 

2019Miller_ArgC_Human20 ArgC LTQ Orbitrap Velos 4,025 12,152 237 21,351 

2019Miller_Chymotrypsin_Human20 Chymotrypsin LTQ Orbitrap Velos 3,348 18,121 16,102 27,366 

2019Miller_GluC_Human20 GluC LTQ Orbitrap Velos 3,989 18,434 8,439 26,322 

2019Miller_LysC_Human20 LysC LTQ Orbitrap Velos 5,158 28,366 4,164 44,384 

2019Miller_AspN_Human20 AspN LTQ Orbitrap Velos 4,122 17,040 1,880 26,992 

2018Zhang_LysN_Ecoli21 LysN Orbitrap Elite 403 565 72 771 

2018Zhang_LysargiNase_Ecoli21 LysargiNase Orbitrap Elite 736 1,330 355 1,938 

Mass spectra in each dataset were searched against the corresponding organism 

sequences from the UniProt database using the Andromeda search engine22 in the 
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software MaxQuant23 (version 1.6.0.1). For the two E. coli datasets in Zhang et al.’s 

paper21, propionamidation on cysteine, ethanolamine protection on aspartate and 

glutamate, dimethylation on peptide N-term, and dimethylation on lysine were 

specified as fixed modifications; oxidation on methionine, dimethylation on protein N-

term, and ethanolamine protection on protein C-term were specified as variable 

modifications; the precursor mass tolerance was set to 20 ppm for the first search (for 

the identification of the maximum number of peptides for mass and retention time 

calibration) and 10 ppm for the main search (for the refinement of the identifications). 

For the other datasets, carbamidomethylation on cysteine was set as a fixed 

modification; oxidation on methionine and protein N-terminal acetylation were set as 

variable modifications; the precursor mass tolerance was set to 20 ppm for the first 

search and 4.5 ppm for the main search. Protein sequences were theoretically digested 

by one of the eight proteases with up to two missed cleavages allowed, and the false 

discovery rate was set to 1% at both peptide-spectrum match and protein levels.  

Data Preprocessing. Identified peptides were first mapped to their corresponding 

proteins; then, the digestion information of each cleavage site in the identified proteins 

was collected, involving the spectral counts (SCs) of the peptides observed on the N-

terminal (SCN) and C-terminal (SCC) of the cleavage site, and the SC of the peptides 

containing this cleavage site as a missed cleavage site (SCM). Afterwards, the cleavage 

site was labeled as a positive site if (1) SCN or SCC was at least 1 and (2) SCM was zero, 

and as a negative site if (1) both SCN and SCC were zero and (2) SCM was at least 1. 

Previous studies had demonstrated that the digestibility of a cleavage site was mainly 

influenced by its adjacent amino acids7,10,12,24. Therefore, for each positive or negative 

site, fifteen adjacent residues on both sides were extracted, resulting in a 31-mer 

including the cleavage site25. Moreover, if there were not enough amino acids on the N- 

or C-terminal of a protein, the character Z was added to make up a 31-mer. Finally, each 

character in each 31-mer was encoded by alphabetical order (Table S1) for convenience. 

The coding order had no impact on results. 

Architecture of DeepDigest Model. As shown in Figure 1, DeepDigest integrates 

CNNs and LSTM networks to detect discriminatory patterns around the cleavage sites 
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and capture the long-term dependencies between amino acids. With the embedding 

approach, the distributed representation of amino acids was learned. Moreover, in order 

to overcome the imbalance problem that there were more cleavage sites than missing 

ones, DeepDigest was trained with a weighted binary cross entropy loss function whose 

weights were empirically tuned 26,27. 

 

[Figure 1] 

 

Representation learning is one of the critical abilities of deep learning. Actually, 

word embedding is a set of feature learning techniques, such as word2vec28,29. It is 

commonly used in natural language processing, mapping words from the vocabulary to 

vectors of real numbers. Sparse representations, e.g. one-hot representation, may cause 

a lot of difficulties while training deep learning models. Thus, it is necessary to use 

word embedding, which is capable of learning denser continuous feature vectors, also 

known as distributed representation. In DeepDigest, each encoded character in the 31-

mer is projected into a 21-dimensional vector by the embedding layer30. In this way, 

more sensible representation can be learned and the local interaction between amino 

acids can be deeply explored by the convolution layers. 

The embedding outputs are then fed to CNNs with two convolutional layers and 

two average pooling layers. The convolutional operator is supposed to filter as many 

local features as possible with several different kernels, which are often called the 

“feature detector”31. Each of the two convolutional layers in our model contains 21 

kernels of length 2 with a stride of 1, followed by an activation with Rectified Linear 

Unit (ReLU)32. The average pooling layer whose window size is 2 with a stride of 1 is 

applied after each convolutional layer. With the output of the CNNs, DeepDigest has 

fully extracted critical local features with shape 27x21. 

Last but not least, the following LSTM networks as a special kind of recurrent 

neural networks, can capture dependencies across a longer distance among amino acids 

without gradient vanishing or exploding problems. Particularly, each LSTM cell can be 

seen as a projection with nonlinear transformations. The output length is set to 21, 
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which is equal to the number of useful characters. The final layer with one neuron is 

activated by a sigmoid function to predict the probability of proteolytic digestion. 

 

RESULTS AND DISCUSSION 

Performance of DeepDigest. To evaluate the prediction performance of 

DeepDigest, the AUCs, F1 scores and Matthews correlation coefficients (MCCs) of 10-

fold cross-validations were calculated on the training sets and shown in Table S2. In 

order to demonstrate the superiority of DeepDigest over traditional machine learning 

algorithms, we compared it with logistic regression (LR), random forest (RF), and SVM. 

The AUCs of DeepDigest were 0.968~0.983 as shown in Figure 2, F1 scores and MCCs 

were 0.639~0.904 and 0.631~0.839 respectively, as shown in Table S2. For each 

protease, DeepDigest had the highest values of AUCs, F1 scores and MCCs. Especially 

on the 2019Wang_Chymotrypsin_Human dataset, the AUCs, F1 scores and MCCs of 

DeepDigest had respectively increased by 9.7%, 19.1%, 37.5% compared to LR, by 

10.2%, 24.0%, 42.4% compared to RF, and by 8.7%, 17.7%, 33.6% compared to SVM. 

These results showed that our model had a superior learning performance on various 

proteases. 

 

[Figure 2] 

 

To evaluate the generalization ability of DeepDigest, the four models (DeepDigest, 

LR, RF and SVM) trained on the training sets, were tested on the eleven independent 

test sets as shown in Table 1. The AUCs, F1 scores, and MCCs were shown in Table 

S3. The AUCs of DeepDigest were between 0.809 and 0.977, while the AUCs of LR, 

RF and SVM were 0.736~0.965, 0.779~0.962, and 0.744~0.972 respectively as shown 

in Figure 3. These results demonstrated that DeepDigest had superior generalization 

ability for various proteases. 

 

[Figure 3] 
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Comparison with Existing Tool. So far, the available tools for predicting trypsin 

cleavage sites or missed cleavage sites are MS-Digest33, PeptideCutter34, CP-DT7 and 

MC:pred6. They are all provided in the form of web-servers. Specifically, MS-Digest 

and PeptideCutter can only provide possible cleavage sites without peptide digestibility. 

Moreover, PeptideCutter and CP-DT can only take one protein sequence as input each 

time, making it impossible for large-scale data analysis. At last, only MC:pred was 

compared with DeepDigest. It should be noted that MC:pred cannot process amino 

acids that are represented by uncommonly used alphabet, for example, X, O, etc. 

Therefore, the proteins containing these amino acids were removed before running 

MC:pred. The comparison of DeepDigest and MC:pred was carried out on the four 

independent tryptic test sets from four different organisms (E. coli, Yeast, Mouse and 

Human). Here, DeepDigest was trained on the 2019Wang_Trypsin_Human dataset, and 

the predicted peptide digestibility was also calculated10. As shown in Figure S1, 

DeepDigest had AUCs of 0.967, 0.988, 0.988 and 0.985 on the four test sets 

respectively, while MC:pred had AUCs of 0.961, 0.945, 0.972 and 0.935. Overall, 

DeepDigest had the higher prediction accuracy than MC:pred. 

Length of Input Sequence Fragments. In this study, the hypothesis is that the 

digestion of the cleavage site is mainly influenced by the surrounding amino acids. 

Several related algorithms have been developed based on this assumption6,11,25. 

However, it is still unknown how far away the amino acids from the cleavage sites will 

affect the digestion behavior. Thus, centering on the potential cleavage sites, 1, 2, 3… 

15 amino acids on both sides were respectively extracted to form amino acid sequence 

fragments of length 3, 5, 7… 31, which were taken as the inputs of DeepDigest. This 

experiment was performed on the training sets. As shown in Figure S2(A), for various 

proteases, AUCs of DeepDigest gradually increased as the length of input sequence 

fragments increased; and when the length reached 31, the prediction ability of 

DeepDigest was basically saturated. Furthermore, to ensure the rationality of the input 

length, the same experiments were performed on the same datasets with other two 

traditional machine learning methods – LR and RF, and the similar trend was present 
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in Figure S2(B-C). Specifically, we made a random 80-20% train-test split for each 

dataset. These results showed that the length of input sequence fragments was 

independent of models. Therefore, the number of amino acids extracted on both sides 

of the cleavage sites was fixed to 15 for this study. 

Effect of Amino Acids from Different Sides. Furthermore, to explore the 

mechanisms of proteolytic digestion of various proteases, we conducted an in-depth 

analysis of the effect of adjacent amino acids on the cleavage site. Specifically, 1, 2, 

3… or 15 amino acids from the left/right side of the cleavage sites were also used to 

form the input sequence fragments of 2, 3, 4… or 16-mer (cleavage site included). Thus, 

input sequence fragments with the increasing number of amino acids on the both sides 

and the left/right side of the cleavage sites were generated. As shown in Figure 5, the 

AUCs of DeepDigest, fed with input sequence fragments of amino acids on both sides, 

were the highest on all the training sets for all the eight proteases. Besides, it indicated 

that the C-terminal amino acids of the cleavage sites had greater impact on the cleavage 

than N-terminal amino acids for the C-terminal proteases (Figure 4A-E), and the 

opposite for the N-terminal proteases (Figure 4F-H). Anyway, considering that the 

mechanisms of proteolytic digestion are related to the structures and physiochemical 

properties of proteins, the cleavage behavior indeed could be more affected by the 

followed amino acids of the cleavage sites. 

 

[Figure 4] 

 

Sequence Motif Analysis. To explore the features surrounding a cleavage site or 

a missed cleavage site, the sequence logo diagrams of all the input 31-mers were 

displayed with the pLogo35. As shown in Figure S3, for the proteases such as Trypsin, 

ArgC, LysC, LysN and LysargiNase, whose cleavage sites are basic amino acids (lysine 

or arginine), the cleavage sites tended to be missed if glutamic acid and aspartic acid 

were significantly overrepresented. Moreover, it was likely to be a missed cleavage site 

if there was proline at the position -2, -1, +1, or +2 of the site, specifically for Trypsin 

(position +1, +2), ArgC (position +1), GluC (position -2, +1, +2), LysC (position +1, 
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+2), AspN (position -1, +1) and LysN (position -2, +1). Giansanti et al.2 showed that if 

acidic amino acids (glutamic acid and aspartic acid) were at the position -1, +1, +2 of a 

cleavage site, this site was likely to be missed for ArgC. Our results of ArgC further 

showed that there were glutamic acid and aspartic acid simultaneously at the position 

+3, +4 of a missed cleavage site. 

 

CONCLUSIONS 

In this study, we developed a novel model based on deep learning, named DeepDigest, 

to predict proteolytic cleavage sites and the peptide digestibility for eight commonly 

used proteases. To our knowledge, it is the first time that the deep learning technique is 

used to solve the digestibility prediction problem, and it turned out that the deep 

learning model worked better than the traditional machine learning methods. 

Furthermore, there are a lot of important applications of peptide digestibility in 

experimental proteomics. For example, it has been utilized to improve peptide mass 

fingerprinting scoring11,36 or peptide detectability prediction10. This study provided an 

easy-to-use tool, DeepDigest, to predict the digestibilities of peptides digested by 

multiple proteases, which could have contribution to the selection of surrogate peptides, 

and protein identification and quantitation. Because peptides with higher predicted 

digestibility tend to be selected as surrogates of their parent proteins. 
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FIGURES 

 

 

Figure 1. The network architecture of DeepDigest. 
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Figure 2. Ten-fold cross-validation AUCs of DeepDigest on the eight training sets, 

compared with logistic regression (LR), random forest (RF), and support vector 

machine (SVM). 
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Figure 3. Test AUCs of DeepDigest on the eleven independent test sets, compared with 

logistic regression (LR), random forest (RF), and support vector machine (SVM). 
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Figure 4. The AUCs of DeepDigest with the increasing number of amino acids on the 

Both sides and from the Right/Left side of the cleavage site with eight different 

proteases (A) Trypsin, (B) ArgC, (C) Chymotrypsin, (D) GluC, (E) LysC, (F) AspN, 

(G) LysN and (H) LysargiNase. 
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