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Abstract (350 words) 

Background 

Genome mapping is an essential step in data processing for transcriptome analysis, and many 

previous studies have evaluated various methods and strategies for mapping RNA-seq data. 

Cap Analysis of Gene Expression (CAGE) is a sequencing-based protocol particularly 

designed to capture the 5�-ends of transcripts for quantitatively measuring the expression 

levels of transcription start sites genome-wide. Because CAGE analysis can also predict the 

activities of promoters and enhancers, this protocol has been an essential tool in studies of 

transcriptional regulation. Typically, the same mapping software is used to align both 

RNA-seq data and CAGE reads to a reference genome, but which mapping software and 

options are most appropriate for mapping the 5�-end sequence reads obtained through 

CAGE has not previously been evaluated systematically. 

Results 

Here we assessed various strategies for aligning CAGE reads, particularly ~50-bp sequences, 

with the human genome by using the HISAT2, LAST, and STAR programs both with and 

without a reference transcriptome. One of the major inconsistencies among the tested 

strategies involves alignments to pseudogenes and parent genes: some of the strategies 

prioritized alignments with pseudogenes even when the read could be aligned with coding 
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genes with fewer mismatches. Another inconsistency concerned the detection of exon-exon 

junctions. These preferences depended on the program applied and whether a reference 

transcriptome was included. Overall, the choice of strategy yielded different mapping results 

for approximately 2% of all promoters. 

Conclusions 

Although the various alignment strategies produced very similar results overall, we noted 

several important and measurable differences. In particular, using the reference transcriptome 

in STAR yielded alignments with the fewest mismatches. In addition, the inconsistencies 

among the strategies were especially noticeable regarding alignments to pseudogenes and 

novel splice junctions. Our results indicate that the choice of alignment strategy is important 

because it might affect the biological interpretation of the data.  
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Background 

Next-generation sequencing (NGS) has been widely used for transcriptome analysis, for 

example RNA sequencing (RNA-seq). Many experimental protocols for transcriptome 

analysis have been developed and applied. An essential step in the data processing for 

transcriptome analysis is genome mapping, in which sequence reads are aligned to a 

reference genome and the alignment results are used to quantify gene-level or transcript-level 

sequence expression. Several publicly available programs have been developed for genome 

mapping of RNA-seq data. These programs use various algorithms to align sequences with 

splice junctions and offer various options, for example, whether they use a reference 

transcriptome like GENCODE [1] and RefSeq [2] to predict the splice junctions. Because 

mapping typically consumes the majority the time in required for data processing and 

mapping results can influence subsequent data analysis, many studies have compared various 

mapping programs and options to evaluate which combination is most appropriate for 

processing RNA-seq data [3–5]. 

 

For one variation of transcriptome analysis by NGS, several protocols—such as, Cap 

Analysis of Gene Expression (CAGE) [6, 7], Transcription Start Site sequencing (TSS-seq) [8, 

9], and RNA Annotation and Mapping of Promoters for Analysis of Gene Expression 
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(RAMPAGE) [10]—selectively capture the 5�-end of transcripts for comprehensive analysis 

of transcription start sites (TSSs) at 1-bp resolution. These protocols accurately identify the 

locations of the 5�-end of expressed transcripts and their genome-wide expression levels, 

enabling us to estimate the transcriptional activity of promoters [11–13] and even enhancers 

[14]. In this regard, the Functional ANnoTation of the Mammalian Genome 5 (FANTOM5) 

project [13] involved comprehensive CAGE analysis of more than 1800 human samples of 

primary cells, cell lines, tissues, and time-course transitions during cell differentiation. This 

effort revealed the presence of approximately 200,000 TSSs (that is, promoters) and 

approximately 65,000 enhancers in the human genome, and produced a comprehensive atlas 

of human promoters and enhancers [15, 16].  

 

Given that each CAGE read is a part of an RNA sequence, it might seem that the same 

genome mapping protocols used for RNA-seq could potentially be used for mapping CAGE 

reads. However, in actuality, mapping requirements differ between RNA-seq and CAGE data. 

One difference regards the use of reference transcriptomes. In previous studies [13, 17, 18], 

CAGE reads were mapped without reference transcriptomes, for the following reasons. 

Public reference transcriptomes were (and are) not always complete at the 5�-end of 

transcribed regions [13]—a situation that affects the genomic mapping of CAGE reads. 
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Moreover, the CAGE reads were relatively short—shorter than the first exon—and therefore 

lacked splice junctions.  

 

The mapping protocols for RNA-seq and CAGE data also differ because the FANTOM5 

project used an original mapping software (delve) for CAGE data due to the extremely short 

read lengths and high error rates in the HeliScope sequencer [13]. As a consequence of 

addressing those issues, this software cannot support alignments containing splice junctions. 

 

Another key difference regarding mapping requirements for RNA-seq compared with CAGE 

data is that the purpose of CAGE analysis is to precisely identify the 5�-end of transcripts. 

This goal necessitates complete alignment of the 5�-ends of CAGE sequence reads, which is 

not always necessary for RNA-seq. 

 

Owing to these different requirements, the necessary features and components of software 

protocols for CAGE read mapping must be evaluated independent from those for RNA-seq 

data. However, no currently available systematic evaluation focuses particularly on which 

mapping programs and options to choose for genome mapping of CAGE reads. In addition, 

minimal sequence read lengths have become longer in recent protocols (e.g., approximately 
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50 bp in nAnTi-CAGE [19]), but in many transcripts, the first exons are shorter than 50 bp 

[20]. Consequently, whether the introduction of known splice junctions in the reference 

transcriptomes actually improves the alignment of CAGE reads must be reassessed. Another 

consideration is that, in a process known as ‘soft clipping,’ recent genome mapping programs 

disregard (clip) mismatched 5�- and 3�-end bases in sequence reads rather than force these 

sequences to map with mismatches. Because the exact positions of the 5�-ends of sequence 

reads are important in CAGE data analysis, soft clipping has the potential to undermine the 

results. Therefore, an independent comparison and evaluation of mapping software and 

options, with specific focus on CAGE reads, is urgently needed. 

 

In this study, to investigate which method is most appropriate for the genome mapping of 

CAGE reads, we compared the mapping results we obtained by using several 

high-throughput protocols for RNA-seq—that is, HISAT2 [5], LAST [21], and STAR [4]— 

both with and without the inclusion of a reference transcriptome. In our evaluation, we 

especially focused on genes with short first exons, pseudogenes, mapped reads including 

novel splice junctions, and promoter-level expression values. 

 

Results 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.14.982991doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.14.982991
http://creativecommons.org/licenses/by/4.0/


8 

 

Selection of data set and alignment software  

HISAT2 and STAR are widely used splice-aware short-read aligners for RNA-seq data [4, 5]. 

We ran these programs under two conditions: (i) with a reference transcriptome model from 

the GENCODE dataset (termed ‘HISAT2-kss’ and ‘STAR-kss’; the tag kss indicates that 

known splice sites are incorporated into the mapping strategy) and (ii) without reference 

transcriptome models (termed ‘HISAT2-nss’ and ‘STAR-nss’; nss: known splice sites are 

omitted from the analysis). We also evaluated LAST (termed ‘LAST-nss’), a program that can 

be used for spliced alignments containing many mismatches and gaps and that has been used 

recently for mapping of long-read sequencing [21]. 

 

We used the CAGE data set obtained from the TC-YIC cell line, a cell line derived from 

human non-islet cell insulinoma cells (DRA002420) [17], as a test set to evaluate of the 

mapping strategies. Data from 93 samples comprising biological triplicates were obtained by 

using the nAnT-iCAGE (no-amplification non-tagging CAGE) protocol [19], which is a 

variation of the CAGE protocols developed for the Illumina sequencer. The read length was 

51 bp with a single end, consisting of 3-bp sample indexes and 48-bp cDNA reads 

corresponding to the 5�-end of RNAs. The CAGE dataset obtained from the TC-YIC cell 

line is typical of the large-scale human CAGE datasets generated by using the nAnT-iCAGE 
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protocol.  

 

Summary statistics of all mapping results 

We summarized the mapping results from the five strategies to calculate the numbers of 

mapped reads, promoter rates, numbers of expressed promoters, detected known splice 

junctions, detected novel splice junctions, and expressed genes (Fig. 1). In the promoter level 

analysis, we used the FANTOM5 CAGE peaks [16] as a reference set of promoters. We noted 

that mapped reads with unaligned regions larger than 5 bp at the 5�-ends of alignments were 

flagged as ‘unmapped’ after running the alignment programs; such reads might not represent 

true 5�-ends of transcripts, thus potentially affecting quantification of TSS expression. 

 

The numerical difference between the number of mapped reads with the reference 

transcriptome and without it (that is, STAR-kss � STAR-nss and HISAT2-kss � 

HISAT2-nss) was less than ones between difference mapping programs (Fig. 1a). In regard to 

the numbers of mapped reads and expressed promoters, both STAR-kss and STAR-nss 

yielded higher values than the other three strategies (Fig. 1a, c). Interestingly, LAST-nss was 

associated with a low mapping rate but a high promoter rate (Fig. 1a, e). This pattern might 

relate to our observation that CAGE reads that were mapped to non-promoter regions by the 
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other four mapping strategies tended to remain unmapped in LAST-nss (explained in the later 

section). 

 

Using the FANTOM5 classification of promoters to protein-coding genes, long intervening 

noncoding RNAs (lincRNAs), and pseudogenes, we calculated the number of expressed 

genes in each category (Fig. 1b�d). Among all mapping strategies, the numbers of expressed 

genes associated with protein-coding genes and lincRNAs (Fig. 1b, c) were similar in pattern 

to those of overall mapped reads (Fig. 1a). However, the number of expressed pseudogenes 

varied depending on the mapping strategy (Fig. 1d) and followed the order of STAR-kss ≈ 

STAR-nss < HISAT2-kss < HISAT2-nss < LAST-nss. 

 

Promoter expression 

To evaluate how differences in mapping strategy affect results for promoter-level expression, 

we calculated the expression levels of FANTOM5 promoters [13, 22] for each mapping 

strategy and then identified promoters that were significantly differentially expressed among 

the mapping strategies (Fig. 2). This analysis revealed that at most ~1.5% of ~200,000 

promoters were identified as differentially expressed between two mapping strategies (Fig. 

2a). The correlations between HISAT2-kss and HISAT2-nss and between STAR-kss and 
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STAR-nss were much higher than any method compared with LAST-nss (Fig. 2b); 

promotor-level expression values tended to be lower for LAST-nss than for the other 4 

strategies. For both HISAT2 and STAR, whether a reference transcriptome was included (or 

not) had little effect on results regarding promotor-level expression (Fig. 2a).  

 

Inconsistency of mapped reads 

To deeply investigate differences among mapping strategies, we next examined reads that 

aligned to different positions depending on the mapping strategy used (Fig. 3). Mapping 

inconsistency was lowest between STAR-kss and STAR-nss and maximum between 

STAR-kss or -nss and LAST-nss (Fig. 3b). The discrepancy primarily involves protein-coding 

genes and pseudogenes. On average, marked mismatches in inconsistent alignments were 

fewest in STAR-kss (Fig. 3c), suggesting that more signals of genuine transcription were 

assigned. 

 

Reads mapped to pseudogenes 

As we showed earlier, pseudogenes are one of the main causes of inconsistent alignments 

between mapping strategies. To confirm this finding, we examined reads that were 

inconsistently mapped to pseudogenes (Fig. 4 and S1). We first evaluated the number of reads 
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that were mapped to pseudogenes by one mapping strategy but to a different region by the 

other. Overall, most of reads that were mapped to pseudogenes by HISAT2-kss and STAR-kss 

were consistently mapped to the same positions by HISAT2-nss and STAR-nss, respectively 

(Fig. S1). However, about 30% of reads that were mapped to pseudogenes by HISAT2-nss 

were mapped to different positions by HISAT2-kss (Fig. S1), suggesting that the use of the 

reference transcriptome greatly facilitated the discovery of parental genes with exon–intron 

structures. In addition, approximately half of the reads that were aligned to pseudogenes by 

LAST-nss mapped to different places by the other strategies (Fig. S1). Among the reads that 

mapped inconsistently between LAST-nss and the other mapping strategies, about half were 

mapped to pseudogenes in LAST-nss (Fig. 3b), but most of them were mapped to 

protein-coding genes in the other mapping strategies (Figs. 4c, d). For example, STAR-kss 

mapped multiple reads to the protein-coding gene RPL13 but LAST-nss mapped the same 

reads to the RPL13 pseudogene RPL13P12, likely owing to the approach used to 

accommodate transcriptome reference–free alignments in LAST-nss. 

 

We next compared the mean number of mismatches in alignments inconsistently mapped to 

pseudogenes. Alignments mapped to pseudogenes by HISAT2-kss, HISAT2-nss, and 

LAST-nss had more mismatches than alignments mapped to non-pseudogene regions in the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.14.982991doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.14.982991
http://creativecommons.org/licenses/by/4.0/


13 

 

other mapping strategies (Fig. 4b). In contrast, STAR yielded fewer mismatches in 

alignments mapped to pseudogenes than did the other strategies (Fig. 4b).  

 

Reads mapped over novel splice junctions 

We also analyzed inconsistently mapped reads that included splice junctions, which are 

another potential cause of mapping inconsistencies (Fig. 5). The number of detected known 

splice junctions differed substantially depending on whether the reference transcriptome was 

used (or not), whereas the difference between HISAT2-kss and STAR-kss or between 

HISAT2-nss and STAR-nss was very small (Fig. 1g). In contrast, the number of novel splice 

junctions was slightly greater in HISAT2-kss/-nss than STAR-kss/-nss (Fig. 1h) and was 

lowest in LAST-nss. In addition, the mean number of mismatches in alignments containing 

novel splice junctions was generally lower than ones without novel splice junctions (Fig. 5b), 

except for LAST-nss versus STAR-kss and STAR-nss. Furthermore, we found that, except for 

LAST-nss, most reads inconsistently mapped with novel splice junctions were aligned to 

different loci without splice junctions (Fig. 5d). However, the reads that were inconsistently 

mapped with novel splice junctions in LAST-nss were aligned with known splice junctions in 

another mapping strategy (Fig. 5f). 
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Same reads mapped to different positions 

We obtained several cases in which replicate reads in the same sample mapped to inconsistent 

positions in HISAT-kss and HISAT-nss (Table S2). In addition, all strategies except STAR-kss 

sometimes mapped the same reads from different samples to different positions (Table S3). 

As an example, in the STAR-nss results, one sequence was mapped to the position 

“chr17:7307590, CIGAR: 1S47M” in two samples (ID: DRR021875 and DRR021877) but 

was mapped to the different location of “chr17:7307236, CIGAR: 1S33M353N14M” and was 

indicated to include a splice junction in a different sample (ID: DRR021876) (Table S4). 

 

Discussion 

Many of the mapping software programs and options available for RNA-seq data are 

potentially applicable to the genome mapping of CAGE sequence data given that each CAGE 

sequence read is the 5�-end of an RNA. In this study, we showed that, with any of the 

strategies we evaluated, the mapping rate of CAGE data was approximately 60% to 70%, 

which is equivalent to standard RNA-seq mapping. In particular, the statistics regarding 

mapping results (e.g., mapped reads) were quite similar among HISAT2, STAR, and LAST. 

However, we noted small differences in the quantification of promoter expressions due to 

inconsistent alignments among mapping strategies. Although the correlations among mapping 
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strategies were very high, the expression levels of at most ~1.5% of FANTOM5 promoters 

differed significantly between different mapping strategies even when the same sequences 

were used. This difference was minimized by using a reference transcriptome, especially in 

STAR, but exacerbated depending on the mapping software applied. 

 

When looking at individual alignments, we found significant differences among mapping 

strategies in regard to alignments to pseudogenes. The majority of reads inconsistently 

mapped to pseudogenes were mapped to protein-coding genes in another mapping condition 

(Fig. 3c,d). This finding suggests that these inconsistencies might be due to processed 

pseudogenes, which are similar to their parent genes but lack introns [23]. Generally 

identifying alignments to parent genes with short first exons is difficult due to the difficulty in 

detecting spliced alignments [5, 23, 24]; this situation leads to the preferred selection of 

alignments to processed pseudogenes with additional mismatches even if they are not 

expressed. Using a reference transcriptome can help to align reads over splice sites in parent 

genes, consistent with our observation that the number of expressed promoters associated 

with pseudogenes was lower in the strategies that included the reference transcriptome (i.e., 

HISAT2-kss and STAR-kss) than those that did not (i.e., HISAT2-nss and STAR-nss). 

However, even when we can correctly identify alignments both to processed pseudogenes and 
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their parent genes, it is difficult to judge to which a sequence tag should be aligned. Given 

that nucleotides in processed pseudogenes are modified gradually and then mutated [23], we 

assumed that the potentially correct alignments were those with fewer mismatches, and we 

found that pseudogenes generally had more mismatches than their parent genes. Thus, we 

infer that most inconsistently mapped reads to pseudogenes might be incorrect, and the use of 

a reference transcriptome might facilitate choosing correct alignments between processed 

pseudogenes and parent genes with short first exons. In addition, the mean number of 

mismatches in the alignments to pseudogenes was lower in STAR than HISAT2 and LAST, 

indicating that pseudogene expression is likely more accurate when determined by using 

STAR than by using HISAT2 and LAST. We have not investigated why STAR yields better 

mapping results regarding pseudogenes than other mapping software programs, but the 

reason might be STAR’s better scheme for scoring of alignments that contain gaps [4]. 

 

Next, we found that mapping strategies differed in the detection of novel and known splice 

junctions. Except for LAST, the mean number of mismatches in alignments including novel 

splice junctions was generally smaller than their inconsistent reads, implying that the 

alignments with novel splice junction are more likely, as previously reported [4, 5]. Whether 

LAST appropriately mapped reads with novel splice junctions is difficult to assess, because 
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the number of mismatches in alignments with novel splice junctions was similar between 

LAST and the other strategies. As expected, the use of a reference transcriptome did not 

influence the detection of novel splice junctions but contributed greatly to the detection of 

known splice junctions. These results suggest that it is better to use a reference transcriptome, 

given that mapping without it would miss more alignments of genes with short first exons. 

However, reference transcriptomes are unavailable or immature in many species. In these 

cases, HISAT2 is most appropriate for identifying novel splice junction candidates and likely 

would be useful for aggressive exploration of novel splice junctions. Compared with the other 

mapping strategies we evaluated, LAST tended to align reads with more mismatches rather 

than introducing novel junctions. 

 

Sometimes in STAR 2-pass mapping, used in STAR-nss, replicate sequences were mapped to 

inconsistent positions in different samples, in which one read was mapped with splice 

junctions and another without splice junctions (Tables S3 and S4). Because these alignments 

have different 5�-ends, they hamper precise identification of TSS positions and their 

expression levels during CAGE analysis. During alignment postprocessing, we must 

remember that such cases might occur. 
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Although we specifically evaluated mapping software for CAGE data analysis, most of our 

results can be applied to other 5�-end sequencing protocols and even RNA-seq. Reads 

obtained by other 5�-end sequencing protocols—for example, TSS-seq and 

RAMPAGE—are similar to those obtained by CAGE. Because we did not focus on any 

points specific to CAGE protocols themselves, most of our findings can be applied to 5�-end 

sequencing protocols in general. Moreover, the different characteristics of the various 

genome mapping programs in regard to alignments to pseudogenes and with novel splice 

junctions could be critical for the analysis of reads obtained through RNA-seq protocols. 

Expression values of genes might be overestimated due to reads from their parent genes and 

underestimated due to undetected splice junctions. 

 

Conclusions 

Overall, all strategies evaluated showed acceptable mapping rates and promoter rates. 

However, because CAGE reads tend to be short and because short first exons can influence 

mapping results, including a reference transcriptome in the mapping strategy is helpful. In 

particular, using a reference transcriptome can improve the mapping of reads between 

processed pseudogenes and their parent gene regions. In conclusion, mapping software and 

its conditions should be selected according to the particular research purposes, in light of the 
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unique characteristics of each mapping strategy. For example, HISAT2 is particularly 

effective for discovering novel splice junctions, LAST yields high promoter rates, and STAR 

produces balanced results.  

 

Methods 

Sample information 

The CAGE data for a human non-islet cell insulinoma cell line (TC-YIK) [17] were retrieved 

from DDBJ Sequence Read Archive (http://www.ddbj.nig.ac.jp/dra/) under the accession 

number DRA002420. The CAGE data comprised 93 samples, consisting of biological 

triplicates of 31 experimental conditions. 

 

Software and reference datasets 

We used three mapping programs—HISAT2 (version 2.0.1-beta), LAST (version 852), and 

STAR (version 2.5.2a)—with the primary assembly of chromosomes 1 through 22, X, Y, and 

M for the human reference genome version GRCh38 (hg38). We used GENCODE human 

release 23 [1] as a reference transcriptome for HISAT2 and STAR. LAST has no options to 

use reference transcriptomes. For post-processing of mapping results, we used SAMtools 

(version 1.2) [25] and UCSC Genome Browser (version 356; 
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http://hgdownload.cse.ucsc.edu/admin/exe/) [26, 27] software. 

 

Mapping and data processing 

Before mapping, rRNA reads were removed by using rRNAdust 

(http://fantom.gsc.riken.jp/5/suppl/rRNAdust/) with a rRNA sequence file downloaded from 

UCSC Table Browser [28]. For each mapping strategy, we analyzed 93 samples; Table S1 

shows the program version and options used. Reads with more than 5 soft-clipped bases at 

the aligned 5� ends were flagged as unmapped and excluded from the further analysis. 

Mapping results in BAM format were processed to generate CAGE tag start sites (CTSS) 

files in BED format by extracting the 5�-end positions of uniquely mapped reads (the 

mapping quality > 20) [16]. The CTSS files were then converted to bigWig files by using the 

BedGraphTobigWig program in the UCSC Genome Browser software [26, 27]. 

 

Data analysis 

We counted all uniquely mapped reads as ‘mapped reads.’ The number of ‘expressed 

promoters’ was the number of hg38 FANTOM5 CAGE peaks [22] with more than 10 

uniquely mapped reads. The ‘promoter rate’ was the number of reads within FANTOM5 

CAGE peak regions divided by the total number of uniquely mapped reads. FANTOM5 
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CAGE peak annotation was obtained from the FANTOM5 website 

(http://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_v4/extra/CAGE_peaks_annotation/h

g38_liftover+new_CAGE_peaks_phase1and2_annot.txt). Categorization of promoters as 

driving the expression of a protein-coding gene, lincRNA, or pseudogene was based on the 

associated GENCODE transcripts in the annotation file; the number of expressed 

protein-coding genes, lincRNAs, or pseudogenes was the number of genes with at least one 

associated expressed promoter. Mapped reads containing splice junctions were retrieved as 

alignments whose CIGAR [25] values contained ‘N.’ Promoter-level expression was 

calculated by using the bigWigAverageOverBed program in the UCSC Genome Browser 

software [26, 27] using the FANTOM5 CAGE peaks [16] as a reference (“in.bed” of the 

program). In the differentially expressed promoter analysis, the edgeR package [29] in R 

version 3.3.3 (Bioconductor version 3.4) were used for biological triplicate samples 

(DRR021875, DRR021876, and DRR021877), and the q-value cutoff was 0.01. The 

hierarchical clustering was performed with the “hclust” function in R version 3.3.3. 

 

Novel splice junctions, pseudogenes, and mismatches 

We defined a ‘novel splice junction’ as one where at least one side of the exon–intron 

junction was not matched with any (known) splice junction site in the GENCODE transcript 
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annotation. The pseudogene list was obtained as the GENCODE genes labeled as 

“pseudogene.” The number of mismatches in an alignment was calculated as the sum of the 

number of “NM” tags in BAM files and the number of soft-clipped (HISAT2 and STAR) or 

hard-clipped (LAST) bases. 

 

List of abbreviations 

CAGE: Cap Analysis of Gene Expression 

CTSS: CAGE tag start sites 

FANTOM: Functional Annotation of the Mammalian Genome 

lincRNA: Long intervening non-coding RNA 

nAnT-iCAGE: No-amplification non-tagging CAGE 

RAMPAGE: RNA Annotation and Mapping of Promoters for Analysis of Gene Expression 

TSS: Transcriptional start site 
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Additional files 

Table S1 List of software options applied 

Table S2 Number of replicate sequences in the same sample that mapped to different 

positions 

Table S3 Number of replicate sequences in different samples that mapped to different 

positions  

Table S4 Example of a sequence that STAR-nss mapped to different positions in different 

samples  

Figure S1 Inconsistent reads mapped to pseudogenes. 

The graph shows the percentage of inconsistently mapped reads between mapping strategies 

A and B in all reads mapped to pseudogenes in strategy A for each combination of mapping 
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strategies A and B. 

Figure S2 Example of an inconsistently mapped read that was mapped to a pseudogene in 

one mapping strategy but to its parent gene in a different strategy. 

Genomic views on UCSC Genome Browser are shown with the mapping results of 

DRR021875 by LAST-nss and STAR-kss. Graphs of CTSS and alignments of the read 

“DRR021875.14906” are shown for both mapping strategies. a) Genomic view around the 

TSS of RPL13. STAR-kss mapped more reads to this region than LAST-nss. For example, 

STAR-kss aligned the read “DRR021875.14906” to this region with a known splice junction 

of RPL13; LAST-nss did not map this read to this region. b) Genomic view around the TSS 

of RPL13P12, a pseudogene of RPL13P12. LAST-nss mapped more reads to this region than 

did STAR-kss. For example, LAST-nss aligned the read “DRR021875.14906” to this region 

without splice junctions; STAR-kss did not map this read to this region. 

 

References 

1. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. 

GENCODE: The reference human genome annotation for the ENCODE project. Genome Res. 

2012;22:1760–74. 

2. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.14.982991doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.14.982991
http://creativecommons.org/licenses/by/4.0/


26 

 

sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional 

annotation. Nucleic Acids Res. 2016;44:D733–45. 

3. Fonseca NA, Marioni J, Brazma A. RNA-Seq gene profiling - A systematic empirical 

comparison. PLoS One. 2014;9:e107026. 

4. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast 

universal RNA-seq aligner. Bioinformatics. 2013;:1–7. 

5. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory 

requirements. Nat Methods. 2015;12:357–60. doi:10.1038/nmeth.3317. 

6. Kanamori-Katayama M, Itoh M, Kawaji H, Lassmann T, Katayama S, Kojima M, et al. 

Unamplified Cap Analysis of Gene Expression on a single-molecule sequencer. Genome Res. 

2011;21:1150–9. 

7. Itoh M, Kojima M, Nagao-Sato S, Saijo E, Lassmann T, Kanamori-Katayama M, et al. 

Automated Workflow for Preparation of cDNA for Cap Analysis of Gene Expression on a 

Single Molecule Sequencer. PLoS One. 2012;7:e30809. doi:10.1371/journal.pone.0030809. 

8. Tsuchihara K, Suzuki Y, Wakaguri H, Irie T, Tanimoto K, Hashimoto S, et al. Massive 

transcriptional start site analysis of human genes in hypoxia cells. Nucleic Acids Res. 

2009;37:2249–63. doi:10.1093/nar/gkp066. 

9. Yamashita R, Sugano S, Suzuki Y, Nakai K. DBTSS: DataBase of Transcriptional Start 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.14.982991doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.14.982991
http://creativecommons.org/licenses/by/4.0/


27 

 

Sites progress report in 2012. Nucleic Acids Res. 2012;40:150–4. 

10. Batut P, Gingeras TR. RAMPAGE: Promoter activity profiling by paired-end sequencing 

of 5’-complete cDNAs. Curr Protoc Mol Biol. 2013; SUPPL.104:1–16. 

11. Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, et al. An Atlas of 

Combinatorial Transcriptional Regulation in Mouse and Man. Cell. 2010;140:744–52. 

12. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, et al. 

Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet. 

2006;38:626–35. doi:10.1038/ng1789. 

13. The FANTOM Consortiumand the RIKEN PMI and CLST (DGT). A promoter-level 

mammalian expression atlas. Nature. 2014;507:462–70. doi:10.1038/nature13182. 

14. Arner E, Daub CO, Vitting-Seerup K, Andersson R, Lilje B, Drabløs F, et al. Transcribed 

enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 

(80- ). 2015. 

15. Lizio M, Abugessaisa I, Noguchi S, Kondo A, Hasegawa A, Hon CC, et al. Update of the 

FANTOM web resource: expansion to provide additional transcriptome atlases. Nucleic 

Acids Res. 2019;47:D752–8. 

16. Noguchi S, Arakawa T, Fukuda S, Furuno M, Hasegawa A, Hori F, et al. FANTOM5 

CAGE profiles of human and mouse samples. Sci data. 2017;4:170112. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.14.982991doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.14.982991
http://creativecommons.org/licenses/by/4.0/


28 

 

doi:10.1038/sdata.2017.112. 

17. Lizio M, Ishizu Y, Itoh M, Lassmann T, Hasegawa A, Kubosaki A, et al. Mapping 

mammalian cell-type-specific transcriptional regulatory networks using KD-CAGE and 

ChIP-seq data in the TC-YIK cell line. Front Genet. 2015;6 NOV:1–17. 

18. Hashimoto K, Suzuki AM, Dos Santos A, Desterke C, Collino A, Ghisletti S, et al. CAGE 

profiling of ncRNAs in hepatocellular carcinoma reveals widespread activation of retroviral 

LTR promoters in virus-induced tumors. Genome Res. 2015;25:1812–24. 

19. Murata M, Nishiyori-Sueki H, Kojima-Ishiyama M, Carninci P, Hayashizaki Y, Itoh M. 

Detecting Expressed Genes Using CAGE. Methods Mol Biol. 2014;1164:67–85. 

20. Abugessaisa I, Noguchi S, Hasegawa A, Kondo A, Kawaji H, Carninci P, et al. refTSS: A 

Reference Data Set for Human and Mouse Transcription Start Sites. J Mol Biol. 

2019;431:2407–22. doi:10.1016/j.jmb.2019.04.045. 

21. Kielbasa SM, Wan R, Sato K, Kiebasa SM, Horton P, Frith MC. Adaptive seeds tame 

genomic sequence comparison Adaptive seeds tame genomic sequence comparison. 

2011;:487–93. 

22. Abugessaisa I, Noguchi S, Hasegawa A, Harshbarger J, Kondo A, Lizio M, et al. 

FANTOM5 CAGE profiles of human and mouse reprocessed for GRCh38 and GRCm38 

genome assemblies. Sci data. 2017;4:170107. doi:10.1038/sdata.2017.107. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.14.982991doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.14.982991
http://creativecommons.org/licenses/by/4.0/


29 

 

23. Vanin EF. Processed pseudogenes identification. Annu Rev Genet. 1985;19:253–72. 

24. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate 

alignment of transcriptomes in the presence of insertions, deletions and gene fusions. 

Genome Biol. 2013;14:R36. doi:10.1186/gb-2013-14-4-r36. 

25. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence 

Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. 

26. Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and BigBed: Enabling 

browsing of large distributed datasets. Bioinformatics. 2010;26:2204–7. 

27. Casper J, Zweig AS, Villarreal C, Tyner C, Speir ML, Rosenbloom KR, et al. The UCSC 

Genome Browser database: 2018 update. Nucleic Acids Res. 2018;46:D762–9. 

28. Karolchik D. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 

2004;32:493D – 496. doi:10.1093/nar/gkh103. 

29. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential 

expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40. 

 

 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.14.982991doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.14.982991
http://creativecommons.org/licenses/by/4.0/


30 

 

Figure legends 

Figure 1 Mapping summary  

Boxplots of (a) mapped reads; number of expressed genes associated with (b) protein-coding 

genes, (c) lincRNAs, and (d) pseudogenes; (e) promoter rate (%); (f) number of promoters; 

(g) number of detected known splice junctions; and (h) number of detected novel splice 

junctions are shown for each mapping condition. 

 

Figure 2 Differences in promoter expression among mapping strategies 

a) Scatter plots of promoter expression from pair of mapping strategies using biological 

triplicate samples (DRR021875, DRR021876, and DRR021877). Dots represent the average 

promoter expression of the 3 replicates. Red dots indicate significantly differentially 

expressed promoters (q < 0.01 by edgeR), and blue dots are similarly expressed promoters. 

The values at the top right are the Spearman correlation coefficients of promoter expression 

among the triplicate samples. The number at the top left in each scatter plot is the number of 

significantly highly expressed promoters in the mapping strategy along the y-axis compared 

with that on the x-axis. The number at the bottom right in each scatter plot is the number of 

promoters with low expression. b) Hierarchical clustering of mapping strategies according to 

promoter expression in the same triplicate samples. 
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Figure 3 Inconsistently mapped reads with the number of mismatches 

a) A model of inconsistently mapped reads. An inconsistently mapped read is one that was 

mapped to 2 different positions by 2 different mapping strategies (e.g., A and B). b) The 

number of inconsistently mapped reads between mapping strategies A and B. The reads were 

classified as protein-coding gene, pseudogene, other type of gene (other), and unannotated 

according to mapped genes in mapping strategy A.  

c) The difference in the mean number of mismatches in alignments of inconsistently mapped 

reads between mapping strategies A and B. The y-axis represent Mean(MMAi – MMBi), where 

i is an inconsistently mapped read, MMAi is the number of mismatches for read ‘i’ in mapping 

strategy A, and MMBi is the number of mismatches for read ‘i’ in mapping strategy B. A 

positive value indicates a greater number of mismatches in reads mapped by strategy A 

compared with strategy B. 

 

Figure 4 Inconsistently mapped reads to pseudogene 

a) A model of an inconsistently mapped read to a pseudogene is one in which a read is 

mapped to a pseudogene by one strategy (i.e., mapping strategy A) but to an inconsistent 

position by the other (i.e., mapping strategy B). b) The difference in the mean number of 
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mismatches between mapping strategies A and B. The y-axis indicates Mean(MMAi – MMBi), 

where ‘i’ is an inconsistently mapped read to a pseudogene, MMAi is the number of 

mismatches for read i in mapping strategy A, and MMBi is the number of mismatches of read 

i in mapping strategy B. A positive value indicates more mismatches from mapping strategy 

A than B. c) A model of an inconsistently mapped read to a pseudogene and its parent gene. 

An inconsistently mapped read to a pseudogene and its parent gene is one in which a read is 

mapped to a pseudogene by strategy A but to an inconsistent position in a protein-coding 

gene region by strategy B. d) The percentage of reads that strategy B mapped to 

protein-coding gene regions relative to all inconsistently mapped reads to pseudogenes and 

their parent genes. 

 

Figure 5 Inconsistently mapped reads with novel splice junctions 

a) A model of an inconsistently mapped read with novel splice junctions. An inconsistently 

mapped read with novel splice junctions is one that contains novel splice junctions and that is 

mapped to 2 different locations by 2 different strategies (i.e., A and B). b) The difference in 

the mean number of mismatches between mapping strategies A and B. The y-axis indicates 

Mean(MMAi – MMBi), where i is an inconsistently mapped read with novel splice junctions, 

MMAi is the number of mismatches of read i in mapping strategy A, and MMBi is the number 
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of mismatches of read i for mapping strategy B. c, d) Models of inconsistently mapped reads 

with novel splice junctions. The models are reads with novel splice junctions that are mapped 

to one location by strategy A that mapped to an inconsistent position in strategy B when 

known splice junctions were absent (c) or included (d) in the analysis. e, f) The percentage of 

reads with novel splice junctions that were mapped by strategy A relative to all inconsistently 

mapped reads with novel splice junctions that were mapped by strategy B when known splice 

junctions were absent (e) or included (f) in the analysis.  
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