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Abstract 

Background: Accurate and robust pathological image analysis for colorectal cancer 

(CRC) diagnosis is time-consuming and knowledge-intensive, but is essential for CRC 

patients’ treatment. The current heavy workload of pathologists in clinics/hospitals may 

easily lead to unconscious misdiagnosis of CRC based on their daily image analyses.  

Methods: Based on a state-of-the-art transfer-learned deep convolutional neural network 

in artificial intelligence (AI), we proposed a novel patch aggregation strategy for clinic 

CRC prediction/diagnosis using weakly labeled pathological whole slide image (WSI) 

patches. This approach was trained and validated using an unprecedented and enormously 

large number of 170,099 patches, >14,680 WSIs, from >9,631 subjects that covered 

diverse and representative clinical cases from multi-independent-sources across China, 

U.S., and Germany.  

Results: Our innovative AI tool was consistently nearly perfectly agreed with (average 

Kappa-statistic 0.896) and even often better than most of the experienced expert 

pathologists when tested in diagnosing CRC WSIs from multi-centers. The average area 

under the receiver operating characteristics curve (AUC) of AI was greater than that of 

the pathologists (0.981 vs 0.970) and achieved the best performance among the 

application of other AI methods to CRC diagnosis. Our AI-generated heatmap highlights 

the image regions of cancer tissue/cells.  

Conclusions: This first-ever generalizable AI system can handle large amounts of WSIs 

consistently and robustly without potential bias due to fatigue commonly experienced by 

clinical pathologists. Hence, it will drastically alleviate the heavy clinical burden of daily 

pathology diagnosis, and improve the treatment for CRC patients. This tool is 

generalizable to other cancer diagnosis based on image recognition. 
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Introduction 

Colorectal cancer (CRC) is the third leading cancer by incidence (6.1%) but second for 

mortality (9.2%) worldwide1. The global burden of CRC was expected to increase 60% 

by 2030, in terms of new cases and deaths2. The accurate and prompt detection of CRC is 

essential to improve treatment effectiveness and survivorship. The current diagnosis of 

CRC requires an extensive visual examination of digital whole slide images (WSIs) of 

the hematoxylin and eosin (H&E) stained specimens obtained from formalin-fixed 

paraffin-embedded (FFPE) or frozen tissues by highly specialized pathologists. The 

challenges for the WSI analysis include very large image size (>10,000×10,000 pixels), 

histological variations in size, shape, texture, and staining of nuclei, making the diagnosis 

complicated and time consuming3. In most modern pathology departments, the average 

consultative workload increases by ~5-10% annually 4. The current trends clearly indicate 

a shortage of pathologists around the world, including U.S.A.5 and low- to 

middle-income countries6. The above situations will result in overwork for pathologists 

and may easily lead to higher chances of deficiencies in their routine work and 

dysfunctions of the pathology laboratories with more laboratory errors4. While the 

demands of colon specimen examination in gastroenterology clinics are high, the training 

time of pathologists is long (>10 years)7. It is thus imperative to develop reliable tools for 

pathological image analysis and CRC detection that can improve clinical efficiency and 

efficacy without unintended human bias during diagnosis. 

State-of-the-art artificial intelligence (AI) approaches, such as deep learning (DL), are 

very powerful in classification and prediction. There have been many successful 

applications of DL, specifically convolutional neural network (CNN), in WSI analysis for 

cancers of, e.g., lung8,9, breast10,11, prostate12, and skin13,14. Most of the existing CNN for 

the CRC WSI analysis focused on the pathology work after cancer determination, 

including grade classification15, tumor cells detection and classification16-18, survivorship 

prediction19-21, etc.  Although they resulted in reasonably high accuracy, their study 
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sample sizes are limited and hence not fully represent the numerous histologic variants of 

CRC that have been defined, including tubular, mucinous, signet ring cell, and others22. 

The situation thus would inflate the prediction error when applied to different 

independent samples. Meanwhile, most of the current DL models were developed from 

single data source without thorough validation using independent data. They only 

calculated the accuracy of patches without diagnosing WSIs or the patients. Their general 

applicability for CRC WSI diagnosis in various clinical settings, which may involve 

heterogeneous platforms and image properties, remains unclear. A DL approach 

generalizable to daily pathological CRC diagnosis, to relieve clinical burden of 

pathologists, is yet to be developed. 

Here, we developed a novel automated approach centered on weakly labeled supervised 

DL, a CNN using Inception-v3 architecture23 with weights initialized from transfer 

learning, for the very first clinical CRC diagnosis. Our work is based on WSIs from 

multiple independent hospitals/sources in China (8,554 patients), U.S. (1,077 patients), 

and Germany (>111 slides). Transfer learning is a highly effective and efficient DL 

technique for image analysis that can utilize previously learned knowledge on general 

images for medical images analyses24. Further, weakly labeled supervised learning, i.e. 

with only coarse-grained labels at image-level, is advantageous in training massive and 

diverse datasets without exact labelling at object-levels, such as the cancer cells12. This 

study has high practical value for improving the effectiveness and efficiency of CRC 

diagnosis and thus treatment. It highlights the general significance of the application of 

AI to image analyses of other types of cancers.  

 

Materials and Methods  

Colorectal cancer whole-slide image dataset 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992917
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

We collected 14,234 CRC WSIs from fourteen independent sources (Table 1). All data 

were de-identified. The largest image set was from 6,876 patients admitted between 2010 

and 2018 in Xiangya Hospital (XH), Central South University (CSU, Changsha, China). 

XH is the largest hospital in Hunan Province and was established in 1906 with a close 

affiliation with Yale University25. The other independent sources were TCGA of US 

(https://portal.gdc.cancer.gov/)26, NCT-UMM of Germany 

(https://zenodo.org/record/1214456#.XgaR00dTm00)20, Adicon Clinical Laboratories, 

INC (ACL), and eleven hospitals in China (detailed in Table 1). The hospitals involved 

are located in the major metropolitan areas of China serving >139 million population, 

including those most prestigious hospitals in pathology in China: XH, FUS, CGH, SWH, 

and AMU; other state-level esteemed hospitals: SYU, NJD, GPH, HPH, and TXH; and a 

regional reputable PCH. All WSIs were from FFPE tissues, except part of TCGA WSIs 

were from frozen tissues27. The process of collection, quality control, and digitalization of 

the WSIs was described in Supplementary-Text 1.a. 

We formed four datasets (Table 1). Dataset-A with slides from XH only was used for 

patch-level training and testing (Table 2). We carefully selected WSIs to include all 

common tumor histological subtypes. Pathologists weakly labeled the patches from WSIs 

as either containing or not cancer cells/tissues without complete information of cancer 

cells/tissues (location, shape, demarcation etc.). Dataset-B consisting of two independent 

subsets in NCT-UMM were used for patch-level external validation. The overall split for 

patch-level training, testing, and external validation was about 2:1:5. Dataset-C used for 

patient-level validation was composed of slides from XH, the other hospitals, ACL, and 

frozen and FFPE samples of TCGA. Given the highly imbalance of cancer and 

non-cancer slides in SYU and CGH (Table 1), they were combined in Dataset-C. 

Dataset-D used for the Human-AI contest contained approximately equal number of 

slides from XH, the other hospitals, and ACL. Supplementary-Text 1.b summarized the 

allocation of slides in the different datasets, sampling strategy, and other details. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992917
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

Our approach to predict patient cancerous status involved two steps: DL prediction for 

local patches and patch-level results aggregation for patient-level diagnosis 

(Supplementary-Figure 1). 

Patch-level training by deep learning 

Our DL model used Inception-v3 as the CNN architecture to classify cancerous and 

normal patches. The Inception network using different kernel sizes is specifically 

powerful in learning diagnostic information in pathological image from differing scales 

and has achieved near human expert performance in the analyses of other cancer 

types8,13,28,29. There are a few Inception architectures performed well on the ImageNet 

dataset30 and WSIs analysis30, such as the Inception-v131, Inception-v323, Inception-v432. 

We chose Inception-v3 based on extensive comparison of their patch-level and 

patient-level performance in testing sets. (Supplementary-Text 1.c). 

We initialized the CNN by transfer learning with pre-trained weights from ImageNet23, 

which were optimized to capture the structures in general images24. With transfer learning, 

our model can recognize pivotal image features for CRC diagnosis most efficiently. After 

preprocessing, the cropped non-overlapping patches from each WSI in training set were 

fed into the initialized CNN for fine-tuning (Supplementary-Text 1.d). 

Patient diagnosis and false positive control 

Considering the high FPR (false positive rate) accumulated from multiple patch-level 

predictions, we proposed a novel patch-cluster-based aggregation method for slide-level 

prediction based on the fact that the tumor cells tend to gather together (especially at 20× 

magnification). Motivated by the clustering inference of fMRI33, we predicted the WSI as 

cancer positive if there were several positive patches topologically connected as a cluster 

on the slide (defined by the cluster size), such as four patches as a square. Otherwise, we 

predicted the slide as negative. We tested various cluster sizes and picked four due to an 

empirically observed best balance of sensitivity and FPR in the testing dataset 
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(Supplementary-Text 1.e). We provided the patient-level diagnosis combining results 

from (the union of) all of the patient’s slides. So that the patient will be diagnosed as 

having cancer as long as one of the slides is diagnosed so. 

Human-AI contest 

Six pathologists (A-F) with varying experience of 1 to 18 clinical practice years joined 

the contest (Supplementary-Table 1). The pathologists independently provided a 

diagnosis specifying cancer or non-cancer for each patient after reading the WSIs in 

Dataset-D. None of them participated in the data collection or labeling. An independent 

analyst blindly summarized and compared the accuracy and speed of AI and human 

experts in performing diagnosis. Details of the statistical methods are in 

Supplementary-Text 1.f. 

 

Results 

Highest accuracies in patch-level prediction by our model  

We divided the 842 WSIs from Dataset-A (Table 2) into 62,919 non-overlapping patches 

to construct the CNN for patch-level prediction based on fine-tuning of Inception-v3. An 

average of ~75 patches per WSI were included to ensure an appropriate and 

comprehensive representation of cancer and normal tissue characteristics. Three major 

CRC histological subtypes were involved for the training and testing, including 74.76% 

tubular, 24.59% mucinous, and 0.65% signet ring cell patches, roughly reflecting their 

clinical incidences34. In the training, 19,940 (46.75%) patches had cancer, and 22,715 

(53.25%) patches were normal. Using another independent set of 10,116 (49.92%) cancer 

and 10,148 (50.08%) non-cancer patches, the AI for patch-level prediction achieved a 

testing accuracy of 98.11% and an AUC of 99.83%. The AUC outperformed that of all 

the previous AI studies for CRC diagnosis and prediction (79.2%-99.4%) and even for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992917
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

the majority of other types of cancer (82.9%-99.9%, Supplementary-Table 2). The 

specificity was 99.22% and the sensitivity 96.99%, both outstanding. In the external 

validation Dataset-B, our model yielded an accuracy and AUC of 96.07% and 98.32% in 

NCT-CRC-HE-100K, and 94.76% and 98.45% in CRC-VAL-HE-7K, which matched the 

performance from in-house data and outplayed the patch-level validation analysis in other 

AI studies (AUC 69.3%-95.0%, Supplementary-Table 2). 

 

Diagnosis of CRC at patient level using DL-predicted patches 

Our AI approach was tested for patient diagnosis with 13,514 slides from 8,594 patients 

(Dataset-C). In the largest subset (5,839 patients) from XH, our approach produced an 

accuracy of 99.02% and an AUC of 99.16% (Figure 1, Supplementary-Table 3). In other 

independent multi-center datasets, our approach consistently performed very well. For the 

FFPE slides from other hospitals, TCGA-FFPE, and ACL, the AI approach yielded an 

average AUC and accuracy higher than 97.65% (Figure 1). For frozen slides 

TCGA-Frozen, the AI accuracy and AUC were 93.44% and 91.05% respectively (Figure 

1). Our AUC values (ranging from 91.05% to 99.16%) were higher than that of other 

AI-based approaches for independent datasets (ranging from 83.3% to 94.1%), while the 

majority of those earlier AI approaches were tested on datasets of much smaller sample 

sizes (Supplementary-Table 2). The limited number of negative slides in TCGA may 

result in an imbalanced classification problem that needs further investigation, which is 

beyond the scope of this study. The results on TCGA-Frozen slides showed that our 

method did learn the histological morphology of cancer and normal tissues for cancer 

diagnosis, which is preserved in both the FFPE and frozen samples, even though our 

method was developed based on the FFPE samples. See Supplementary-Table 3 for 

complete patient-level result.  
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Contest with six human experts 

The performance of our AI approach was consistently comparable to the pathologists in 

diagnosing 1,831 WSIs from independent centers (Dataset-D, Figure 2). The AI resulted 

in an overall accuracy and AUC of 98.06% and 98.10%, which both ranked third out of 

the seven competitors (AI plus the six pathologists) and were greater than the average of 

the pathologists (accuracy 97.14% and AUC 96.95%). The AI yielded the highest 

sensitivity (98.16%) relative to the average (97.47%) of the pathologists 

(Supplementary-Table 4). The pathologists (D and E) who slightly outperformed the AI 

have 7 and 12 years of clinical experience respectively, while the AI outperformed the 

other 4 pathologists with 1, 3, 5, and 18 years of experience respectively. Cohen’s Kappa 

statistic (�) showed an excellent agreement (�≥0.858) between AI and every pathologist 

(Supplementary-Table 5). Our approach is thus proven generalizable to provide diagnosis 

support for potential CRC subjects like an independent pathologist, which can drastically 

relieve the heavy clinical burden and training cost of professional pathologists. Details of 

the Human-AI contest are given in Supplementary-Tables 3&4. 

The pathologists were all informed to compete with our AI and with each other; hence, 

their performances were achieved under their best possible conditions with very best 

effort, which represented their highest skill with least error and fastest speed. However, 

with heavy workload in clinic, their performance in terms of accuracy and speed will not 

be as stable as that of AI. The current study of AI in cancer diagnosis using WSI have 

shown that AI can accurately diagnose in ~20 seconds8 or less (~13 seconds in our case). 

With evolved DL techniques and advanced computing hardware, the AI can constantly 

improve and provide steady, swift, and accurate first diagnosis for CRC or other cancers. 

 

Slide-level heatmap 
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Our approach offers an additional distinct feature: heatmap for highlighting potential 

cancer regions (as patches) in WSI. In Figure 3, we presented two WSIs, which were 

overlaid with the predicted heatmap. For both radical surgery WSI and colonoscopy WSI, 

the true cancerous region was highly overlapped with highlighted patches obtained by AI, 

which was also verified by pathologists. See more examples in Supplementary-Figure 2. 

In addition, to visualize informative regions utilized by DL for the CRC detection, we 

provided the activation maps in Supplementary-Figure 3. 

 

Discussion 

We collected high-quality, comprehensive, and multiple independent human WSI datasets 

for training, testing, and external validation of our AI-based approach focusing on 

pathological diagnosis of CRC under common clinical settings. We mimicked the clinical 

procedure of WSI analysis, including the image digitalization, slide review, and expert 

consultations of the disputed slides. Different from other studies18, we did not apply any 

manual selection of slides or the area of interest when building the study dataset. Given 

the complex histologic variants of CRC, we randomly selected training patches from 

three most commonly seen subtypes roughly proportional to their incidences. The number 

of patches from images with large and small cancer tissue area was balanced and well 

represented in patch-level analysis. The collected images were labeled by agreement of at 

least two senior experts in CRC pathology (Supplementary text 1.b). The testing dataset 

from different locations in China, U.S., and Germany served as a representative pool for 

validation and generalization. Our dataset well represents the slides seen in clinics. 

Consequently, the trained AI model is robust and generalizable to analyze images of 

different production protocols and image quality. 

For a fast-growing area, we are aware of that several new CNN architectures have been 

proposed after the completion of the study of the present paper, such as the DenseNet35, 
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Squeeze-and-Excitation network36, ResNeXt37, etc. Although they have been shown to 

increase the prediction accuracy on ImageNet dataset compared to the Inception-v3, their 

performance on pathology images analysis and cancer diagnosis may await more focused 

technical comparison research. 

There are several histological types that were too rare (less than 0.5% in incidence38) to 

be included, such as medullary, micropapillary, serrated. Our AI approach performed only 

slightly less satisfactory in frozen samples than in FFPE samples. With WSIs from rare 

types and more frozen samples available for training in the future, we expect our 

approach can be constantly improved to be more generalizable. 

Most of the previous studies obtained the patient's diagnosis by integrating the 

patch-level recognition results, since it is not feasible to process the large-size WSI 

directly. This strategy is difficult to control the accumulated FPR from multiple 

predictions based on individual patches. Recently, Coudray et al. used the proportion of 

positive patches or the average probability of all patches as the prediction criterion for the 

WSI8. Although their results were verified in three independent datasets (all with small 

sample sizes (340 slides)), their aggregation method may not be valid for those images 

with only a small area of cancer tissues where it will yield false negative findings for 

cancer patients. Instead, we proposed a novel aggregation strategy for patch-based WSI 

or patient-level prediction, which is intuitive and can easily balance the sensitivity and 

specificity. In practice, setting the cluster size to four is most likely to exceed the average 

accuracy of pathologists, while cluster size of two can be used for pathological screening 

with an average sensitivity of ~99.78% and an average specificity of ~72.29% according 

to our test data (Supplementary-Text 1.e). 

Here, we developed a novel DL-based histopathological image classification approach 

for CRC diagnosis with the best performance achieved with the largest number of sample 

sizes and data sources in the field so far. Our approach was able to quickly and accurately 

distinguish CRC cases from healthy or inflammatory cases and was comparable to or 
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even superior to pathologists in the testing of large-scale multi-center data. To the best of 

our knowledge, this is the first AI study for a reliable, generalized, and robust auxiliary 

tool for daily clinical pathology diagnosis of CRC initial screening. Our approach may 

also be adapted and applied to the histological analysis of other cancer types via the code 

available upon request. 
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Table 1. Usage of datasets from multi-center data source 

Data source 

Dataset 

Usage 
Sample 

preparation  

Examination type 

Radical surgery / 

Colonoscopy 

Population* 

CRC  Non-CRC Total 

subjects slides subjects slides subjects slides 

Xiangya Hospital (XH) A FFPE 100% / 0% Changsha, China 614 614 228 228 842 842 

NCT-UMM (NCT-CRC-HE-100K) B FFPE NA Germany NA NA NA NA NA 86 

NCT-UMM (CRC-VAL-HE-7K) B FFPE NA Germany NA NA NA NA NA 25 

XH C FFPE 80% / 20% Changsha, China 3,990 7,871 1,849 2,132 5,839 10,003 

XH D FFPE 89% / 11% Changsha, China 98 99 97 114 195 213 

Pingkuang Collaborative Hospital (PCH) C & D FFPE 60% / 40% Jiangxi, China 50 50 46 46 96 96 

The Third Xiangya Hospital of CSU (TXH) C & D FFPE 61% / 39% Changsha, China 48 70 48 65 96 135 

Hunan Provincial People’s Hospital (HPH) C & D FFPE 61% / 39% Changsha, China 49 50 49 49 98 99 

ACL C & D FFPE 22% / 78% Changsha, China 100 100 107 107 207 207 

Fudan University Shanghai Cancer Center (FUS) C & D FFPE 97% / 3% Shanghai, China 100 100 98 98 198 198 

Guangdong Provincial People’s Hospital (GPH) C & D FFPE 77% / 23% Guangzhou, China 100 100 85 85 185 185 

Nanjing Drum Tower Hospital (NJD) C & D FFPE 96% / 4% Nanjing, China 100 100 97 97 197 197 

Southwest Hospital (SWH) C & D FFPE 93% / 7% Chongqing, China 99 99 100 100 199 199 

The First Affiliated Hospital Air Force Medical University 

(AMU) 
C & D FFPE 95% / 5% Xi’an, China 101 101 104 104 205 205 

Sun Yat-Sen University Cancer Center (SYU) C & D FFPE 100% / 0% Guangzhou, China 91 91 6 6 97 97 

Chinese PLA General Hospital (CGH) C FFPE NA Beijing, China 0 0 100 100 100 100 

TCGA (TCGA-Frozen) C Frozen 100% / 0% U.S. 631 1214 110 133 631** 1347 

TCGA (TCGA-FFPE) C FFPE 100% / 0% U.S. 441 441 5 5 446 446 

Total 6,612 11,100 3,129 3,469 9,631 14,680 
*Location map available in Supplementary Text 1.a. **For the TCGA –Frozen data only, the non-CRC slides were made with normal intestinal tissues on 

part of the CRC slides. 
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Table 2. Dataset-A (training and testing) and Dataset-B (external validation) for patch-level 

analysis 

Dataset 
Cancer Non-cancer Total 

subjects slides patches subjects slides patches subjects slides patches 

Training 406 406 19,940 153 153 22,715 559 559 42,655 

Testing 208 208 10,116 75 75 10,148 283 283 20,264 

Validation NA NA 15,550 NA NA 91,630 NA 111 107,180* 

Total >614 >614 45,606 >228 >228 124,493 >842 953 170,099 

* There are two datasets used for validation. The number is the sum of the two datasets. 
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Figure Legend 
 
Figure 1. Patient-level testing performance on twelve independent datasets from 
Dataset-C. Left: the radar map of the sensitivity, specificity, accuracy, and AUC in each 
dataset from Dataset-C. Right: the boxplot showing the distribution of sensitivity, 
specificity, accuracy, and AUC in datasets excluding XH and TCGA. The horizontal bar 
in the box indicates the median, while the cross indicates the mean. Circles represent data 
points. 
 
Figure 2. ROC analysis of AI and pathologists in the Human-AI contest using Dataset-D. 
The blue line is the estimated ROC curve for AI. The colored triangles indicate the 
sensitivity and specificity achieved by the six pathologists. 
 
Figure 3. Heatmap produced by AI. Top row: WSI from radical surgery (left) and 
colonoscopy (right); middle row: AI predicted heatmap corresponding to the first row, 
with white coloration indicating predicted cancer region; bottom row: heatmap overlaid 
on the corresponding WSI. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2020. ; https://doi.org/10.1101/2020.03.15.992917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.15.992917
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

Figure 1. Patient-level testing performance on twelve independent datasets from Dataset-C. 
Left: the radar map of the sensitivity, specificity, accuracy, and AUC in each dataset from 
Dataset-C. Right: the boxplot showing the distribution of sensitivity, specificity, accuracy, 
and AUC in datasets (excluding XH and TCGA-Frozen). The horizontal bar in the box 
indicates the median, while the cross indicates the mean. Circles represent data points. 
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Figure 2. ROC analysis of AI and pathologists in the Human-AI contest using Dataset-D. The blue line was the estimated ROC curve for 
AI. The colored triangles indicate the sensitivity and specificity achieved by the six pathologists. 
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Figure 3. Heatmap produced by AI. Top row: WSI from radical surgery (left) and 
colonoscopy (right); middle row: AI predicted heatmap corresponding to the first row, with 
white coloration indicating predicted cancer region; bottom row: heatmap overlaid on the 
corresponding WSI.  
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