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Abstract: The gut microbiome has important effects on human health, yet its importance in 20 
human aging remains unclear. Using two independent cohorts comprising 4582 individuals 21 
across the adult lifespan we demonstrate that, starting in mid-to-late adulthood, gut microbiomes 22 
become increasingly unique with age. This uniqueness pattern is strongly associated with gut 23 
microbial amino acid derivatives circulating within the bloodstream, many of which have been 24 
previously identified as longevity biomarkers. At the latest stages of human life, two distinct 25 
patterns emerge wherein individuals in good health show continued microbial drift toward a 26 
unique compositional state, while the same drift is absent in individuals who perform worse on a 27 
number of validated health measures. The identified healthy aging pattern is characterized by an 28 
overall depletion of core genera found across most humans - primarily a depletion in the nearly 29 
ubiquitous genus Bacteroides. Consistently, retaining a high Bacteroides dominance into 30 
extreme age, or, equivalently, having a low gut microbiome uniqueness score, predicts decreased 31 
survival in a four-year follow-up. Our comprehensive analysis identifies the gut microbiome as a 32 
novel component of healthy aging, with important implications for the world’s growing older 33 
population. 34 
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Introduction 44 
The human gut harbors a diverse microbial ecosystem that has increasingly been shown to play 45 
an important role in host health1–3. Despite considerable progress in our understanding of the gut 46 
microbiome, very little is known about how it changes with age and how these changes interact 47 
with host physiology. Furthermore, there is no consensus on whether or not age-associated 48 
changes in the gut microbiome are related to the health state of the host. Importantly, 49 
identification of aging patterns within the gut microbiome could have major clinical implications 50 
for both monitoring and modifying gut microbiome health throughout life. 51 

Several studies conducted on centenarian populations provided potential insight into gut 52 
microbial trajectories associated with aging. Biagi et al.4 demonstrated that gut microbiomes of 53 
centenarians (≤104 years of age) and supercentenarians (104+ years) show a depletion in core 54 
abundant taxa (Bacteroides, Roseburia and Faecalibacterium, among others), complemented by 55 
an increase in the prevalence of rare taxa. Similar findings have since been reported in other 56 
centenarian populations across the world, such as in Sardinian, Chinese and Korean centenarians, 57 
relative to healthy, younger controls5–7. Some studies have also reported higher α-diversity in 58 
centenarians compared to younger individuals6–8, suggesting that the gut microbiome continues 59 
to develop within its host even in the latest decades of human life. 60 

Gut microbial associations reported in centenarians often contradict findings reported in 61 
younger elderly populations. In particular, studies on the ELDERMET cohort (i.e. the most 62 
extensively studied cohort of older persons with gut microbiome data to date) reported an 63 
increased dominance of the core genera Bacteroides, Alistipes and Parabacteroides in those 65+ 64 
years old compared to healthy, younger controls9. Studies on older long-term care residents 65 
further demonstrated a gradual change in microbiome composition associated with duration of 66 
stay in the care facility, which has been attributed to changes in diet and lifestyle10,11. 67 
Collectively, these and other studies12,13 provide a view of the human gut microbiome as 68 
relatively stable up until old age, at which point gradual compositional shifts occur that are 69 
driven by dietary and lifestyle changes, as well as declining health. 70 

The often-contradictory findings in elderly and centenarian populations indicate there 71 
may exist multiple gut microbiome patterns of aging, some of which reflect better health and life 72 
expectancy outcomes than others. Although recent analyses have demonstrated a link between 73 
gut microbiome composition and long-term health outcomes 3,14, the scarcity of elderly cohorts 74 
with longitudinal follow-up data, the lack of detailed molecular phenotyping and health metrics, 75 
and the relatively small sample sizes of existing studies on aging limit our understanding of gut 76 
microbial changes seen across the human lifespan. In the present study, we overcome these 77 
limitations and present an analysis of the gut microbiome and phenotypic data from 4582 78 
individuals spanning 18 to 98 years of age, with longitudinal follow-up data in an older cohort 79 
that allowed us to track survival outcomes. 80 
 81 
Results  82 
We studied two distinct cohorts: a deeply phenotyped population of individuals who self-83 
enrolled in a scientific wellness company (the ‘Arivale cohort’, ages 18-87) (Table S1) and the 84 
Osteoporotic Fractures in Men (MrOS) cohort (ages 78-98)15–17 (Table S2)(Fig. 1). These 85 
cohorts further subdivide into two groups each. The MrOS cohort separates into a discovery 86 
cohort (N=599) and a validation cohort (N=308), because stool samples from this population 87 
were processed in two separate batches several years apart. The Arivale cohort separates into 88 
Group A (N=2539) and Group B (N=1114), where the distinguishing factor is the use of 89 
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different vendors for the collection and processing of stool samples (see Methods). We began by 90 
analyzing baseline data from the Arivale cohort to identify gut microbial aging patterns across 91 
most of the adult human lifespan, and investigate how these patterns correspond to host 92 
physiology. We then extended our analysis to the MrOS cohort, where we had detailed health 93 
metrics and follow-up data on mortality, to evaluate how the patterns identified within the 94 
Arivale cohort correspond to health and survival in the latter decades of human life. 95 
 96 
A gut microbiome aging pattern that spans much of the adult lifespan  97 
To characterize gut microbial patterns associated with aging, we initially performed a β-diversity 98 
analysis comparing all available baseline microbiome samples from a heterogenous, and 99 
relatively healthy Arivale population (Fig.1 and Table S1). Our analysis involved extracting the 100 
minimum value for each individual from a calculated Bray-Curtis dissimilarity matrix. This 101 
value reflects how dissimilar an individual is from their nearest neighbor, given all other gut 102 
microbiome samples in the cohort. We refer to this as a measure of ‘uniqueness’: the higher the 103 
value, the more distinct the gut microbiome is from everyone else’s in the studied population. 104 
Arivale participants showed initial drift toward an increasingly unique gut microbiome 105 
composition starting between 40-50 years of age, and this continued to increase with every 106 
passing decade (linear models adjusted for age, body mass index (BMI), sex and Shannon 107 
diversity) (Fig. 2A). We replicated our analysis using additional β-diversity metrics. Uniqueness 108 
based on Weighted UniFrac demonstrated a similar positive association with age across both 109 
vendors, while Jaccard and Unweighted UniFrac metrics resulted in either a weaker association 110 
(vendor B) or no association (vendor A) with age (Fig. 2B). These results indicate that the 111 
observed age-related increase in uniqueness is likely not a result of the loss or acquisition of 112 
microbial genera in older individuals, which would increase unweighted β-diversity and Jaccard 113 
distance measures, but rather is driven more by shifts in relative abundance of microbes already 114 
present in the ecosystem. 115 

To further characterize the observed gut microbiome aging pattern, and understand how it 116 
is reflected in host physiology and health, we combined data from both Arivale vendors (Fig. 117 
2C) and tested the correspondence between Bray-Curtis uniqueness and a wide variety of clinical 118 
laboratory tests, demographic information, and self-reported lifestyle/health measures, adjusting 119 
for microbiome vendor (Fig. 2D, Table S3). Of all the factors tested, age demonstrated the 120 
strongest association with gut microbial uniqueness. Several other factors were significantly 121 
associated with uniqueness, but many of them were no longer significant after adjusting for age. 122 
In fact, after adjusting for age, essentially only lipid markers and BMI remained significantly 123 
associated with gut microbial uniqueness, with the direction of association indicating healthier 124 
metabolic and lipid profiles in individuals with more unique gut microbiomes: e.g. lower BMI, 125 
lower n6/n3 fatty acid ratio, higher high-density lipoprotein (HDL) cholesterol, lower low 126 
density lipoprotein (LDL) cholesterol, higher vitamin D, and lower triglycerides in individuals 127 
with more unique microbiomes (Fig. 2D). Interestingly, self-reported dietary measures showed 128 
no association with our gut microbiome uniqueness score, suggesting that the identified gut 129 
microbial aging pattern is not driven by self-reported differences in dietary habits. 130 

Women have an extended average lifespan compared to men 18, with previous studies 131 
also indicating varying aging patterns across sex 19,20. To evaluate whether the observed 132 
increased uniqueness with age is sex-dependent, we investigated the association of age with 133 
Bray-Curtis uniqueness independently in men and women, adjusting for age, BMI, Shannon 134 
diversity and microbiome vendor. Although both sexes showed a significant positive association 135 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.02.26.966747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.966747
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 
 

between age and our gut microbiome uniqueness score, women showed a nearly 50% greater β-136 
coefficient compared to men (adj. β (95%CI): men= 0.0088 (0.006, 0.012), women= 0.013 137 
(0.010, 0.015), interaction term P-Value= 0.011), indicating that women’s microbiomes become 138 
more unique with age at a significantly faster rate. 139 
 140 
Reflection of gut microbial uniqueness in the host metabolome  141 
Our research group has previously demonstrated a strong reflection of gut microbiome 142 
community structure in the human plasma metabolome21. In order to better understand how host 143 
physiology reflects the increasingly unique composition of the gut microbiome seen with aging, 144 
and to gain potential mechanistic insight into the functional changes that take place in the 145 
microbiota, we regressed our uniqueness measure against each of the 652 plasma metabolites 146 
measured in the Arivale cohort, adjusting for age, age squared, sex, a sex*age interaction term, 147 
BMI, vendor and Shannon diversity. A total of eight metabolites, all microbial in origin, 148 
remained significantly associated with uniqueness after multiple hypothesis correction 149 
(Bonferroni P-Value<0.05) (Fig. 3A&B). These metabolites fell primarily into one of two 150 
classes: phenylalanine/tyrosine metabolites (phenylacetylglutamine, p-cresol glucuronide, p-151 
cresol sulfate) and tryptophan metabolites (3-indoxyl sulfate, 6-hydroxyindole sulfate and 152 
indoleacetate). Interestingly, significant changes in both tryptophan and phenylalanine pathways 153 
have been previously reported in centenarians relative to younger controls, with centenarians 154 
showing greater activation of these pathways in the gut microbiome 22,23. The previously 155 
identified longevity biomarker, phenylacetylglutamine 23,  demonstrated the strongest 156 
correspondence with gut microbial uniqueness in our analysis, explaining 8.4% of the variance 157 
(adj. β (95%CI) = 0.015 (0.012,0.018), P-Value= 3.65e-20) (Fig. 3C, Table S4). These findings 158 
indicate that the observed gut microbial drift towards a more unique compositional state seen 159 
with age is characterized by alterations in microbial amino acid metabolism, which may serve as 160 
a useful biomarker for gut microbiome shifts across the human lifespan. 161 
 162 
Gut microbial pattern of healthy aging in latest decades of human life  163 
To better understand the long-term health implications of the identified aging dynamics of the 164 
gut microbiome, we extended our analysis into a separate cohort of older men with paired health 165 
and longitudinal follow-up data (the MrOS cohort). The MrOS study recruited older male 166 
participants across the United States. At the fourth follow-up visit, a subset of the participants 167 
provided stool samples for 16S rRNA sequencing of their gut microbiome (discovery cohort 168 
N=599, validation cohort N=308)17. All participants who provided a stool sample exceeded 78 169 
years of age at the time of sampling, allowing us to gain insight into the relationship between the 170 
gut microbiome and host health at the latest decades of human life (Fig.1 & Table S2). Once 171 
again, we calculated a uniqueness score for each individual using the Bray-Curtis dissimilarity 172 
metric. Projecting MrOS microbiome data onto the first two Principal Coordinates revealed that 173 
samples with the highest Bray-Curtis uniqueness tended to fall away from common microbiome 174 
profiles, i.e. Bacteroides or Prevotella dominated ecosystems (Fig. 4A-C). In fact, the relative 175 
abundance of Bacteroides showed a strong negative association with gut microbiome uniqueness 176 
(Spearman Rho=0.73, Fig. 4D). The association was even more pronounced when the sum of 177 
both Bacteroides and Prevotella abundances for each individual was compared to gut 178 
microbiome uniqueness (Spearman Rho=0.80, Figure S1A). 179 

Consistent with our initial analysis, age showed a trending positive association with our 180 
uniqueness score in the MrOS cohort (Pearson’s r=0.075, P-Value= 0.065). Unlike the Arivale 181 
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cohort, MrOS participants were considerably more health heterogenous at time of sampling, with 182 
a large proportion of participants reporting chronic conditions (Table S2). The large health 183 
heterogeneity of MrOS participants provided an opportunity to better understand whether the 184 
observed increase in microbiome dissimilarity with age depends on host health. Hence, we re-ran 185 
the above analysis under four different stratifications based on: medication use, self-perceived 186 
health, life-space score (LSC), and walking speed. We chose these four health metrics because 187 
collectively they encompass a diverse repertoire of health in older populations (Table 1). 188 

Under all stratifications considered, we observed a stronger positive association between 189 
age and microbiome uniqueness in healthier individuals, while the association was absent 190 
altogether in individuals demonstrating worse health (Fig. 4E). We further generated a 191 
composite stratification (composite healthy), where MrOS participants had to meet at least three 192 
of the four criteria outlined above to be classified as healthy (Table 1 & Table S2). In this 193 
limited group of 133 individuals we observed an even stronger association between gut microbial 194 
uniqueness and age than under any individual stratification. We replicated the analysis on the 195 
second batch of MrOS gut microbiome samples, which were processed independently several 196 
years apart (validation cohort, N=308), demonstrating very similar results (Fig. 4E). We also ran 197 
the same analysis using Weighted UniFrac dissimilarity, and observed high level of congruence 198 
between results (Fig. S1B). In contrast, measures of α-diversity were not significantly associated 199 
with age under any stratification considered (Fig. S1B). 200 
 201 
Gut microbiome and mortality in extreme aging  202 
Next, we focused exclusively on community-dwelling individuals (i.e. excluding participants in 203 
assisted living, nursing homes, and/or who have been hospitalized in the past 12 months) from 204 
the two MrOS data sets, combined together for increased power (N=706) (Fig. 1). We performed 205 
genus-level differential abundance analysis to identify genera associated with age in healthy 206 
composite individuals (N=173) and the remainder of the cohort (N=533), separately, adjusting 207 
for batch (discovery/validation) and BMI. In healthy composite individuals, only the genus 208 
Bacteroides (adj. β (s.e.): -0.062 (0.017), P-Value=0.0006) demonstrated a significant negative 209 
association with age after multiple hypothesis correction (Fig. 5A). These findings are consistent 210 
with our gut dissimilarity analysis, where the uniting feature of unique microbiomes is the 211 
depletion of the most common and dominant genera. Consistently, there was no significant 212 
association between age and Bacteroides in participants who did not meet our health criteria (adj. 213 
β (s.e.): -0.008 (0.009), P-Value =0.37) (Fig. 5A). In contrast, individuals in worse health 214 
demonstrated a distinct gut microbiome aging pattern characterized by a decline in the genera 215 
Lachnoclostridium (adj. β (s.e.): -0.035 (0.0091), P-Value =0.0002) and the Rumminococace 216 
family genus UBA1819 (adj. β (s.e.): -0.074 (0.015), P-Value =2.57e-06) with age. These results 217 
provide further evidence for the existence of multiple gut microbiome aging patterns in the later 218 
stages of human life. 219 

Given that our findings from both β-diversity and differential abundance analysis of 220 
healthy elderly are consistent with observations previously reported in centenarians 4, we utilized 221 
longitudinal data from the MrOS cohort to investigate whether the observed gut microbiome 222 
pattern of healthy aging is predictive of mortality. We performed the analysis in two steps: 1) on 223 
all community-dwelling participants (N=706) and 2) only on community-dwelling participants in 224 
the top age tertile (85+ years of age, N=257) at time of gut microbiome sampling, because these 225 
participants were the closest to achieving extreme age in the course of the study’s follow-up 226 
period (~4 years). When focusing on all individuals in the cohort, we identified a significant 227 
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positive association between relative Bacteroides abundance and increased risk of all-cause 228 
mortality, independent of age, BMI, clinical site, self-perceived health, diagnosis of congestive 229 
heart failure, and batch in which stool samples were processed. Replicating the analysis in the 230 
oldest individuals (85+ years old) revealed a stronger association and higher Hazard Ratios 231 
compared to the whole cohort (Fig. 5B-C). Using the participants’ calculated Bray-Curtis 232 
uniqueness score yielded comparable results in 85+ year olds, where mortality risk decreased in 233 
individuals with more unique gut microbiomes independent of the same covariates. In contrast, 234 
the same association between Bray-Curtis uniqueness and mortality was not present when 235 
younger participants were included in the analysis (Fig. 5C). 236 

 237 
Discussion  238 
There is a limited understanding of how the human gut microbiome changes throughout 239 
adulthood and how these changes influence host physiology. Here, we evaluated gut microbial 240 
patterns associated with aging across 4582 individuals from two distinct study populations 241 
spanning 18-98 years of age. The major findings of our analysis were: 1) individual gut 242 
microbiomes became increasingly more unique with age, starting in mid-to-late adulthood, and 243 
this uniqueness was positively associated with known microbial metabolic markers for health 244 
and longevity; 2) the increase in microbiome uniqueness with age occurred in both males and 245 
females, but was 50% more pronounced in females; 3) in the later decades of human lifespan, 246 
healthy individuals continued to show an increasingly unique gut microbial compositional state 247 
(associated with a decline in core taxa) with age, while that pattern was absent in those in worse 248 
health; 4) in individuals approaching extreme age (85+ years old), retaining high relative 249 
Bacteroides abundance and having a low gut microbiome uniqueness score were both associated 250 
with decreased survival in the course of 4 year follow-up. These observations are strengthened 251 
by the presence of similar age-related trends in two separate cohorts, and the replication of 252 
associations with health and longevity in a validation cohort.  253 

Our findings indicate that healthy aging of the gut microbiome involves depletion of core 254 
microbes and their replacement by less common taxa, resulting in increasingly distinct 255 
microbiomes. These findings are consistent with patterns previously reported in centenarians 256 
across the world 6,7, despite the fact that dominant genera (i.e. core microbiota) often vary across 257 
cultures and geographic locations 24. Using our alternative beta-diversity approach, we provide 258 
novel insight into the aging gut microbiome that a) validates across different vendors and cohorts 259 
and b) is consistent with previous longevity research. It is quite possible that becoming 260 
increasingly dissimilar as you age is a universal characteristic, independent of the variability in 261 
core gut microbes observed across the world (e.g. Bacteroides vs. Prevotella). This would make 262 
gut microbiome uniqueness an intriguing new dimension of healthy aging, and a critical new 263 
component for personalized medicine and precision health. 264 

The reflection of gut microbial uniqueness in plasma phenylalanine/tyrosine and 265 
tryptophan microbial metabolites is consistent with our recent work showing a robust 266 
relationship between the host blood metabolome and gut microbial diversity 21. Both tryptophan 267 
and phenylalanine metabolism have been implicated in longevity 22,23,25. Phenylacetylglutamine 268 
and p-cresol sulfate demonstrated some of the strongest associations with gut microbial 269 
uniqueness, independent of age and other covariates. These same metabolites were previously 270 
proposed as biomarkers for healthy aging and longevity 23. Additional metabolites associated 271 
with our observed gut microbial pattern were dominated by indoles, which are gut microbiome 272 
degradation products of tryptophan. Indoles have been shown to increase healthspan and extend 273 
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survival in a number of animal models 26. Their most characterized mechanism of action is 274 
mediating inflammation through binding the aryl hydrocarbon receptor 27. While further studies 275 
are needed to establish a direct link between these microbial compounds and longevity in 276 
humans, the elevated levels of these metabolites in circulation in individuals whose microbiomes 277 
are more unique opens promising new leads into the role of the gut microbiome in aging. 278 

Previous studies in older populations have suggested that gut microbial composition and 279 
structure is generally stable throughout adulthood and into old age 12, at which point changes are 280 
observed and further accelerated due to adverse health events and lifestyle changes (i.e. entering 281 
long-term care facilities) 10,11,13. In sharp contrast, our findings suggest that gut microbiomes of 282 
healthy individuals continue to develop throughout aging, and that it is the lack of this 283 
development that appears to be associated with worse health and prognosis. As our 284 
understanding of the aging microbiome increases, monitoring and identifying modifiable features 285 
that may promote healthy aging and longevity will have important clinical implications for the 286 
world’s growing older population. 287 

 288 
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Health Metric Description Stratification 

Medication use 

 Medication use is associated with 
chronic diseases and comorbidities, 
and is an important modulator of the 
gut microbiome 28. High medication 
use is particularly prevalent in older 
populations, with nearly 40% of 
individuals 65+ years old reporting 
taking  ≥5 medications 29. 

High: >8, Low: ≤8 medications. This 
allowed us to generate two groups of 
participants with similar age distribution 
but very different pharmacological 
profiles (low-med: N=292; high-med: 
N=307). Despite no significant 
differences in age between these two 
groups (student’s t-test, P-Value=0.33), 
the prevalences of several diseases, 
including diabetes, chronic obstructive 
pulmonary disease, and congestive heart 
failure, were significantly higher in 
individuals reporting high number of 
medications (Table S5).  
 

Self-perceived health 

Self-perceived health has been 
previously shown to be an independent 
predictor of earlier mortality in older 
populations 30–32. 

 In the MrOS cohort, individuals chose 
one out of five possible responses 
(excellent, good, fair, poor, very poor). 
We stratified the cohort into individuals 
who reported excellent health (N=205) 
and those who reported anything less than 
excellent (N=394). 
 

Life-space Score (LSC) 

 LSC is an indicator of mobility, i.e. 
how often an individual leaves their 
room, house, or neighborhood and has 
been previously associated with risk of 
mortality in MrOS participants 33. Its 
strength as a measure lies in that it not 
only provides insight into whether an 
individual is physically capable of 
performing activities, but also whether 
that individual actually performs these 
activities 34.  

 For both the LSC and walking speed, we 
stratified the cohort into tertiles and 
defined the top tertile as the healthy group 
(High), while the bottom two tertiles were 
combined into the less healthy group 
(low).  
 
  

Walking Speed 

Walking speed is a validated measure 
used to assess functional status and 
overall health 35, and had been 
previously shown to be associated with 
executive function, and predictive of 
cognitive decline 36. 

Composite  
A composite of all 4 of the above 
measures 

 Healthy - individuals who met 3+ of the 
above criteria 

Table 1: Description of health metrics used for stratification in the MrOS cohort. 398 
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 399 

Fig. 1. Conceptual outline of study and analysis workflow. (A) Two different study 400 
populations were used: the Arivale cohort and the Osteoporotic Fractures in Men (MrOS) cohort. 401 
(B) Each of these two study populations were further subdivided into two groups; the Arivale 402 
cohort was split based on the microbiome vendor used to collect and process samples while the 403 
MrOS cohort separated into Discovery and Validation groups based on the batch in which the 404 
samples were run (discovery samples were processed in the initial batch, validation samples were 405 
processed several years later). (C) We profiled the microbiomes from these four study 406 
populations beginning with the Arivale cohort and validating our findings across the three 407 
additional populations. (D) Our analysis pipeline further explored associations between the 408 
identified gut microbial aging pattern, lifestyle factors, and host physiology in the combined 409 
Arivale cohort, as well as health metrics and mortality in the combined MrOS cohort. 410 
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 411 

 412 
Fig. 2. Associations between gut microbial uniqueness and age across the Arivale cohort. 413 
(A) Boxplots showing gut microbiome uniqueness scores calculated using the Bray-Curtis 414 
dissimilarity metric across the adult lifespan in individuals whose stool samples were collected 415 
and processed by vendor A (blue) or B (red). Asterisks indicate significant differences relative to 416 
the youngest <30 group, from a linear regression model adjusted for sex, BMI, and Shannon 417 
diversity. Box plots represent the interquartile range (25th to 75th percentile, IQR), with the 418 
middle line demarking the median; whiskers span 1.5 × IQR, points beyond this range are shown 419 
individually. (B) Spearman correlation coefficients for measures of uniqueness (β-diversity) and  420 
α-diversity with age in individuals whose stool samples were processed by vendor A or B. (C) 421 
Distribution of uniqueness calculated using the Bray-Curtis metric in each of the two vendors. 422 
(D) Percent of variance explained in Bray-Curtis uniqueness by a diverse number of 423 
demographic and lifestyle factors, as well as a subset of clinical laboratory tests. 424 
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 425 
Fig. 3. Reflection of gut microbiome uniqueness in plasma metabolites. (A) A plot of -log10 426 
p-values for each of the 652 plasma metabolites measured in the Arivale cohort, from OLS 427 
regression models predicting Bray-Curtis uniqueness adjusted for age, age squared, sex, an 428 
age*sex interaction term, BMI, Shannon diversity and microbiome vendor. Metabolites are 429 
color-coded by their super-family. All metabolites above the red line are significant after 430 
multiple-hypothesis correction (Bonferroni P<0.05). * indicates metabolites that were 431 
confidently identified on the basis of mass spectrometry data, but for which no reference 432 
standards are available to verify the identity. (B) Spearman correlation coefficients for each of 433 
the metabolites significantly associated with Bray-Curtis uniqueness after adjusting for 434 
covariates and multiple-hypothesis correction (Bonferroni P<0.05). Bars are color-coded as in 435 
A). (C) Scatter plot of Bray-Curtis Uniqueness and the strongest metabolite predictor, 436 
phenylacetylglutamine. The line shown is a y∼x regression line, and the shaded regions are 95% 437 
confidence intervals for the slope of the line. 438 
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 439 

 440 
Fig. 4. Increased dissimilarity of the gut microbiome as a function of healthy aging in the 441 
MrOS Cohort. (A-C) PCoA of the MrOS discovery cohort color-coded by (A) Bray-Curtis 442 
uniqueness, (B) relative Bacteroides abundance, and (C) relative Prevotella abundance. (D) 443 
Scatter plot demonstrating the negative association of the relative abundance of the most 444 
dominant genus Bacteroides and gut microbial uniqueness in the discovery cohort. The line 445 
shown is the y~x regression line, while the shaded region corresponds to the 95% confidence 446 
intervals for the slope of the line. (E) Correlation of Bray-Curtis uniqueness scores with age 447 
across the MrOS discovery and validation cohorts under different health stratifications. 448 
‘Excellent’ corresponds to individuals who self-reported their health to be excellent, while 449 
‘<Excellent’ incorporates all individuals who self-reported their health being anything less than 450 
excellent (good, fair, poor, or very poor).‘Composite Healthy’ refers to individuals who fell into 451 
the healthy sub-group in at least 3 of the 4 stratifications performed. LSC: Life-Space Score. 452 
 453 
 454 
 455 
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 456 
Figure 5. Association of Bacteroides abundance and survival in latter decades of human 457 
lifespan. (A) Boxplots demonstrating the relative abundance of the genus Bacteroides across 458 
tertiles of age in community-dwelling individuals identified as healthy on 3+ criteria specified 459 
(composite healthy) (n=173) and the remainder of the cohort (n=533). (B) Kaplan Meier Curve 460 
demonstrating the association between overall survival and relative Bacteroides abundance 461 
grouped into tertiles in community-dwelling MrOS participants who were 85+ years at time of 462 
sampling (N=257). (C) Unadjusted, age, clinical site and batch adjusted and multivariable 463 
adjusted Hazard Ratios (HR) of relative Bacteroides abundance and Bray-Curtis Uniqueness 464 
scores from Cox Proportional Hazard Regression models evaluating mortality risk in all 465 
community-dwelling MrOS participants and exclusively community-dwelling MrOS participants 466 
85+ years old. Multivariable models were adjusted for age, clinical site, BMI, self-perceived 467 
health, diagnosis of congestive heart failure, and batch in which stool samples were processed.  468 
Both relative Bacteroides abundance and The Bray-Curtis uniqueness measures were scaled and 469 
centered prior to mortality analysis. Significant HRs are bolded and colored in red (P≤0.05). 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
 482 
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 507 
Methods: 508 
Cohorts: The Arivale cohort consists of individuals over 18 years of age who between 2015 and 509 
2019 self-enrolled in a now closed scientific wellness company. The cohort has been described 510 
in detail previously 15. For this study, only baseline measurements were considered for each 511 
participant. The only inclusion criterion was the availability of gut microbiome data in order to 512 
maximize the number of gut microbiomes to which each sample is compared. Demographic 513 
information on the cohort is provided in Table S1. 514 
The MrOS study is an ongoing prospective study of close to 6000 men recruited across six 515 
clinical U.S. sites. The cohort, recruitment criteria, and stool sample collections have been 516 
previously described in detail 16,17. Briefly, during the fourth follow-up visit of the original study, 517 
a subset of participants across all six clinics was asked if they would consent to have their stool 518 
sampled for microbiome analysis. Participants who agreed were given the OMNIgene-GUT 519 
stool/feces collection kit (OMR-200, DNA Genotek, Ottawa, Canada) and collected the fecal 520 
sample at their homes. Demographic information on MrOS participants is provided in Table S2. 521 
In the initial uniqueness analysis, all participants with available high-quality microbiome data 522 
were used for analysis (N=907). Subsequent differential abundance analysis focused exclusively 523 
on community-dwelling individuals (N=706) (excluding individuals in assisted living, nursing 524 
homes and who have been hospitalized in the past 12 months). Finally, survival analysis was 525 
conducted on all community dwelling individuals as well as specifically on community dwelling 526 
individuals in the latest stages of aging (85+ years old, N=257). The number of deaths in the 527 
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whole community dwelling group and in 85+ year old community dwelling group was 66 and 528 
41, respectively. 529 

Microbiome Analysis: 530 
Arivale cohort: Analysis of gut microbiome data from the Arivale cohort has been described in 531 
detail elsewhere 21,37. Briefly, independent of the vendor used, stool samples were collected at 532 
the participants’ homes using DNA collection kits with a proprietary chemical DNA stabilizer to 533 
maintain DNA integrity at ambient temperatures following collection. Gut microbiome 534 
sequencing data in the form of FASTQ files were provided on the basis of either the 300-bp 535 
paired-end MiSeq profiling of the 16S V3 + V4 region (DNAgenotek, vendor A) or 250-bp 536 
paired-end MiSeq profiling of the 16S V4 region (Second Genome, vendor B). Further analysis 537 
was performed using the denoise workflow from mbtools (https://github.com/gibbons-538 
lab/mbtools) that wraps DADA2. In summary, we first trained DADA2 38 error models 539 
separately for each sequencing run and used those to obtain sequence variants for each sample. 540 
This was followed by de novo chimera removal which removed ~17% of all reads as chimeric 541 
and resulted in about 89,000 final sequence variants across all samples. Taxonomy assignment 542 
was performed using the RDP classifier with the SILVA database (version 132). Here 99% of the 543 
reads could be classified on the family level, 89% on the genus level and 32% on the species 544 
level. Species level taxonomy was identified by exact alignment to the SILVA reference 545 
sequences. Sequence variants were aligned to each other using DECIPHER 39 and the multiple 546 
sequence alignment was trimmed by removing each position that consisted of more than 50% 547 
gaps. The resulting core alignment had a length of 420 base pairs and was used to reconstruct a 548 
phylogenetic tree using FastTree 40. Downstream gut microbiome data analysis was conducted 549 
using the Phyloseq Package 41. In two separate analyses, gut microbiome samples were rarefied 550 
to 13703 (vendor A, DNAGenotek) and 39810 (Vendor B, Second Genome) reads, the minimum 551 
number of reads per sample for each vendor. For uniqueness analysis, the Bray-Curtis 42, 552 
Unweighted and Weighted UniFrac 43, and Jaccard matrices were calculated for all samples 553 
within each vendor using the rarefied Genus table. The minimum value for each row, 554 
corresponding to the dissimilarity of each sample to their nearest neighbor, was then extracted 555 
from the matrix and used for downstream analysis.  556 
MrOS cohort: Stool samples were processed at the Alkek Center for Metagenomics and 557 
Microbiome Research (CMMR) at Baylor College of Medicine using their custom analytic 558 
pipeline in two separate batches (Discovery N=599, Validation N=320). 16Sv4 rDNA amplicon 559 
sequences were clustered into Operational Taxonomic Units (OTUs) at a similarity cutoff value 560 
of 97% using the UPARSE algorithm 44. OTUs were then mapped to an optimized version of the 561 
SILVA Database 45 containing only the 16S V4 region to determine taxonomies. Abundances 562 
were recovered by mapping the demultiplexed reads to the UPARSE OTUs 44. Preliminary 563 
microbiome data analysis was conducted using the Phyloseq Package. For α-diversity and 564 
uniqueness analysis, OTUs were rarefied to 9424 reads, which is the minimum number of 565 
OTUs/sample in the discovery cohort. The same rarefaction number (9424) was used in the 566 
Validation cohort (N=320). A total of 12 samples had less reads than the specified cut-off, and 567 
hence were excluded from the analysis (Validation N=308). α-diversity measures were 568 
calculated at the OTU level using the Phyloseq package 41. For ß-diversity analysis, OTUs were 569 
collapsed into genera. Uniqueness was calculated as described for the Arivale cohort. The 570 
calculated uniqueness measure for each participant was then used for downstream analysis. As 571 
part of our analytical pipeline, we also performed differential abundance analysis assessing the 572 
relationship of individual genera with age in individuals defined as healthy and unhealthy, 573 
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separately. Analysis was performed in R (version 3.44) using beta-binomial regression through 574 
the Corncob package (version 1.0) 46. Models were adjusted for BMI, and batch 575 
(discovery/validation). Type 1 error was controlled using the Bonferroni method (P<0.1). 576 
Plasma Metabolomics & Clinical Laboratory Tests: 577 
Blood draws for all assays were performed by trained phlebotomists at LabCorp or Quest service 578 
centers. For the 24-hour period leading up to the blood draw, Arivale participants were required 579 
to avoid alcohol, vigorous exercise, aspartame and monosodium glutamate, and to begin fasting 580 
12 hours in advance. Plasma metabolomics assays were conducted on the samples by Metabolon, 581 
Inc. Sample handling, quality control and data extraction, along with biochemical identification, 582 
data curation, quantification and data normalizations have been previously described 37. For 583 
analysis, the raw metabolomics data were median scaled within each batch, such that the median 584 
value for each metabolite was one. To adjust for possible batch effects, further normalization 585 
across batches was performed by dividing the median-scaled value of each metabolite by the 586 
corresponding average value for the same metabolite in quality control samples of the same 587 
batch. In this study, we analyzed participants’ baseline plasma metabolomics data. A 10% 588 
missing value threshold was set, which was passed by 652 metabolites. Missing values for 589 
metabolites were imputed to be the minimum observed value for that metabolite. A total of 1476 590 
Arivale participants had paired gut microbiome-plasma metabolome data. Values for each 591 
metabolite were log transformed prior to analysis. Clinical laboratory tests were conducted by 592 
either Quest or LabCorp. A 10% missing value threshold was set for each clinical laboratory test 593 
used in the analysis. All but 104 participants (N=3549) had paired clinical laboratory-gut 594 
microbiome data. Both metabolomics and clinical laboratory tests were scaled and centered prior 595 
to analysis and only baseline measures for each individual were used. 596 
Lifestyle/Health Questionnaires in the Arivale Cohort: 597 
Data on lifestyle, diet and health were obtained through self-administered questionnaires 598 
completed by Arivale participants during their initial assessment. For reporting antibiotic use, 599 
participants chose from three possible responses (‘not in the past year’, ‘in the past year’ and ‘in 600 
the past three months’) which were recoded into ordinal variables 0, 1 and 2 respectively. 601 
Participants chose one of several possible frequencies in response to how often they experience 602 
diarrhea, that were recoded as follows: ‘infrequently/never’ = 0, ‘once a week or less’ = 1, ‘more 603 
than once a week’ = 2 and ‘daily’ = 2. Similarly, alcohol use (no. of drinks per day) was reported 604 
on the following scale which was recoded into corresponding ordinal variables: (0) ‘I do not 605 
drink', (1) ‘1-2 drinks': (2) ‘3-4 drinks': (3) ‘5-6 drinks': (4) ‘More than 6 drinks'. Current tobacco 606 
use and prescription medication were both modelled as binary variables (yes/no). Finally, for 607 
dietary variables (fruit, vegetables, grains, and sweets intake), participants chose one of the 608 
following responses, which were then recoded to the corresponding ordinal variables: (grains): 609 
(0) ‘Zero/less than 1 per day': (1) ‘1-2': (2) ‘3-4': (3) ‘5-6': and (4) ‘7 or more'. (fruits, 610 
vegetables): (0) ‘Zero/less than 1 per day':'(1) ‘1': (2) ‘2-3': (3) ‘4-5': (4) ‘6 or more'. 611 
(chocolates/sweets): (0) ‘Less than once per month': (1) ‘1-3 times per month': (2) ‘Once per 612 
week': '(3) ‘2-4 times per week': (4) 5-6 times per week': (5) Once per day': (6) 2-3 times per 613 
day': (6) ‘4-5 times per day': (6) ‘6+ times per day'. Sleep was reported as the average amount of 614 
sleep you get a day on a three-point scale: (0) ‘Less than 6 hours’: (1) ‘7 to 9 hours': (2) ‘More 615 
than 9 hours’. As the Arivale cohort consists of self-enrolled participants, the response rates for 616 
different questionnaires vary. The number of missing values for each response is reported in 617 
Table S2. 618 
Health Measures in the MrOS Cohort: 619 
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We utilized four different health measures that were collected on MrOS participants during their 620 
fourth follow-up visit. Medication use, self-perceived health, and the Life-Space score (LSC) 621 
were all self-reported. Self-perceived health captured each individual’s rating of their own health 622 
compared to other individuals their own age. The implementation of the LSC in the MrOS cohort 623 
has been described in detail previously 33. Briefly, LSC can range from 0 (restricted to one’s 624 
bedroom) to 120 (traveled outside one’s town daily without assistance). We defined healthy 625 
individuals as those in the top tertile of the LSC cohort distribution. This corresponded to an 626 
LSC value of ≥96. Walking speed was calculated based on the time it took each participant to 627 
walk 6 meters (m/s). Like with the LSC, we defined healthy individuals based on walking speed 628 
if their speed was in the top tertile (≥1.17). A total of 7 MrOS participants did not have available 629 
walking speed data. This is due to either the participants not coming to the clinic, or not being 630 
able to attempt the test. These individuals were classified in the walking speed low group in our 631 
analysis. 632 
Statistical Analysis: 633 
Depending on the statistical approach, analysis was conducted using either R (v 3.6) or Python (v 634 
3.7). The relationship between the calculated uniqueness measure and age in the Arivale cohort 635 
was modeled using Ordinary Least Square (OLS) linear regression (Python) where square root 636 
transformed Bray-Curtis uniqueness was modeled as the dependent variable and each age decade 637 
was compared to the youngest reference group (<30 years), adjusting for sex, BMI, and Shannon 638 
diversity. We chose to adjust for Shannon diversity because, in our analysis, it was associated 639 
with both age and microbiome uniqueness (higher alpha diversity makes you more likely to be 640 
unique). We wanted to assess the significance of our dissimilarity pattern independent of changes 641 
in alpha diversity seen with age and previously reported in literature. The same adjustment was 642 
not made for MrOS participants, since Shannon diversity showed no association with age in that 643 
cohort. Pearson/Spearman correlations were also used to assess the strength of the relationship 644 
between different measures of ß- and α-diversity and age across all cohorts using the Python 645 
statistical functions package (scipy.stats). When assessing the relationship between clinical, 646 
lifestyle, and demographic variables with gut microbial uniqueness, Bray-Curtis uniqueness 647 
values greater or less than 3 standard deviations from the mean were removed. OLS linear 648 
regression was then used to assess the individual relationship between each factor and square 649 
root transformed Bray-Curtis gut microbial uniqueness, with microbiome vendor included as a 650 
covariate. Percent variance explained by each factor was calculated by taking the percent 651 
variance explained by the complete OLS model (variable of interest and microbiome vendor) and 652 
subtracting the percent variance explained by microbiome vendor alone. The same analysis was 653 
then repeated with age included as a covariate (age-adjusted models). To investigate potential 654 
effect modification of sex on the identified gut microbiome aging pattern, an OLS model was 655 
generated with a sex*age interaction term predicting square root transformed Bray-Curtis 656 
uniqueness, adjusted for sex, age, BMI, microbiome vendor and Shannon diversity. Sex-specific 657 
ß-coefficients were estimated by first stratifying the cohort by sex and then fitting OLS models 658 
for men and women separately, adjusting for the same covariates as the combined model. Age 659 
was scaled and centered prior to this analysis. When investigating the relationship between 660 
plasma metabolite concentrations and gut microbial uniqueness, each metabolite was log 661 
transformed and subsequently scaled and centered. The square root transformed Bray-Curtis 662 
uniqueness score was then regressed against each metabolite individually, adjusting for 663 
microbiome vendor, sex, age, age2, a sex*age interaction term, BMI, and Shannon diversity 664 
using OLS regression. In each instance where multiple hypotheses were tested, type I error was 665 
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controlled for using the Bonferroni method (P<0.05). In the MrOS Cohort, correlation between 666 
Bray-Curtis Uniqueness and age was calculated using the Python statistical functions package 667 
(scipy.stats) using the square root transformed uniqueness score. Mortality analysis was 668 
conducted in R using the package survival (v 2.44-1.1). Relative Bacteroides abundance (after 669 
rarefaction) and uniqueness scores were scaled and centered prior to survival analysis. Cox-670 
proportional hazard regression models were generated assessing the relationship between 671 
survival and Relative Bacteroides abundance or Bray-Curtis uniqueness independently, adjusting 672 
for clinical site, batch (discovery/validation) and age, and adjusting for clinical site, age, BMI, 673 
self-perceived health (excellent, good, <good), diagnosis of congestive heart failure, and batch in 674 
which stool samples were processed (discovery/validation). 675 
 676 
 677 
 678 
 679 
 680 

Supplementary Information: 681 

Figure S1 682 

Tables S1-S5 683 
 684 

 685 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2020. ; https://doi.org/10.1101/2020.02.26.966747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.966747
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 
 

Fig. S1. Associations between age and gut microbiome measures across health 686 
stratifications in the MrOS cohort. (A) Scatter plot demonstrating the negative association of 687 
the relative abundance of the sum of Bacteroides+Prevotella and gut microbial uniqueness. The 688 
line shown is the y~x regression line, while the shaded region corresponds to the 95% confidence 689 
intervals for the slope of the line. (B) Plots demonstrating the strength of correlation between age 690 
and gut microbiome measures. The blue/red panel corresponds to the calculated Weighted 691 
UniFrac (ß-diversity) uniqueness score, while the grey/green and grey/yellow panels correspond 692 
to Shannon diversity and Observed species (α-diversity measures), respectively. Significant 693 
correlations are indicated with pound signs and asterisks. 694 

 695 
 696 
 697 
 698 
 699 
 700 
 701 
 702 
 703 
 704 
 705 
  Vendor A (N=2539) Vendor B (N=1114) P-Value 
Mean age (range) 48.4 (18-87) 48.3 (19-82) NS 
Mean BMI (s.d.) 27.1 (5.9) 27.3 (6.1) NS 
Sex (% female) 58.60% 60.90% NS 
Non-white (%) 20.40% 22.00% NS 
Mean HDL (mg dl−1) (s.d.) 61.8 (18.8) 61.7 (18.4) NS 
Mean LDL (mg dl−1) (s.d.) 114.0 (33.4) 114.0 (34.7) NS 
Mean blood triglycerides (mg 
dl−1) (s.d.) 

104.9 (59.6) 105.3 (58.0) 
NS 

Median Shannon diversity [IQR] 4.34 [4.04-4.60] 4.31 [3.99-4.57] 0.032 
Median Observed OTUs [IQR] 276 [217-247] 287.5 [226-371] 4.60E-05 
Mean Bray-Curtis uniqueness 
(s.d.) 

0.24 (0.06) 0.26 (0.07) 
3.94E-08 

Table S1. Arivale cohort characteristics stratified by microbiome vendor 706 

Statistical tests used to compare groups are as follows: independent samples t-tests were used for 707 
comparing age, body mass index (BMI), high density lipoprotein (HDL), low density lipoprotein 708 
(LDL), blood triglycerides and Bray-Curtis Uniqueness; nonparametric Mann–Whitney U tests 709 
were used to compare Shannon diversity and Observed OTUs; χ2 tests were used to compare sex 710 
(percentage female) and race (percentage non-white). P-Values <0.05 are colored in red. 711 
 712 
 713 
 714 
 715 
 716 
 717 
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 718 
 719 
 720 
 721 
 722 
 723 
 724 
 725 
 726 
 727 
 728 
 729 
 730 
 731 
 732 
 733 
 734 
 735 
 736 
 737 

  
Composite Healthy 

(n=133) 
Rest of Cohort 

(n=466) 
Whole Cohort 

(N=599) P-Value 
Median age (s.d.)) 83.5 (3.6) 84.4 (4.2) 84.2 (4.1) 0.013 

Mean BMI (s.d.) 26.6 (3.6) 27.1 (3.8) 27.0 (3.8) 0.17 

Hispanic (%) 3.8 1.5 2.0 0.15 
Mean Shannon diversity 
(s.d.) 

3.6 (0.6) 3.5 (0.6) 3.5 (0.6) 0.58 

Mean Observed Species 
(s.d) 

161.0 (50.7) 155.6 (53.1) 156.8 (52.5) 0.29 

Diabetes (%) 6.0 17.8 15.2 0.001 
Congestive heart failure 
(%) 

0.0 10.5 8.2 <0.001 

Hypertension/high blood 
pressure (%) 

41.4 56.7 53.3 0.003 

COPD (%) 6.0 12.0 10.7 0.069 

Depression (%) 8.3 9.9 9.5 0.70 

Table S2. MrOS discovery cohort characteristics stratified into composite healthy and 738 
remainder of cohort 739 

Statistical tests used to compare groups are as follows: independent samples t-tests were used for 740 
comparing age, body mass index (BMI), Shannon diversity and Observed Species; χ2 or Fisher’s 741 
exact (if assumptions of χ2 were not met) tests were used to compare ethnicity (percentage 742 
Hispanic), and prevalence of each of the specified diseases. P-values <0.05 are colored in red. 743 
 744 
 745 
 746 
 747 
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 748 
 749 
 750 
 751 
 752 
 753 
 754 
 755 
 756 
 757 
 758 
 759 
 760 
 761 
 762 
 763 
 764 
 765 
 766 
 767 

Analyte P-Value r_squared B-coefficient Missing 
Age adj. B-
coefficient 

Age adj. P-
Value 

Age 5.89E-33 3.85901529 0.00093261 0 NA NA 

Prescription Med 0.00017481 1.53219831 0.01510618 914 0.00341449 0.08545254 

HDL 3.03E-08 0.8659935 0.00549509 104 0.003964398 5.47E-05 

n6/n3 3.66E-08 0.855769 -0.0054647 104 -0.003148386 0.00156995 

Vitamin D 1.08E-07 0.79702949 0.00527528 104 0.003159677 0.00144512 

Alcohol 1.36E-05 0.5608151 -0.0070819 3349 -0.002982965 0.0028601 

Homocysteine 0.00014395 0.4087152 0.00377064 104 0.001589201 0.10941824 

BMI 0.00044766 0.36457364 -0.0005975 260 -0.003869322 0.00010072 

Triglycerides 0.00077075 0.32005925 -0.0033549 104 -0.004164096 1.97E-05 

Diarrhea 0.00238587 0.26867461 -0.0040083 3415 -0.001701617 0.08690565 

HbA1c 0.00715616 0.204807 0.00272545 104 6.97E-05 0.94455438 

Race(ref.white) 0.01700183 0.16061072 0.0058388 88 0.000687553 0.48477659 

Antibiotics 0.05402505 0.14773123 0.00642737 2500 0.001844306 0.10335017 

Sex 0.02355609 0.14101656 0.00452064 0 0.00236889 0.01379305 

Sweets 0.27161453 0.13414917 -0.0012896 902 -4.21E-05 0.98258201 

ALAT 0.04087102 0.11844347 -0.0020499 104 -0.002165898 0.02620547 

CRP 0.04604621 0.11274027 -0.0019787 104 -0.001966477 0.04354322 

LDL 0.04967172 0.10913342 -0.0019505 104 -0.003130326 0.00137829 

Glucose 0.10416215 0.07481646 0.00163161 104 -0.000440919 0.6562693 

Tobacco 0.11771405 0.07460265 -0.0077207 3264 -0.00115745 0.2504751 

Globulin 0.13060992 0.06475052 -0.0015033 104 -0.000324745 0.74022842 

ALP 0.18418122 0.0499728 0.00133152 104 -0.000589978 0.55024706 

GGT 0.25345563 0.03695739 -0.0011321 104 -0.0023493 0.01643053 

Grains 0.32021289 0.029105 -0.0012634 3379 -0.000165682 0.86721005 
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Fruits 0.34161948 0.02630667 0.00113363 3422 -0.000172467 0.86142995 

Insulin 0.48819587 0.0136181 -0.0006939 104 -0.001210903 0.21445978 

Vegetables 0.84610634 0.0010959 0.00022377 3422 -0.000193127 0.84450268 

Sodium 0.89643796 0.0004802 0.00012949 104 -0.000934367 0.33958969 

Sleep 0.93138998 0.000316 0.00021369 2335 0.000427359 0.71350207 

HOMA-IR 0.95318368 9.77E-05 -5.85E-05 104 -0.000840639 0.38949581 

Creatinine 0.98900622 5.38E-06 -1.37E-05 104 -0.000570523 0.55888158 
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Table S3. Associations between Bray-Curtis gut microbiome uniqueness and clinical, 768 
demographic, and diet/lifestyle/health measures. ‘P-Value’ corresponds to the unadjusted P-769 
Value of the ß-coefficient (B-Coefficient column) for each analyte from an OLS model adjusted 770 
for gut microbiome vendor. ‘r_squared’ reflects the percent of variance explained beyond 771 
microbiome vendor for each analyte independently. ‘Missing’ shows the number of missing 772 
observations for each analyte. ‘Age adj. B-coefficient’ and ‘Age adj. P-value’ correspond to the 773 
ß-coefficient and P-Value for each analyte adjusting for gut microbiome vendor and age. Values 774 
highlighted in red are statistically significant after multiple-hypothesis correction (Bonferroni P-775 
Value<0.05). 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 

 797 
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 798 

 799 

 800 

 801 

Metabolite P-Value 
Corrected P-
Value Adj. B-coefficient 

phenylacetylglutamine 3.65E-20 2.38E-17 0.015774767 

p-cresol glucuronide* 6.76E-13 4.40E-10 0.011978401 

6-hydroxyindole sulfate 7.06E-09 4.60E-06 0.009597508 

3-indoxyl sulfate 5.24E-07 0.00034152 0.008269926 

lithocholate sulfate 7.39E-07 0.00048191 0.008153816 

p-cresol sulfate 5.06E-06 0.00329597 0.007949108 

indoleacetate 9.55E-06 0.00622582 0.007363627 

taurolithocholate 3-sulfate 6.67E-05 0.04347711 0.006750892 

trimethylamine N-oxide 8.02E-05 0.0522833 0.006676801 

glycodeoxycholate 3-sulfate 0.00011043 0.07199921 0.006384711 

1,5-anhydroglucitol (1,5-AG) 0.00019356 0.12620424 -0.006192382 

biliverdin 0.00026726 0.17425604 -0.006295182 

carotene diol (1) 0.00048694 0.3174862 -0.006178362 

4-ethylcatechol sulfate 0.00059272 0.38645107 0.005838135 

threonate 0.00095377 0.6218559 -0.005560642 

dodecanedioate (C12-DC) 0.00121002 0.78893024 0.005391288 

N-acetylputrescine 0.00448236 1 0.004753617 

carotene diol (3) 0.00272636 1 -0.005152625 

ergothioneine 0.00708238 1 -0.004510327 

androstenediol (3alpha, 17alpha) monosulfate (2) 0.00935419 1 -0.004964594 

3-hydroxy-2-ethylpropionate 0.00904741 1 0.004420961 

4-ethylphenylsulfate 0.00586104 1 0.004664238 

propionylglycine 0.00191267 1 0.005169723 

isobutyrylcarnitine (C4) 0.00383686 1 0.004969195 

tartronate (hydroxymalonate) 0.00388 1 -0.004950944 

cys-gly, oxidized 0.00874903 1 0.004322096 

4-acetamidobutanoate 0.0028892 1 0.00512429 

bilirubin (Z,Z) 0.00233088 1 -0.005203709 

cortisol 0.00512227 1 0.004670237 

5-methylthioadenosine (MTA) 0.00432121 1 0.00487853 

androstenediol (3beta,17beta) disulfate (2) 0.0078715 1 -0.005096967 

2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA)* 0.00233228 1 0.005882396 

Table S4 Associations between Bray-Curtis gut microbiome uniqueness and plasma 802 
metabolites. Only metabolites with P-value<0.01 are shown. ‘P-Value’ corresponds to the 803 
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covariate adjusted P-value of the ß-coefficient (Adj. B-coefficient). ‘Corrected P-Value’ 804 
corresponds to the Bonferroni corrected P-values. Metabolites significantly associated with 805 
Bray-Curtis uniqueness after adjusting for covariates and multiple hypothesis correction are 806 
highlighted in red. * indicates metabolites that were confidently identified on the basis of mass 807 
spectrometry data, but for which no reference standards are available to verify the identity. 808 

 809 
 810 
 811 
 812 
  >8 Meds (N=307) ≤8 Meds (N=292) P-Value 
Median age (s.d.)) 84.1 (4.0) 84.4 (4.2) 0.33 
Mean BMI (s.d.) 27.4 (3.9) 26.6 (3.7) 0.015 
Hispanic (%) 2.0 2.1 0.84 
Mean Shannon diversity (s.d.) 3.5 (0.6) 3.6 (0.6) 0.021 
Mean Observed Species (s.d) 150.4 (50.8) 163.5 (53.6) 0.002 
Diabetes (%) 21.5 8.6 <0.001 
Congestive heart failure (%) 13.4 2.7 <0.001 
Hypertension/high blood pressure 
(%) 

62.5 43.5 
<0.001 

COPD (%) 16.6 4.5 <0.001 
Depression (%) 11.1 7.9 0.23 

Table S5. MrOS discovery cohort characteristics stratified by medication use 813 

Statistical tests used to compare groups are as follows: independent samples t-tests were used for 814 
comparing age, body mass index (BMI), Shannon diversity and Observed species; χ2 or Fisher’s 815 
exact (if assumptions of χ2 were not met) tests were used to compare ethnicity (percentage 816 
hispanic) and prevalence of each of the specified diseases. P-Values <0.05 are colored in red. 817 
 818 
 819 
 820 
 821 
 822 
 823 
 824 
 825 
 826 
 827 
 828 
 829 
 830 
 831 
 832 
 833 
 834 
 835 
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 836 
 837 
 838 
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