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ABSTRACT  

Large number of samples are required to construct a reliable gene co-expression network, the 

samples from a single gene expression dataset are obviously not enough. However, batch 

effect may widely exist among datasets due to different experimental conditions. We 

proposed JEBIN (Joint Embedding of multiple BIpartite Networks) algorithm, it can learn a 

low-dimensional representation vector for each gene by integrating multiple bipartite 

networks, and each network corresponds to one dataset. JEBIN owns many inherent 

advantages, such as it is a nonlinear, global model, has linear time complexity with the 

number of genes, dataset or samples, and can integrate datasets with different distribution. 

We verified the effectiveness and scalability of JEBIN through a series of simulation 

experiments, and proved better performance on real biological data than commonly used 

integration algorithms. In addition, we conducted a differential co-expression analysis of 

hepatocellular carcinoma between the single-cell and bulk RNA-seq data, and also a contrast 

between the hepatocellular carcinoma and its adjacency samples using the bulk RNA-seq 

data. Analysis results prove that JEBIN can obtain comprehensive and stable gene co-

expression networks through integrating multiple datasets and has wide prospect in the 

functional annotation of unknown genes and the regulatory mechanism inference of target 

genes.  
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INTRODUCTION 

Genes involved in normal and diseased life process generally do not function alone, but 

rather determine the biological phenotype through regulatory or collaborative interactions 

among a group of genes [1,2]. The functionally related genes tend to exhibit co-expression 

relationships [3-5] in gene expression data, named "guilt-by-association" (GBA) [6]. Gene co-

expression networks are powerful tools for describing the overall interactions among genes 

and imply the causal information which can be used to infer regulatory relationships [7,8]. The 

annotation information about the unannotated genes, such as the biological pathways they 

may participate in and the functions they possibly possess, can be obtained based on the 

connections between the unannotated genes and the well investigated genes in their co-

expression network neighbourhood [9-11]. Since thousands of biological samples are 

required to construct a trustworthy gene co-expression network [12,13], the samples from a 

single gene expression dataset are obviously not enough [14], it becomes an urgent problem 

to integrate multiple datasets so as to build a reliable gene co-expression network. Megan 

Crow et al. demonstrated that for both mouse bulk and single-cell RNA-seq data, the co-

expression networks obtained by integrating multiple datasets performed better than that 

obtained by using only a single dataset [15]. 

Traditional gene association measure methods are designed to calculate the similarity 

between the expression vectors of two genes directly, and the commonly used methods 

include Pearson correlation coefficient, Spearman correlation coefficient, Kendall correlation 

coefficient, biweight midcorrelation and mutual information, etc. [16-18]. Since the gene sets 

corresponding to different datasets may be inconsistent, the integration of multiple gene 

adjacent matrices for each dataset inevitably produces missing values by calculating the 

minimum [19], average, weighted average [20] or other statistic values for each 

corresponding matrix element. A large amount of missing values can affect the effect of 

matrix imputation conducted before the integration of gene adjacent matrices [21]. It should 

be noted that when constructing a gene co-expression network, the above methods calculate 

the correlation between the current two genes, without taking into account information from 

other genes [16]. WGCNA (Weighted gene co-expression network analysis) [19,22] is a 
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commonly used method designed primarily to achieve the gene modules. WGCNA also 

provides the one-step method for the co-expression network integration of multiple datasets, 

but the identical gene sets from different datasets are the necessary condition for the input. 

GeneMANIA is another commonly used method to integrate multiple gene association 

networks [20]. The ridge regression algorithm is implemented to calculate the weights of 

different association networks, then the weighted average of these networks is carried out to 

get the integrated network, on which the function of genes can be predicted by the label 

propagation algorithm. This algorithm also requires the the same set of genes across different 

association networks by default. Moreover, in order to keep the sparsity of the networks, only 

the top 50 gene association values were reserved for each gene, and the other values were 

assigned to 0. To avoid the problem of different gene sets in different datasets, there are also 

studies conducted the integration operations at the level of gene pairs rather than the 

adjacency matrix [23]. After calculating the correlation value among all gene pairs in each 

dataset, only the pairs appearing in at least N datasets were selected for the integration to 

construct the final gene association network. The disadvantage of these methods is that some 

genes may miss important correlations and affect subsequent functional analysis, because 

they can only obtain their association with some genes rather than with all other genes. 

The above-mentioned methods calculate the association degree between one gene and 

another directly to construct the association network for each dataset. However, in real 

organisms, a gene is likely to interact with a group of genes or even a group of genes interact 

with another group of genes, thereby making the gene to be studied may not have strong 

marginal association with the individual gene in a group of genes [16]. Since high-order 

association may be missed in such paired similarity measurements, another class of 

algorithms that utilize the Gaussian Graphical models (GGM) attempt to describe the complex 

gene association networks by the concept of conditional dependence [16,21] [24-28]. GGM is 

designed to obtain the precision matrix, also known as the inverse covariance matrix or 

concentration matrix, by maximizing the log likelihood of multivariate Gaussian distribution 

and controlling the sparseness of the edges by penalizing the sum of the absolute values of 

the off-diagonal elements in the precision matrix (L1 norm), and the non-zero mode in the 

precision matrix corresponds to a graph structure, reflecting the association of all gene pairs 
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[26,29,30]. There are two levels of application for GGM in the field of gene association 

analysis, one is the graphical lasso algorithm at the gene level [24], the other is the module 

graphical lasso algorithm at the level of gene module [21,25]. The graph lasso algorithm 

assumes the independence among the matrix elements when applying sparsity penalty to the 

precision matrix, that is the independence of the edges in gene co-expression networks. 

Nevertheless, the edges are not independent in real gene association networks. Thus, Celik 

et al. proposed the Modular Graphical Lasso algorithm (MGL) [25], in which correlated genes 

are considers as a module and the conditional dependence between two modules are 

modelled as a GGM. However, MGL loses the associations at gene level and is designed for 

a single dataset. In the field of integrating multiple datasets to construct gene co-expression 

network, the algorithms with GGM as the main thought include JGL (Joint Graphical Lasso) 

[24] and TDJGL (Two Dimensional Joint Graphical Lasso) [27] at the gene level, and 

INSPIRE (INferring Shared modules from multiple gene expression datasets) at the module 

level [21]. To get the inverse covariance matrix, this class of GGM based methods have 

merely utilized the linear relationships of gene pairs, because the input empirical covariance 

matrix measures the linear association of genes only. 

Another group of integration methods on multiple gene expression datasets include 

Generalized Singular Value Decomposition (GSVD) algorithm for two datasets [31] and High-

Order Generalized Singular Value Decomposition algorithm (HO GSVD) for multiple datasets 

[32,33]. The inputs of these algorithms can be either the original expression matrixes or the 

gene co-expression matrixes. The disadvantage is that only a collection of genes shared by 

all datasets and the gene sets specific to one dataset are obtained in the results, so the gene 

level co-expression networks have been missed as well. In addition, they also require that the 

set of genes corresponding to each dataset must be identical, and the calculation time 

increases exponentially as the number of genes or the number of datasets increases. 

We propose a new model of Joint Embedding of multiple BIpartite Networks (JEBIN) to 

learn the low-dimensional vector representation of genes utilizing the nonlinear relationships 

among genes from multiple gene expression data sets. With the genes’ representation 

vectors learned, gene co-expression networks and gene modules can be obtained using the 
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commonly used vector similarity calculating method and traditional clustering methods 

separately.  

 

MATERIAL AND METHODS 

Overview 

JEBIN is designed to learn the low-dimensional representation, named the “consensus 

vector” of genes, by integrating multiple bipartite networks with each corresponding to one 

gene expression dataset. As shown in Figure 1, the main procedure of JEBIN is to transform 

each gene expression dataset to a bipartite network, and then joint embedding multiple 

bipartite network to learn the dataset-specific representation vectors for the genes in each 

network and the consensus representation vectors for all the genes appeared in at least one 

dataset. Utilizing the low-dimensional consensus vectors, we can visualize the genes on a 2D 

view. The gene association networks and gene clustering can also be calculated rapidly. 

 

JEBIN model 

Given 𝐻 gene expression datasets in matrix form, we can construct a bipartite network graph 

𝐺(𝑔) = (𝑉𝐴
(𝑔)

∪  𝑉𝐵
(𝑔)

,  𝐸(𝑔)), 𝑔 ∈ {1,2, … 𝐻}, for each dataset [34,35]. 𝑉𝐴
(𝑔)

 and 𝑉𝐵
(𝑔)

 are two 

disjoint sets of vertices with different types, the gene set and sample set respectively. 𝐸(𝑔) is 

the set of edges between 𝑉𝐴
(𝑔)

 and 𝑉𝐵
(𝑔)

, the weight for each edge represents the expression 

value of the corresponding gene in the linked sample. In our JEBIN model, the gene vertex 

sets 𝑉𝐴
(𝑔)

 are not required to be completely the same across all bipartite networks, while the 

sample vertex sets 𝑉𝐵
(𝑔)

 are regarded as totally different sets, with no intersection for different 

bipartite networks.  

We denote 𝑓𝑢
𝑔

∈ 𝑅𝑑 , 𝑢 ∈ 𝑉𝐴
(𝑔)

 and 𝑓𝑣
𝑔

∈ 𝑅𝑑 , 𝑣 ∈ 𝑉𝐵
(𝑔)

 as the identity and context embedding 

vector, respectively, in network graph 𝐺(𝑔), 𝑔 ∈ {1,2, … 𝐻}. 𝑑 are the dimensions of the 

embedding vectors, they are required to be the same in different networks. The object 

function of joint embedding of all bipartite networks 𝐺(𝑔), 𝑔 ∈ {1,2, … 𝐻}, is 
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𝐦𝐢𝐧   ∑ [𝑙𝑜𝑠𝑠 ({𝑓𝑢
𝑔

, 𝑓𝑣
𝑔

}
 𝑢∈𝑉𝐴

(𝑔)
,𝑣∈𝑉𝐵

(𝑔)|𝐺(𝑔)) + 𝛾𝑅𝑔]𝑔∈{1,2,…𝐻}                   (1) 

𝑙𝑜𝑠𝑠 ({𝑓𝑢
𝑔

, 𝑓𝑣
𝑔

}
 𝑢∈𝑉𝐴

(𝑔)
,𝑣∈𝑉𝐵

(𝑔)|𝐺(𝑔)) is the intra-graph loss function of network graph 𝐺(𝑔), 

reflecting the ability of {𝑓𝑢
𝑔

, 𝑓𝑣
𝑔

}
 𝑢∈𝑉𝐴

(𝑔)
,𝑣∈𝑉𝐵

(𝑔) vectors to depict network 𝐺(𝑔), and the second 

term 𝛾𝑅𝑔 regularizes the embedding vectors across different networks. 

For each directed edge (𝑢, 𝑣) ∈ 𝐸(𝑔) in network 𝐺(𝑔), the conditional distribution is defined 

as the following softmax function: 

𝑝(𝑣|𝑢) =
exp (𝑓𝑢

𝑔
 ∙ �̃�𝑣

𝑔
)

∑ exp (𝑓𝑢
𝑔

 ∙ �̃�
𝑣′
𝑔

)  
𝑣′∈𝑉𝐵

(𝑔)
                             (2) 

and the empirical distribution is defined as 

�̂�(𝑣|𝑢) =
𝜔𝑢𝑣

𝑔

𝑑𝑢
𝑔                                    (3) 

𝜔𝑢𝑣
𝑔

 is the weight of the edge (𝑢, 𝑣) in network 𝐺(𝑔), and 𝑑𝑢
𝑔
 is the out-degree of vertex 𝑢, 

calculated by 𝑑𝑢
𝑔

= ∑ 𝜔𝑢𝑣
𝑔

 
  𝑣∈𝑁𝐵

(𝑔) , where 𝑁𝐵
(𝑔)

 is the set of out-neighbours of vertex 𝑢, which 

is a subset of 𝑉𝐵
(𝑔)

 in network graph 𝐺(𝑔). 

The weighted summation of distances between the conditional distribution 𝑝(∙ |𝑢) and the 

empirical distribution �̂�(∙ |𝑢) for each node 𝑢 ∈ 𝑉𝐴
(𝑔)

 is used to represent the intra-graph loss 

function: 

𝑙𝑜𝑠𝑠 ({𝑓𝑢
𝑔

, 𝑓𝑣
𝑔

}
 𝑢∈𝑉𝐴

(𝑔)
,𝑣∈𝑉𝐵

(𝑔)|𝐺(𝑔)) = ∑ 𝜆𝑢 𝐷(�̂�(∙ |𝑢), 𝑝(∙ |𝑢) )  
𝑢∈𝑉𝐴

(𝑔)             (4) 

We adopt KL-divergence as the distance function between two distributions, and simply set 

𝜆𝑢 as the out-degree of vertex 𝑢, 𝜆𝑢 = 𝑑𝑢, to reflect the importance of vertex 𝑢 in the 

network. Omitting some constants, the objective function in equation (4) can be calculated as 

𝑙𝑜𝑠𝑠 ({𝑓𝑢
𝑔

, 𝑓𝑣
𝑔

}
 𝑢∈𝑉𝐴

(𝑔)
,𝑣∈𝑉𝐵

(𝑔)|𝐺(𝑔)) = − ∑  𝜔𝑢𝑣
𝑔

 𝑝(𝑣|𝑢)  (𝑢,𝑣)∈𝐸(𝑔)                (5) 

Since 𝑝(𝑣|𝑢) is computationally expensive, which requires the summation over the entire 

set of vertices in 𝑉𝐵
(𝑔)

 as in equation (2), we adopt negative sampling strategy to address this 
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problem [36]. The main idea of negative sampling is to distinguish the target node 𝑣 from the 

nodes 𝑣𝑖
′ drawn from the noise distribution 𝑃(𝑔)(𝑣) by logistic regression. The objective 

function in equation (5) can be rewritten as 

∑ [−log 𝜎(𝑓𝑢
𝑔

∙  𝑓𝑣
𝑔

) − ∑ 𝐸𝑣𝑖
′~𝑃(𝑔)(𝑣) log 𝜎(−𝑓𝑢

𝑔
∙  𝑓

𝑣𝑖
′

𝑔
)𝐾

𝑖=1 ]   (𝑢,𝑣)∈𝐸(𝑔)             (6)              

where 𝜎(𝑥) = 1/(1 + exp (−𝑥)) is the sigmoid function, and 𝐾 is the number of negative 

edges (default 5). The first term models the network edges (𝑢𝑔, 𝑣𝑔) ∈ 𝐸(𝑔) sampled from the 

observed edges, and the second term models the negative edges (𝑢𝑔 , 𝑣𝑖
′𝑔

) drawn from the 

noise distribution 𝑃(𝑔)(𝑣) ∝ (∑ 𝜔𝑢𝑣) 
𝑢∈𝑁𝐴

(𝑔)
3/4

, where 𝑁𝐴
(𝑔)

 is the set of in-neighbours of vertex 

𝑣. 

For joint embedding of multiple bipartite networks, we defined a consensus embedding 

vector {𝑓𝑢
∗ }

𝑢∈∪(𝑉𝐴
(𝑔)

)
 for each vertex 𝑢 in the union set of 𝑉𝐴

(𝑔)
, 𝑔 ∈ {1,2, … 𝐻}, which models 

the shared information implied in all datasets because of some shared latent factors. The 

second term 𝛾𝑅𝑔 in equation (1) is used to regularize the consensus vectors 𝑓𝑢
∗ utilizing the 

dataset-specific vectors 𝑓𝑢
𝑔
, which defined as follows: 

𝑅𝑔 = ∑ ‖𝑓𝑢
∗ − 𝑓𝑢

𝑔
‖

2

2
   

𝑢∈𝑉𝐴
(𝑔)                               (7) 

Through this term, we can get the consensus vector for each gene, representing the 

consensus information from multiple gene expression datasets. The positions of genes in the 

embedding space can reflect the similarity among the expression profiles of genes.  

With negative sampling, the objective function in equation (1) involving one real network 

edge (𝑢𝑔, 𝑣𝑔) ∈ 𝐸(𝑔) and K negative edges (𝑢𝑔, 𝑣𝑖
′ 𝑔

), 𝑖 ∈ {1,2, …K} drawn from only one 

network graph 𝑔 is as follows:  

𝑂(𝑔) = ∑ {[−log 𝜎(𝑓𝑢
𝑔

∙  𝑓𝑣
𝑔

) + 𝛾𝑅𝑢
𝑔

] + ∑ [−𝐸𝑣𝑖
′~𝑃(𝑔)(𝑣) log 𝜎 (−𝑓𝑢

𝑔
∙  𝑓

𝑣𝑖
′

𝑔
) + 𝛾𝑅𝑢

𝑔
]𝐾

𝑖=1 } (𝑢,𝑣)∈𝐸(𝑔)                                              

(8) 

where 
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𝑅𝑢
𝑔

= ‖𝑓𝑢
∗ − 𝑓𝑢

𝑔
‖

2

2
                                (9) 

Finally, the objective function in equation (1) equals to the summation of 𝑂(𝑔) across all 

datasets, written as 

𝑂 = ∑ 𝑂(𝑔)𝑔∈{1,2,…𝐻}                               (10) 

Asynchronous stochastic gradient descent (ASGD) algorithm [37] is adopted to optimize the 

equation (8). Since the gradient will be multiplied by the weight of the edge, there would be a 

problem to select a suitable learning rate when the weights of edges have a high variance. 

Tang have proposed “Edge Sampling” strategy to treat this problem by unfolding an edge with 

weight 𝜔 into 𝜔 binary edges [38]. Alias table method [39] can effectively decrease the time 

of sampling an edge from 𝑂(|𝐸|) to 𝑂(|1|). In practice, we set the parameter of edge 

sampling number to be proportional to the edge number of the bipartite network. Then for 

each bipartite network, the negative sampling optimization takes 𝑂(𝑑(𝐾 + 1)|𝐸|) time, which 

is linear to the number of edges |𝐸|. For the joint embedding of 𝐻 datasets, the overall time 

complexity is 𝑂(𝐻|𝐸|), here |𝐸| represents the maximum edge number of 𝐻 bipartite 

networks. The edge number of a bipartite network |𝐸| is the number of nonzero elements in 

a gene expression matrix, so our algorithm can be well-suited to sparse matrix data, for 

instance, single cell RNA-seq data with enormous number of cells and very sparse gene 

expression values.  

JEBIN has four outstanding features. Firstly, the information from the whole gene 

population is employed to get the consensus representation of each genes across multiple 

gene expression datasets. That is, the relative position of one gene in the low-dimensional 

space is affected by all the other genes which makes JEBIN a global method. Secondly, 

JEBIN can effectively dispose the problem of inconsistent gene sets among different datasets 

due to different sequencing techniques or pre-processing. The final consensus gene co-

expression networks will cover all the genes appeared in at least one dataset, and the 

consistent and stable co-expression relationships occurring across multiple datasets can be 

further enhanced. Thirdly, the calculation time of JEBIN increases linearly with the number of 

genes and also the number of datasets. Fourthly, JEBIN can integrate biological data that is 
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subject to different distributions, as well as has promising application prospects in integrating 

multi-omics data and fusing biological prior knowledge.  

 

RESULTS 

To verify the effectiveness and scalability of JEBIN, we designed a series of simulation 

experiments, and conducted the comparison of JEBIN with commonly used integration 

algorithms on real biological data.  

Simulation experiments 

We conducted simulation experiments with small-scale gene networks designed as the co-

expression networks as in Figure 2A and the gene regulatory network as in Figure 2B. And 

then Gaussian Graphical models and thermodynamic model is used to generate the gene 

expression data which contain linear and nonlinear relationships among genes respectively.  

  For the linear simulation data, the covariance matrix among genes was set, and then the 

observation samples were generated by using the multivariate gaussian distribution. So, the 

Pearson correlation coefficients between gene pairs can be used as the benchmark 

measurement. The cosine similarity between the vector representations of gene pairs 

obtained by JEBIN is calculated, and the results had shown good linear relationship with the 

Pearson correlation coefficients, as shown in Figure 2C. This demonstrates that JEBIN can 

efficiently uncover the linear positive co-expression relationships in small-scale gene 

networks. 

For the nonlinear simulation data, the thermodynamic model was used to generate the 

observation samples based on the gene regulatory network shown in Figure 2B. The cosine 

similarity between the vector representations of gene pairs obtained by JEBIN was calculated 

and clustering was conducted. It was found that the clustering results as shown in Figure 2D, 

the consensus gene representation vectors could correctly identify two gene modules with 

positive internal correlation. Furthermore, for dataset-specific clustering, the results of JEBIN 

are more stable than the results of Pearson correlation which is shown in Figure 2E. This 

indicates that JEBIN can identify the nonlinear correlation between gene pairs. 
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Then we expanded to large-scale gene networks. The linear relationships are still 

modelled by Gaussian Graphical models. But for the nonlinear relationships, we used multiple 

real gene expression datasets.  

When using the gaussian graph model, the number of integrated datasets was expanded 

to 10, and the number of genes was set to 100, 1000 and 5,000 genes, respectively. The 

results shown in Figure 2F indicated that the cosine similarity between the gene pairs 

obtained by JEBIN consistently maintained a good linear correlation with Pearson correlation 

coefficient, which verified the effectiveness of JEBIN on linear relationships mining in large-

scale gene networks.  

 

Real biology data 

We collected the datasets from six groups of different conditions, including hepatocellular 

carcinoma (HCC), the adjacent data of HCC, breast cancer, ovarian cancer, colorectal cancer 

and bladder cancer. JEBIN was used to integrate multiple datasets from different 

experiments, and the learned consensus vectors of genes was visualized by tSNE, as shown 

in Figure 3A. The aggregation of genes can be clearly seen, suggesting that these 

representation vectors can be used for the discovery of gene modules. We compared JEBIN 

with four commonly used methods for calculating genetic correlations, Pearson correlation, 

Spearman correlation, biweight midcorraltion, and cosine similarity, and found that JEBIN 

consistently performed best in all 6 experiments, as is shown in Figure 3B. 

 

Differential co-expression analysis 

In the follow-up application, we conducted a differential co-expression analysis of 

hepatocellular carcinoma between the single-cell and bulk RNA-seq data, and also a contrast 

between the hepatocellular carcinoma and its adjacency samples using the bulk RNA-seq 

data. Results shown in Figure 4A is the enrichment results of HCC-specifc co-expression 

genes when compared with the adjacent bulk RNA-seq data, the top is the enrichment on GO 

BP terms, and the bottom is the enrichment on KEGG pathways. DNA repair and DNA 

replication terms are all found in both enrichments, which is consistent with our knowledge 
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that abnormalities often occur in cancers. This result also proves the effectiveness of JEBIN 

on the association calculation of genes. 

 

DISCUSSION 

Multiple gene expression datasets contain consensus information because of common latent 

factors, and dataset-specific information for condition-specific factors. Furthermore, different 

datasets can provide complementary information, so the integration of them can generate 

more complete and stable gene co-expression networks. Our proposed method, JEBIN, can 

construct the consensus gene co-expression network by joint embedding multiple datasets 

from different platforms or studies. JEBIN owns many inherent model advantages: (1) 

nonlinear model, it can effectively dig the linear and nonlinear correlation between gene pairs, 

(2) global algorithm, it utilizes the expression data of all genes to determine the representation 

vector of each gene, (3) the time complexity is linearly related to the number of genes, 

samples and datasets respectively, (4) JEBIN can integrate datasets of different distributions, 

such as microarray data and RNA-seq data. The effectiveness and scalability of JEBIN were 

verified through a series of simulation experiments, and showed better performance on real 

biological data than commonly used integration algorithms. The differential co-expression 

analysis is conducted on hepatocellular carcinoma between the single-cell and bulk RNA-seq 

data, and on the bulk RNA-seq data between the hepatocellular carcinoma and its adjacency 

samples. Analysis results prove that JEBIN has good prospect in the functional annotation of 

unknown genes and the regulatory mechanism inference of target genes. 

JEBIN belongs to the class of representation learning methods. Representation learning is 

a rapidly developed class of algorithms which can effectively deal with large-scale networks 

through integrating the information from multiple sources and learning the vector 

representation for each studied object. In the future, it will be a powerful tool for the 

integration of various level of biological data, like muti-omics data. And its application in the 

differential co-expression analysis between the disease and the normal datasets can provide 

a possible target for the treatment of diseases. 
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TABLE AND FIGURES LEGENDS 

Figure 1. Overview of the pipeline of JEBIN. (A) Input multiple gene expression datasets. (B) 

Bipartite network construction. (C) The objective function of JEBIN. (D) Consensus 

representation of genes. (E) Gene association networks construction and gene clustering. (F) 

Visualization of genes. 

Figure 2. Simulation experiments. (A) Co-expression networks and (B) gene regulatory 

network designed to generate simulative gene expression data. (C) Compare the cosine 

similarity between the vector representations of gene pairs obtained by JEBIN with Pearson 

correlation integration methods. (D) The cosine similarity between the vector representations 

of gene pairs obtained by JEBIN and genes clustering. (E) The Pearson correlation integrated 

similarity and genes clustering. (F) The cosine similarity between the gene pairs obtained by 

JEBIN consistently maintained a good linear correlation with Pearson correlation integration 

methods. 

Figure 3. Visualization of genes calculated by JEBIN on real biology data (3A) and 

performance contrast with four commonly used methods (3B).  
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Figure 4. Enrichment results of HCC-specifc co-expression genes when compared with the 

adjacent bulk RNA-seq data. The top is the enrichment on GO BP terms, and the bottom is 

the enrichment on KEGG pathways. 
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