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Abstract 9 

Background 10 

While the translatability of gut microbiome studies utilizing animal models to humans has proven 11 

difficult, studying the gut microbiome directly in humans is also challenging due to the existence of many 12 

confounding variables. Therefore, we utilized double humanized mice, which have both an engrafted 13 

stable human-like gut microbiome and functional human immune system. With this model, we were able 14 

to determine the in vivo impact of HIV-1 infection or a high-fat diet (HFD) on gut human microbiome 15 

composition, and its relationship with human immune cell activation and systemic inflammation. 16 

 17 

Results 18 

Surgery was performed on NSG mice to create humanized bone-marrow, liver, thymus mice (hu-mice). In 19 

order to create double hu-mice, the hu-mice were treated with broad spectrum antibiotics to deplete 20 

murine gut bacteria and subsequently transplanted with human fecal material from healthy human donors. 21 

We characterized 262 fecal samples from hu-mice, double hu-mice, and human fecal donors to determine 22 

the impact of HIV-1 infection or HFD on the gut microbiome and systemic immune activation and 23 

inflammation. We found that HIV-1 infection altered the human-like gut microbiome of double hu-mice, 24 

which was associated with decreased human CD4 T cells and increased systemic inflammation and 25 
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immune activation. Further, using a HFD we induced gut microbial dysbiosis in double hu-mice which 26 

corresponded with increased systemic immune activation and inflammation. 27 

 28 

Conclusions 29 

Here, we describe the changes in the human gut microbiome and human immune system due to HIV-1 30 

infection or HFD using our double hu-mice model. HIV-1 infection led to changes in the composition of 31 

the human-like gut microbiome that was associated with human CD4 T cell loss and high levels of 32 

inflammation and immune activation. The HFD quickly changed the composition of the gut microbiome 33 

and led to systemic immune activation and inflammation. We further identified a subset of gut bacteria in 34 

HIV-1 infected and HFD fed double hu-mice that was closely associated with systemic inflammation and 35 

immune activation. This study demonstrated how double humanized mice can be used to study the 36 

complex in vivo interactions of the gut microbiome and human immune system in the context of both 37 

disease and diet.   38 

 39 

Background 40 

The human gut is home to the largest number of immune cells in the body and provides an 41 

ecosystem for trillions of microbes known collectively as the gut microbiome [1, 2]. The gut microbiome 42 

and corresponding gut immune system have a highly reciprocal and dynamic relationship that is a critical 43 

determinant for human health and disease [3-7]. While the gut microbiome influences host immune 44 

responses through their antigens and metabolites, the immune system in turn contributes to shaping the 45 

composition and distribution of gut microbes [8-10]. It has been estimated that up to 10% of immune 46 

response variability is associated with the gut microbiome [11]. The gut microbiome has also been shown 47 

to be essential for proper immune development, immune function, and response to infection and 48 

vaccination. 49 

 The gut plays a key role in the pathogenesis of human immunodeficiency virus type-1 (HIV-1) 50 

infection. One of major features of HIV-1 infection is the rapid and extensive loss of gut immune cells, 51 
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most notably CD4+ T cells [12-17]. The depletion of gut immune cells is accompanied by alterations in 52 

the gut microbiota, the interruption of gut epithelial barrier integrity with subsequent microbial 53 

translocation, and increased inflammation and immune activation [18-25]. In addition, the  alterations of  54 

the gut microbiome and gut immune cells may increase the susceptibility to rectal HIV-1 transmission, as 55 

previous studies have shown that local and systemic inflammation will activate and attract CD4+ T cells  56 

thereby increasing the risk of HIV-1 mucosal transmission [26]. Further, gut microbial dysbiosis and 57 

microbial translocation have been implicated in the incomplete gut immune reconstitution and increased 58 

systemic immune activation and inflammation in people living with HIV (PLH) on suppressive anti-59 

retroviral therapy (ART) [21, 25, 27-29]. Despite the ability of ART to suppress HIV-1 replication to 60 

undetectable levels in peripheral blood, gut immune reconstitution following ART is often slow and 61 

incomplete [30-35]. Additionally, there are persistently increased levels of inflammation and immune 62 

activation [36-38] that contribute to increased comorbidities in PLH [39-41], of which gut microbial 63 

translocation mediated immune activation is thought to be a major contributing factor [42, 43]. 64 

Consequently, in the ART era, the life expectancy of HIV-1 infected individuals in developed countries is 65 

over 10-years shorter than a normal lifespan [44] and non-infectious morbidities are also significantly 66 

higher than the general population [45]. Given the importance of the gut to almost all aspects of 67 

prevention, pathogenesis, and treatment of HIV-1, investigating the in vivo relationship between the gut 68 

microbiome and human immune system may provide novel insights for prevention and treatment 69 

strategies. Due to the bidirectional relationship of the gut microbiome and the immune system, resolving 70 

gut microbial dysbiosis may also improve immune cell recovery, reduce immune activation and 71 

inflammation during ART treatment, and ultimately reduce comorbidities. 72 

Despite the significant progress that has been made in understanding HIV-1 pathogenesis and in 73 

treating HIV-1 infection, a key knowledge gap remains in our mechanistic understanding of the impact of 74 

the gut microbiome on immune activation and inflammation during HIV-1 infection. Research utilizing 75 

animal models has provided a large portion of our understanding of the connection between the gut 76 

microbiome and human disease, of which humanized mice (hu-mice), that feature an engrafted human 77 
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immune system, are an important pre-clinical animal model for translational biomedical research [46-54]. 78 

However, the  gut murine microbiome significantly differs from humans due to anatomical, evolutional, 79 

environmental, and diet differences [55, 56]. To improve the translatability of hu-mice research, we 80 

previously developed double hu-mice that feature a stable human-like gut microbiome and human 81 

immune system [57, 58]. In this study, we used this model and investigated the immunopathogenesis of 82 

alterations in the gut microbiome induced by HIV-1 infection and a high-fat diet (HFD).  We found that 83 

HIV-1 infection led to changes in the composition of the human-like gut microbiome that temporally 84 

corresponded with human CD4+ T cell loss and high levels of inflammation and immune cell activation. 85 

We also showed that a HFD quickly changed the composition of the gut microbiome and led to systemic 86 

immune activation and inflammation. Importantly, this study demonstrated the double hu-mice model can 87 

be used to study the complex in vivo interactions of the gut microbiome and human immune system in the 88 

context of human health and disease. 89 

 90 

Results 91 

HIV-1 infection altered the gut microbiome of hu-BLT mice 92 

          The hu-BLT mice (hu-mice) model allows for a high level of human immune cell reconstitution 93 

and has been used for the study of HIV-1 prevention, pathogenesis, and treatment [59-62]. However, the 94 

hu-mice gut microbiome is of murine origin and we previously demonstrated that hu-mice harbored a 95 

distinct low diversity gut microbiome [63]. To investigate the extent to which HIV-1 infection impacts 96 

the murine gut microbiome in this model, we compared longitudinally sampled gut microbiome profiles 97 

of HIV-1 infected hu-mice and uninfected hu-mice. Twenty-four fecal samples from 4 HIV-1 infected hu-98 

mice were collected longitudinally for up to 6 consecutive weeks. The HIV-1 infected hu-mice had an 99 

altered gut microbiome composition compared to uninfected hu-mice and the two groups clustered 100 

distinctly from one another in both Non-metric Multi-dimensional Scaling (NMDS) and Principal 101 

Coordinates Analysis (PCoA) plots (Supplemental Figure HIV_HuMice.pdf). Additionally, HIV-1 102 

infected hu-mice had higher measures of alpha diversity, including the number of unique species per 103 
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sample or species richness, Simpson’s Diversity Index, and Shannon Diversity Index (Supplemental 104 

Figure HIV_HuMice.pdf). There were multiple alterations in the gut microbiome composition of the 105 

HIV-1 infected hu-mice as shown by heatmaps of bacterial relative abundance for Order and Family taxa 106 

levels (Supplemental Figure HIV_HuMice.pdf). Significant differences in the relative abundance of gut 107 

bacterial taxa were found using Kruskal-Wallis tests with false discovery rate (FDR) adjusted P values 108 

<.05 (Supplemental File HIV_HuMice_KW.xlxs). Nevertheless, due to the large compositional 109 

differences between the murine and human gut microbiomes, regular hu-mice without a humanized gut 110 

microbiome may limit their translatability for the study of human health and disease [55, 56]. 111 

 112 

Table 1. Summary of experimental hu-mice cohorts 113 

 114 

 115 

 116 

 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

HIV-1 infection altered the gut microbiomes of double humanized BLT mice  128 

Cohort 
Double hu-

mice 
Number of 

mice 

Number of 
fecal 

samples 
Condition 

Maximum 
weeks 

collected 

Pre-FMT No 40 40 NA 1 

Post-FMT Yes 32 31 NA 1 

HIV 
infected 

double hu-
mice 

Yes 14 90 HIV-1 12 

HFD Yes 8 34 High fat diet 
7 

 

LFD Yes 8 39 Low fat diet 9 
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We previously developed a double hu-mice model that harbors a stable human-like gut 129 

microbiome in addition to a functional human immune system [58, 63]. To create double hu-mice, we 130 

first performed surgery on NSG mice to create hu-BLT mice with an engrafted human immune system. 131 

Hu-mice were subsequently treated with a cocktail of broad-spectrum antibiotics to reduce murine gut 132 

bacteria, followed by human fecal material transplants (FMT) using fecal material from a mixture of three 133 

healthy human donors. This double hu-mice model was used to determine if and how the composition of 134 

the gut microbiome was altered during HIV-1 infection (Table 1). Gut microbiome profiles of the mice 135 

were sampled at 10 weeks post BLT humanization surgery and before antibiotic treatment and FMTs 136 

(Pre-FMT) as well as one week following the completion of antibiotic treatment and FMTs (Post-FMT). 137 

After collecting the Post-FMT fecal samples, double hu-mice were intraperitoneally injected with 138 

4.5*10^5 TCID of an equal mixture of HIV-1SUMA and HIV-1JRCSF. To determine the longitudinal changes 139 

to the gut microbiomes of HIV-1 infected double hu-mice, fecal samples were collected every week for 140 

up to 12 weeks from 11 infected double hu-mice (Infected) and 3 uninfected double hu-mice 141 

(Uninfected). As shown in Figure 1AB, HIV-1 infection altered the composition of the gut microbiome 142 

over the course of the study. Additionally, sample collection date (Figure 1CD) and body weight (Figure 143 

1 EF) were associated with the composition changes observed in the gut microbiome.  144 

Double hu-mice form both the Infected and Uninfected group had altered gut microbiome profiles 145 

compared to Post-FMT samples (Figure 2AB). Both infected and uninfected double hu-mice had slightly 146 

higher measures of alpha diversity compared to Pre-FMT and Post-FMT samples, including the number 147 

of unique species per sample or species richness, Simpson’s Diversity Index, and Shannon Diversity 148 

Index (Figure 2CDE). Infected samples had slightly higher alpha diversity measures compared to 149 

uninfected samples, but the differences were not significant. Differences in relative abundance for the 150 

experimental groups are shown by Order and Family taxa levels (Figure 2FG). Significant differences in 151 

the relative abundance of gut bacterial taxa between the double hu-mice from the Infected group and 152 

Uninfected group were found using Kruskal-Wallis tests with false discovery rate (FDR) adjusted P 153 

values <.05 (Supplemental File HIV_KW.xlsx). Infected double hu-mice had a higher relative abundance 154 
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of Bifidobacteriaceae (7.09%, P=0.0001 FDR) and Ruminococcaceae (4.47%, P=0.0005 FDR) and a 155 

lower abundance of Lactobacillaceae (-15.67%, P=0.0001 FDR) and Turicibacteraceae (-3.99%, 156 

P=0.0302 FDR) (Supplemental File HIV_Composition.pdf). 157 

To determine the changes in the gut microbiome of double hu-mice before and after HIV-1 158 

infection, we compared infected samples with Post-FMT samples (Supplemental File HIV_KW.xlxs). 159 

After infection, double hu-mice had a lower relative abundance of Erysipelotrichaceae (-6.18%, 160 

P=0.0001 FDR), Lachnospiraceae (-4.96%, P=0.0051 FDR), and Verricomicrobiaceae (-11.82%, 161 

P=0.0001 FDR) and a higher relative abundance of Bacteroidaceae (4.52%, P=0.0424 FDR), 162 

Bifidobacteriaceae (4.43%, P=0.0404 FDR), Clostridiaceae (2.48%, P=0.0001 FDR), Rikenellaceae 163 

(1.63%, P=0.0001 FDR), and Ruminococcaceae (8.64%, P=0.0001 FDR). 164 

A random forest model was trained to predict if the gut microbiome profiles came from double 165 

hu-mice that were HIV-1 infected or uninfected based on the amplicon sequence variant (ASV) features. 166 

The top 15 most important discriminatory features of the model based on area under the ROC curve were 167 

then identified. These features were scaled to 100 and plotted along with the average normalized ASV 168 

counts for each group (Supplemental File HIV_Importance.pdf). The top ranked features were ASV527 169 

Ruminococcus and ASV321 Dorea, both of which were more prevalent in infected double hu-mice. Of 170 

the top 15 features, many ASVs were more prevalent in HIV-1 infected mice including ASVs from 171 

Butyricicoccus pullicaecorum, Ruminococcaceae, Ruminococcus, Oscillospira, and Christensenellaceae. 172 

Three ASVs were more prevalent in uninfected double hu-mice including ASVs from Butyricicoccus 173 

pullicaecorum, Blautia producta, and Lachnospiraceae. Here we show there are many features of the gut 174 

microbiome that were different between infected and uninfected double hu-mice. To further evaluate the 175 

role of gut microbiome during HIV-1 infection we determined the inflammatory and immune profiles 176 

from these double hu-mice. 177 

 178 

HIV-1 infection of double hu-mice led to increased systemic inflammation and immune activation 179 
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To evaluate systemic inflammation and immune activation in HIV-1 infected and uninfected 180 

double hu-mice, we measured plasma proinflammatory cytokines using multiplex immunoassays and 181 

human T cell activation in peripheral blood and splenic tissues using flow cytometry. Infected double hu-182 

mice had significantly higher levels of IL-1β, IL-6, IFN-γ, and TNF-α (Figure 3) at 12 weeks post infection 183 

(WPI), whereas, cytokine levels from samples collected at 7 (WPI) were not elevated compared to 184 

uninfected samples. CD4 T cell depletion is the pathogenic hallmark of HIV-1 infection. HIV-1 infection 185 

leading to CD4 T cell death can be observed in peripheral blood of infected hu-mice beginning at 2-3 186 

WPI [64]. Using flow cytometry, we tracked peripheral blood CD4 T cell levels in infected and 187 

uninfected double hu-mice (Figure 4AB). There was a decline in CD4 T cells in all post infection 188 

samples, of which some infected double hu-mice declined to levels below 50% of parent gated CD3 T 189 

cells. We also measured markers of immune activation in peripheral blood human T cells. All three 190 

populations of activated CD8 T cells, including CD8+ CD38+,  CD8+ CD69+,  and CD8+ HLA-DR+ T 191 

cells, were increased as a result of infection. CD4+ HLA-DR+ populations were also increased after 192 

infection, while the CD4+ CD69+ population had no significant changes. CD4+ CD38+ populations 193 

decreased after infection, which may be due to increased cell death in this population of activated CD4+ 194 

T cells.  195 

During HIV-1 infection the level of CD4 T cell death and immune activation can differ between 196 

peripheral blood and lymphoid tissues. Therefore, 4 double hu-mice were sacrificed at both 7 WPI and 12 197 

WPI. Flow cytometry was performed on lymphocytes isolated from spleen tissue (Supplemental Figure 198 

HIV_Spleen.pdf). The CD4 T cell loss was more severe in the spleen as compared to peripheral blood. 199 

There did not appear to be any major changes in CD4+ CD38+ population, while CD4+ CD69+ and 200 

CD4+ HLA-DR+ populations were increased in some of the infected animals. Almost all of the Infected 201 

samples had higher proportions of immune activated CD8 T cells, including CD8+ CD38+,  CD8+ 202 

CD69+, and CD8+ HLA-DR+ populations. The double hu-mice model of HIV-1 infection recapitulates 203 
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many important aspects of HIV-1 pathogenesis, including CD4 T cell loss and increased systemic 204 

inflammation and immune activation in the context of a human gut microbiome. 205 

 206 

Gut microbial dysbiosis was established in the double hu-mice model with a high-fat diet 207 

 The establishment of gut microbial dysbiosis in the double hu-mice model is needed for the 208 

investigation into the role of the gut microbiome in HIV-1 rectal transmission susceptibility and the study 209 

of the increased risk of comorbidities in HIV-1 infected individual on antiretroviral therapy. Previous 210 

studies have shown that local and systemic inflammation, along with the availability and activation state 211 

of target cells, are the major factors in determining the risk for HIV-1 transmission [26]. Studies on 212 

vaginal HIV-1 transmission demonstrated that the mucosal microbiome plays an important role in 213 

determining HIV-1 susceptibility [65-67]. Previous studies showed that feeding mice a high-fat diet 214 

(HFD) resulted in microbial dysbiosis, disruption of the gut epithelial barrier, increased systemic 215 

inflammation, and higher numbers of activated immune cells [68, 69].  Therefore, we fed double hu-mice 216 

with a HFD and found that it changed the engrafted healthy human gut microbiome into a state of 217 

microbial dysbiosis. The HFD group (N=8) was fed a diet consisting of 60% kcal from fat with 275 kcal 218 

of added sucrose (D12492, Research Diets Inc.). The low-fat diet (LFD) group (N=8) was fed a matched 219 

calorie control diet with 10% kcal from fat and no added sucrose (D12450K, Research Diets Inc.). Using 220 

this experimental design, we determined the impacts of these different diets on the gut microbiome as 221 

well as systemic inflammation and immune activation (Table 1). Before the introduction of a HFD or 222 

LFD, double hu-mice were fed regular mouse chow containing at least 14% protein (Teklad 2914). Fecal 223 

samples were collected for up to 9 weeks post new diet introduction.  224 

The HFD group quickly showed drastic changes in gut microbiome composition as compared to 225 

Post-FMT samples of double hu-mice fed with regular mouse chow and double hu-mice fed with a LFD 226 

(Figure 5AB). The microbiome profiles from fecal samples collected from HFD and LFD fed groups 227 

clustered separately from the regular mouse chow Post-FMT samples based on principal component 1 228 

(PC1). Further, the microbiome profiles from fecal samples collected from the HFD and LFD fed groups 229 
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clustered separately from one another based on principal component 2 (PC2). After Pre-FMT and human 230 

donor samples were added to the analysis, the HFD and LFD samples clustered distinctly from the regular 231 

mouse chow Post-FMT samples (Supplemental Figure Diet_Comp.pdf). In the PCoA plot, PC1 represent 232 

the differences observed between the pre-existing murine gut microbiome in the Pre-FMT samples 233 

compared to the human-like gut microbiomes in double hu-mice and human donor samples. PC2 shows 234 

the differences between the regular mouse chow Post-FMT samples compared to the HFD and LFD 235 

samples.  236 

The introduction of a HFD to the double hu-mice decreased measures of alpha diversity, 237 

including the number of unique species per sample or species richness, Simpson’s Diversity Index, and 238 

Shannon Diversity Index (Figure 5CDE). We also observed a smaller decrease in species richness in the 239 

double hu-mice fed with a LFD compared to the Post-FMT samples from double hu-mice fed with regular 240 

mouse chow. However, the HFD fed double hu-mice had the lowest species richness and the double hu-241 

mice fed with a LFD did not have decreased Simpson’s Diversity Index or Shannon Diversity Index 242 

compared to the Post-FMT fecal samples from the double hu-mice fed with a regular mouse chow.  243 

When Pre-FMT and human donor fecal sample data was added to the analysis, the Pre-FMT 244 

samples had pre-existing low diversity measurements (Supplemental Figure Diet_Comp.pdf). After 245 

antibiotic treatment and human FMT (Post-FMT), the double hu-mice on a regular mouse chow diet had 246 

increased alpha diversity measurements. After introduction of the HFD, the alpha diversity measurements 247 

dropped to near Pre-FMT levels. These data show that dietary fat content plays an important role in 248 

regulating gut microbiome diversity. However, the fecal samples from the LFD group also had a decrease 249 

in species richness compared to Post-FMT samples, which implicates other factors that may be important 250 

for gut microbiome diversity, such as dietary fiber content. 251 

Multiple differences were observed in the composition of the gut microbiome with the three 252 

different diets as shown by the heatmaps of bacterial relative abundance for Order and Family taxa levels 253 

(Figure 5FG). Significant differences in the relative abundance of gut bacterial taxa between double hu-254 

mice consuming different diets were found using Kruskal-Wallis tests with false discovery rate (FDR) 255 
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adjusted P values <.05 (Supplemental File Diet_KW.xlsx). Compared to LFD samples, HFD samples had 256 

a higher relative abundance of Verrucomicrobiaceae (11.35%, P=0.0037 FDR) and Lachnospiraceae 257 

(3.48%, P=0.0025 FDR) and a lower abundance of Firmicutes (-8.71%, P=0.0300 FDR), Clostridiales (-258 

5.96%, P=0.0279 FDR), and Ruminococcaceae (-2.44%, P=0.0028 FDR).  259 

Compared to Post-FMT samples from double hu-mice fed regular mouse chow, HFD fed double 260 

hu-mice had a higher relative abundance of Streptococcaceae (17.32%, P=0.0001 FDR), Bacteroides 261 

fragilis (3.47%, P=0.0001 FDR), Dorea (2.64%, P=0.0001 FDR), Enterobacteriaceae (1.23%, P=0.0001 262 

FDR), Enterococcaceae (0.90%, P=0.0074 FDR), Desulfovibrionaceae (0.63%, P=0.0007 FDR) and a 263 

lower abundance of Blautia (-9.73%, P=0.0001 FDR), Bacteroidaceae (-8.30%, P=0.0001 FDR), 264 

Clostridiales (-5.68%, P=0.0144 FDR), and Turicibacteraceae (-5.61%, P=0.0001 FDR). 265 

While our LFD group acted as a calorie matched control for the HFD group, we found the LFD 266 

fed double hu-mice also had an altered gut microbial composition compared to Post-FMT samples from 267 

double hu-mice fed regular mouse chow. LFD fed double hu-mice had a higher abundance of 268 

Streptococcaceae (16.16%, P=0.0001 FDR), Ruminococcaceae (2.20%, P=0.0102 FDR), 269 

Enterococcaceae (1.72%, P=0.0001 FDR), and Proteobacteria (1.22%, P=0.0443 FDR) and a lower 270 

abundance of Blautia (-9.97%, P=0.0001 FDR), Verrucomicrobiaceae (-8.93%, P= 0.0414*), 271 

Bacteroidaceae (-7.03%, P=0.0001 FDR), Turicibacteraceae (-5.49%, P=0.0001 FDR), and 272 

Erysipelotrichaceae (-2.47%, P=0.0495*). We found that differences in the both fat and fiber content of 273 

the three diets had a large impact on diversity and abundance of the gut microbiome in the double hu-274 

mice model. 275 

A random forest model was trained to predict if the gut microbiome profiles came from double 276 

hu-mice that were consuming a HFD or LFD based on the ASV features. The top 15 most important 277 

discriminatory features of the model based on area under the ROC curve were then identified. These 278 

features were scaled to 100 and plotted along with the average normalized ASV counts for each diet 279 

(Supplemental File Diet_Importance.pdf). The top ranked features were ASV107 and ASV476, both from 280 

Oscillospira, with ASV107 more prevalent with a LFD and ASV476 more prevalent with a HFD. 281 
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Included in the top 15 features were ASVs from Bacteroides, Clostridiales, Christensenellaceae, 282 

Christensenella, Lachnospiraceae, Clostridium citroniae, Clostridium methylpentosum, Oscillospira and 283 

Erysipelotrichaceae. Interestingly, ASV476 from Oscillospira, was identified in both the HIV-1 infection 284 

and diet random forest models. It was more prevalent in both HIV-1 infected double hu-mice and in 285 

double hu-mice consuming a HFD. Using a HFD we successfully induced microbial dysbiosis in our 286 

double hu-mice model. We found that compared to regular mouse chow, a diet consisting of high-fat 287 

content and a lack of fiber significantly changed the gut microbiome composition, including a decrease in 288 

alpha diversity. 289 

 290 

High-fat diet induced gut microbial changes were associated with increased systemic inflammation 291 

and immune activation 292 

To evaluate if the HFD fed double hu-mice had elevated levels of systemic inflammation, we 293 

measured the levels of inflammatory cytokines in plasma using multiplex immunoassays. Double hu-mice 294 

consuming a HFD had significantly higher levels of IL-1β than mice on the LFD (Figure 6A). 295 

Interestingly, the levels of IL-1β increased in the HFD fed double hu-mice in each timepoint tested 296 

(Figure 6B). The levels of inflammatory cytokines IL-6 and IFN-γ were both significantly higher in mice 297 

consuming the HFD compared to the LFD (Figure 6CDEF). However, levels of TNF-α were not significantly 298 

different between the two groups of mice, with the highest measured level found in the LFD group at 299 

0.5 weeks post diet initiation (Figure 6GH). Feeding with the HFD quickly raised the levels of systemic 300 

inflammatory markers IL-1β, IL-6, and IFN-γ, with progressively increased IL-1β at each measured 301 

timepoint. It was clear that the HFD not only led to microbial dysbiosis, but also increased the levels of 302 

systemic inflammation. 303 

Along with inflammation, increased immune activation is an important pathogenic factor for 304 

enhancing HIV-1 transmission and pathogenesis. Using flow cytometry, we measured immune activation 305 

of human immune cells in peripheral blood (Figure 7AB). Unlike the HIV-1 infected double hu-mice, 306 
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CD4+ T cell populations in both  HFD and LFD groups (Table 1) remained steady.   The activated T cell 307 

populations of CD4+ CD38+ and CD8+ CD38+ were increased in the HFD group compared to the LFD 308 

group. Additionally, the CD4+ HLA-DR+ population increased over time in the HFD fed group and the 309 

largest population of CD8+ HLA-DR+ cells were observed at 3 weeks after diet initiation in the HFD 310 

group. The expression of CD69 did not change with the introduction of the HFD or LFD in either CD4+ or 311 

CD8+ T cells. The HFD significantly altered the gut microbial composition in double hu-mice and was 312 

associated with both increased systemic inflammation and immune activation. 313 

 314 

Relationships between the gut microbiome and systemic inflammation and immune activation 315 

 . To better understand the bidirectional relationship between the gut microbiota and immune 316 

system,  we compared plasma derived inflammatory cytokine levels of IL-1β, IL-6, IFN-γ, and TNF-α with 317 

matched gut microbiome profiles from our double hu-mice experiments (Supplemental File 318 

Correlations.xlsx). Ten ASVs were significantly correlated with IL-1β, including 7 from Clostridiales and 3 319 

from Klebsiella (Supplemental File Cytokine_Correlations.pdf). None of the significant ASVs were found 320 

in the sequenced human donor samples. Interestingly, 9 of 10 ASVs correlated with IL-1β were also 321 

significantly correlated with IL-6. Additionally, IL-6 was significantly correlated with ASV726 322 

Christensenellaceae, which was also found in human donor samples. 20 ASVs were significantly 323 

correlated with IFN-γ, of which 8 were also found in human donor samples. Significantly correlated ASVs 324 

included Bacteroides eggerthii, Blautia obeum, and Coprococcus catus. Several ASVs mapped to 325 

Clostridiales, including two from Oscillospira. Twenty-three ASVs were significantly correlated with TNF-326 

α, 10 of which were also found in human donor samples. Some of the significant ASVs were mapped to 327 

Coriobacteriaceae, Bacteroides uniformis, Rikenellaceae, Enterococcus, Blautia, Oscillospira; Citrobacter, 328 

and Klebsiella. Interestingly, many the ASVs that correlated with IL-1β and IL-6 were the same and these 329 

ASVs were not found in the human donor samples. However, ASVs that correlated with IFN-γ, and TNF-α 330 
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were much more likely to be found in human donor samples. While not a direct sign of causation, many 331 

of the identified ASVs came from bacteria that have established interactions with the immune system or 332 

are known to be potentially pathogenic. 333 

 To better understand the relationship between the human-like gut microbiome and human 334 

immune cell activation, we compared flow cytometry data derived from peripheral blood cells with 335 

matched gut microbiome profiles from our double hu-mice experiments (Supplemental File 336 

Correlations.xlsx). We identified 54 significant correlations corresponding to 37 unique ASVs, including 6 337 

ASVs that can be found in the human donor samples. ASV14 Bacteroides and ASV242 Clostridiales, were 338 

positively correlated with several markers of CD8+ T cell immune activation (Supplemental Figure 339 

Immune_Correlations.pdf). ASV280 Barnesiellaceae was negatively correlated with CD4+ T cells and 340 

positively correlated with activation of CD8 T cells. Interestingly, ASV280 was also positively correlated 341 

with the level of plasma IFN-γ.  Additionally, several more ASVs were negatively correlated with CD4 T 342 

cells including ASV535 Christensenella, ASV606 Christensenellaceae, and ASV644 Ruminococcaceae. 343 

ASV717 Clostridiales was negatively correlated with human CD45+ immune cells and positively 344 

correlated with CD8 T cell immune activation, while ASV870 Clostridiales was also positively correlated 345 

with CD8 T cell immune activation. ASV955 Oscillospira and ASV965 Oscillospira were both negatively 346 

correlated with CD4 T cells and positively correlated with CD8 T cell activation. Additionally, several ASVs 347 

were identified to be positively correlated with both markers for CD8 T cell activation and plasma IFN-γ. 348 

These ASVs included members of Ruminococcaceae, Lachnospiraceae, and Bacteroides eggerthii. We 349 

were able to identify several ASVs that correlated with both CD4 T cell loss and CD8 T cell activation. 350 

Further, ASVs that correlated with IFN-γ were often also correlated with CD8 T cell activation.  351 

 352 

Discussion 353 
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The gut microbiome and immune system have a complex and interdependent relationship. As we 354 

previously reported and also confirmed in this study, we found that the murine gut microbiome of regular 355 

hu-BLT mice (hu-mice) had lower levels of diversity and differed greatly in composition from the 356 

microbiomes of our human fecal donors [58, 59]. These large differences between the gut microbiomes of 357 

murine origin from  hu-mice and humans may limit the translatability of experimental results [55, 56]. In 358 

this study, the double hu-mice harboring both a human immune system and human gut microbiome 359 

allowed for the study of the relationship between the human gut microbiome and human immune system 360 

during HIV-1infection and a HFD. We tracked the compositional changes to the gut microbiome before 361 

and after human FMT, during HIV-1 infection for up to 12 weeks, and HFD for up to 7 weeks. During 362 

these longitudinal studies, we also measured plasma pro-inflammatory cytokines and quantified immune 363 

activation of human CD4 and CD8 T cells isolated from peripheral blood and spleen. 364 

 HIV-1 infection profoundly alters the human immune system with long lasting consequences, 365 

such as persistent immune activation and inflammation despite suppressive ART [14, 24, 70, 71]. The gut 366 

and gut microbiome may play an important role in many aspects of HIV-1 mucosal transmission, CD4+ T 367 

cell death, and the elevated risk of comobidities in PLWH on ART. Therefore, changes in the gut 368 

microbiome during HIV-1 infection have been widely studied [19, 20, 72-92]. However, many of these 369 

human studies varied in sampling and analytical methods, as well as geography, age, sex, diet, and 370 

lifestyle choices of the study subjects. Further, it is difficult to study very early stages of HIV-1 infection 371 

and there is often a wide range of disease progression rate, timing of ART treatment, and treatment 372 

outcomes in human studies. As such, it has been difficult to discern changes in the gut microbiome due to 373 

HIV-1 infection or other factors across the various studies. One major finding in earlier studies was that 374 

the gut microbiome profiles of HIV infection had higher levels of Prevotella [72, 77, 81, 86]. However, 375 

studies controlling for lifestyle choices, such as men who have sex with men (MSM), have not found 376 

significant changes in Prevotella levels due to infection, but rather have found high levels of Prevotella in 377 

MSM [19, 80, 87, 89, 93-96]. While important questions remain as to the impact of gut microbiome 378 

profiles with a high abundance of Prevotella on HIV-1 transmission, pathogenesis, and treatment, this is a 379 
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clear example of the difficulty of studying the gut microbiome in humans due to the many confounding 380 

factors. 381 

Non-human primates (NHP) infected with SIV as animal models have successfully been used to 382 

study many aspects of HIV-1 pathogenesis. However, the subtle changes in the gut microbiome of SIV 383 

infected NHP were not consistent with the more significant changes observed in HIV-1 infected human 384 

studies [97-99]. In this study, we utilized a unique double hu-mice model to complement the studies 385 

performed in humans and NHP. Compared to NHP, our double hu-mice model has the advantage of using 386 

HIV-1 instead of SIV for infection and have both a human-like gut microbiome and human immune 387 

system. Importantly, we can use the model to track changes in the gut microbiome longitudinally, from 388 

very early to chronic disease stages, while controlling for many of the confounding factors that make 389 

studies in humans difficult. 390 

In this study, compared to uninfected double hu-mice, infected double hu-mice had a higher 391 

relative abundance of Bifidobacteriaceae and Ruminococcaceae and a lower abundance of 392 

Lactobacillaceae and Turicibacteraceae. Compared to pre-infection samples, infected double hu-mice 393 

had a higher relative abundance of Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Rikenellaceae, 394 

and Ruminococcaceae and a lower relative abundance of Erysipelotrichaceae, Lachnospiraceae, and 395 

Verricomicrobiaceae. A meta-analysis of sex and lifestyle matched controlled studies found that HIV-396 

infected populations were enriched with Erysipelotrichaceae, Enterobacteriaceae, Desulfovibrionaceae, 397 

and Fusobacteria and depleted of Lachnospiraceae, Ruminococceae, Bacteroides, and Rikenellaceae[93]. 398 

In this study, we did not find large shifts in the gut microbiome due to HIV-1 infection alone. We believe 399 

that housing the hu-mice in controlled environments without natural exposure to outside pathogens may 400 

account for why we did not observe increases in relative abundance of bacteria like Erysipelotrichaceae, 401 

Enterobacteriaceae, Desulfovibrionaceae. Further, increases in Fusobacteria may be linked to ART 402 

treatment itself and not untreated HIV-1 infection. The double hu-mice model may be further improved 403 

upon by potentially introducing outside microbes during infection and by studying the impact of ART use 404 

by itself and during treatment of HIV-1 infection. 405 
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The altered gut microbiome due to HIV-1 infection may also play an important role in HIV-1 406 

pathogenesis, including the loss of CD4 T cells, inflammation, and immune activation. In this study, we 407 

found that HIV-1 infection of double hu-mice increased the levels of systemic pro-inflammatory 408 

cytokines IL-1β, IL-6, IFN-γ, and TNF-α. As expected, HIV-1 infected double hu-mice had significantly 409 

decreased CD4 T cells and increased immune activation manifested in three populations of activated CD8 410 

T cells (CD38+, CD69+, or HLA-DR+). Moreover, CD4 T cell loss and T cell immune activation was 411 

also confirmed in lymphocytes isolated from the spleens of infected double hu-mice. We also investigated 412 

the relationships between the observed immunopathogenesis with the gut microbiome. We found nine 413 

ASVs that were negatively correlated with CD4 T cells including ASVs from Barnesiellaceae, 414 

Christensenellaceae, Lachnospiraceae, Oscillospira, and, Ruminococcus. ASVs from Bacteroidales and 415 

Odoribacter were correlated with increased CD4+ CD38+ populations. Thirty-seven ASVs positively 416 

correlated with increased CD8 T cell activation, of which 8 were also positively correlated with increased 417 

levels of plasma IFN-γ. These 8 ASVs included members of Barnesiellaceae, Lachnospiraceae, 418 

Ruminococcaceae, Oscillospira, and Bacteroides eggerthii. Our random forest model trained to 419 

distinguish gut microbiome profiles of HIV-1 infected and uninfected double hu-mice identified several 420 

bacteria with known links to the immune system including ASVs from Ruminococcus, Lachnospiraceae, 421 

Christensenellaceae, Oscillospira, Dorea, Butyricicoccus pullicaecorum and Blautia producta. While not 422 

a direct measure of causation, these correlations provide a foundation for future study in order to narrow 423 

down key groups of bacteria that play a role in immunopathogenesis during HIV-1 infection. 424 

Another important aspect of this study was the establishment of gut microbial dysbiosis in double 425 

hu-mice using a HFD. Establishing a state of microbial dysbiosis from a gut microbiome engrafted from a 426 

healthy human fecal donor sample was an important first step in order to determine the role the gut 427 

microbiome in HIV-1 rectal transmission. We showed that a HFD quickly lowered the alpha diversity and 428 

changed the composition of the gut microbiome. We also found that double hu-mice that consumed a 429 

HFD had increased levels of pro-inflammatory cytokines IL-1β, IL-6, IFN-γ, along with increased 430 
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populations of activated CD4 and CD8 T cells. We showed that CD4+ CD38+ population, which were 431 

decreased as a result of HIV-1 infection, were increased with a HFD. In our study, we showed that diet 432 

and the corresponding gut microbial dysbiosis can have drastic systemic effects on inflammation and 433 

immune activation. Future studies are needed to determine if gut microbial dysbiosis impacts 434 

susceptibility to HIV-1 rectal transmission and subsequent pathogenesis. 435 

 We also would like to point out the limitations of our study. First, we only characterized the gut 436 

bacteria and did not investigate the gut virome. During HIV-1 infection there is an expansion of the 437 

virome which may contribute to the observed persistent immune activation and inflammation in PLWH 438 

[80]. Second, metagenomic sequencing would also capture functional changes in the gut microbiota 439 

important to HIV-1 pathogenesis. Last, the double hu-mice model could be expanded to include patient 440 

derived fecal donor samples and fecal donors with diverse gut microbiome profiles. Going forward, we 441 

believe that double hu-mice could provide a complimentary model to help answer some of the 442 

outstanding questions about the relationship between the gut microbiome and HIV-1 infection. 443 

 444 

Conclusions 445 

Here, we describe the changes in the gut microbiome and human immune system due to HIV-1 446 

infection and a HFD using our double hu-mice model. HIV-1 infection led to changes in the composition 447 

of the human-like gut microbiome that was associated with CD4 T cell loss and high levels of 448 

inflammation and immune activation. Microbial dysbiosis was quickly established in double hu-mice 449 

through feeding a HFD and led to systemic immune activation and inflammation. We also identified a 450 

subset of gut bacteria that was closely associated with systemic inflammation and immune activation in 451 

double hu-mice infected with HIV-1 or fed a HFD. Importantly, this study demonstrated how the double 452 

hu-mice model can be used to longitudinally study the complex in vivo interactions of the gut 453 

microbiome and human immune system. 454 

 455 

Methods 456 
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Generation of hu-BLT mice 457 

All methods described here were conducted as we previously reported in accordance with 458 

Institutional Animal Care and Research Committee (IACUC)-approved protocols at the University of 459 

Nebraska-Lincoln (UNL)[57, 60, 61, 64]. The IACUC at the University of Nebraska-Lincoln (UNL) has 460 

approved two protocols related to generating and using hu-BLT mice, including Double Hu-Mice. 461 

Additionally, the Scientific Research Oversight Committee (SROC) at UNL has also approved the use of 462 

human embryonic stem cells and fetal tissues, which are procured from the Advanced Bioscience 463 

Resources for humanized mice studies (SROC# 2016—1-002). 464 

Briefly, 6- to 8-week-old female NSG mice (NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ, catalog number 465 

005557; (Jackson Laboratory) were housed and maintained in individual microisolator cages in a rack 466 

system capable of managing air exchange with prefilters and HEPA filters. Room temperature, humidity, 467 

and pressure were controlled, and air was also filtered. Mice given autoclaved and acidified drinking 468 

water ab libitum and were fed one of the following diets determined by the experimental group, irradiated 469 

Teklad global 14% protein rodent chow (Teklad 2914), irradiated Teklad Rodent Diet With 10 kcal% Fat 470 

(No Sucrose) (Teklad K12450Ki), or irradiated Teklad Rodent Diet With 60% kcal% Fat (Teklad 471 

D12492i). On the day of surgery, mice received whole-body irradiation at the dose of 12 cGy/gram of 472 

body weight with the RS200 X-ray irradiator (RAD Source Technologies, Inc., GA). Each irradiated 473 

mouse was given 130-170 ul of a mixture of Ketamine/Xylazine (0.27 ml of Ketamine at the 474 

concentration of 100 mg/ml and 0.03 ml of Xylazine at the concentration of 100 mg/ml to 2.7 ml of sterile 475 

saline) by intraperitoneal (IP) injection for anesthesia. Additionally, each mouse was given 100 ul 476 

Buprenex (half-life 72 hours, 1mg/kg of body weight) by subcutaneous injection for long lasting pain 477 

management and 100 ul (858 ug) Cefazolin by IP injection for antibiotic prophylaxis. Isofluorane gas at 478 

3-5% was given if additional anesthesia was needed at any point during surgery. After proper levels of 479 

anesthesia were verified by pedal reflex testing, each mouse was implanted with one piece of human fetal 480 

thymic tissue fragment sandwiched between two pieces of human fetal liver tissue fragments within the 481 

murine left renal capsule. Within 6 hours of surgery, mice were injected via the tail vein with 1.5 × 105 to 482 
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5 × 105 CD34+ hematopoietic stem cells isolated from human fetal liver tissues. Human fetal liver and 483 

thymus tissues were procured from Advanced Bioscience Resources (Alameda, CA). After 10 weeks, 484 

human immune cell reconstitution in peripheral blood was measured by a fluorescence-activated cell 485 

sorter (FACS) Aria II flow cytometer (BD Biosciences, San Jose, CA) using antibodies against mCD45-486 

APC, hCD45-FITC, hCD3-PE, hCD19-PE/Cy5, hCD4-Alexa 700, and hCD8-APC-Cy7 (catalog numbers 487 

103111, 304006, 300408, 302209, 300526, and 301016, respectively; BioLegend, San Diego, CA). Raw 488 

data were analyzed with FlowJo (version 10.0; FlowJo LLC, Ashland, OR). All humanized mice used in 489 

this study had high levels of human immune cell reconstitution with an average of 89.4% hCD45+ cells in 490 

peripheral blood 10 weeks post-surgery. The mice were randomly assigned into experimental groups with 491 

similar immune reconstitution levels. Mice were euthanized at humane study endpoints with carbon 492 

dioxide followed by cervical dislocation in accordance with approved Institutional Animal Care and 493 

Research Committee (IACUC)-approved protocols at the University of Nebraska-Lincoln (UNL). 494 

Following the approved protocols, animals were euthanized before or at the point of observed impaired 495 

ambulation, prolonged drowsiness or aversion to activity, lack or physical or mental alertness, prolonged 496 

inappetence, difficulty breathing, chronic diarrhea or constipation, inability to remain upright, or at the 497 

discretion of the Veterinary Staff. 498 

 499 

Antibiotic treatment 500 

 A broad-spectrum antibiotic cocktail was prepared fresh daily consisting of Metronidazole (1 501 

g/L), Neomycin (1 g/L), Vancomycin (0.5 g/L), and Ampicillin (1 g/L). The antibiotic cocktail was given 502 

to the mice ad libitum in the drinking water along with grape flavored Kool-Aid to improve palatability. 503 

Control group mice were given only grape flavored Kool-Aid in the drinking water. During antibiotic 504 

treatment, cages were changed daily to limit re-inoculation of pre-existing bacteria to the mice due to 505 

their coprophagic behavior. Antibiotics were given for 14 days for all double hu-mice. Post-antibiotic 506 

treatment, mice were given autoclaved non-acidified deionized drinking water. Body weight was carefully 507 
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monitored during this time and If needed, mice were treated with Intraperitoneal (IP) injections of 508 

Ringer’s solution to mitigate any effects of dehydration. 509 

 510 

Donor samples and Fecal transplant 511 

 At 24 and 48 hours after the completion of antibiotic pre-treatment, mice were given 200 ul of 512 

human fecal material via oral gavage. OpenBiome supplied 3 FMT Upper Delivery Microbiota 513 

Preparations from 3 different healthy human donors (Donor 65, Donor 74, Donor 82). Samples were 514 

thawed once before fecal transplant to aliquot the samples within an anaerobic chamber. During this step, 515 

an equal portion of each of the samples were mixed together to create an unbiased human donor sample. 516 

 517 

HIV-1 infection and q-RT-PCR 518 

To infect double hu-mice with HIV-1, mice were intraperitoneally injected with 4.5*10^5 TCID of an 519 

equal mixture of HIV-1SUMA and HIV-1JRCSF. To verify infection, plasma viral RNA was extracted using a 520 

QIAamp ViralRNA minikit (Qiagen). Plasma viral load was conducted using reverse transcriptase 521 

quantitative PCR (qRT-PCR) on a C1000 ThermalCycler and the CFX96 Real-Time system (Bio-Rad) 522 

and the TaqMan FastVirus 1-Step master mix (Life Technologies). As previously reported, the following 523 

primers were used for the plasma viral load assay: Forward Primer: GCCTCAATAAAGCTTGCCTTGA; 524 

Reverse Primer: GGGCGCCACTGCTAGAGA; Probe: /56-525 

FAM/CCAGAGTCA/ZEN/CACAACAGACGGGCACA/3IABkFQ/[64]. 526 

 527 

Multiplex immunoassay for measuring plasma cytokines 528 

Plasma from double hu-mice was tested for the following inflammatory cytokines: IFN-γ, IL-1β, IL-2, IL-529 

4, IL-6, IL-10, IL-12 p70, IL-17A, TNFα using the ProcartaPlex high sensitivity 9-Plex Human Panel 530 

(EPXS090-12199-901, Thermofisher Scientific, Waltham, MA). Samples were measured using a 531 

Luminex MAGPIX instrument (Luminex Corporation, Austin, TX).  532 

 533 
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Lymphocytes isolation and immune activation flow cytometry panel 534 

Spleens from euthanized double hu-mice were placed on a strainer with 70-μm nylon mesh 535 

(Cat#22363548, Fisher Scientific) and the strainer was placed on a 50ml Centrifuge tube (Corning). 536 

Spleen tissue was gently pressed with the flat end of a 5-ml syringe to release the splenocytes into cell 537 

cultural medium that contained 90% RPMI-1640 (Cat#11875, Life technologies) supplemented with 10% 538 

heat-inactivated fetal bovine serum [HI-FBS] (Cat#SH30071.03, Thermo Scientific), penicillin [100 539 

IU/ml]-streptomycin [100 ug/ml] (Quality Biological, Inc), 2mM/ml L-glutamine (Cat#25-005-CI, 540 

Corning). Slowly, the splenocyte suspension was layered onto Histopaque-1077 (Sigma-Aldrich), and 541 

centrifuge at 350×g for 30 mins at room temperature. The “buffy coat” mononuclear cells layer were 542 

transferred into a 50ml Centrifuge tube (Corning) and washed with cold PBS. Human immune cell 543 

activation in peripheral blood and lymphocytes isolated from the spleen were measured by a fluorescence-544 

activated cell sorter (FACS) Aria II flow cytometer (BD Biosciences, San Jose, CA) using antibodies 545 

against mCD45-APC, hCD45-FITC, hCD3-PE, hCD4-Alexa Fluor 700, hHLA-DR-BV421, hCD38-PE-546 

Cy5, hCD69-BV785, hCD8a-APC-Cy7, mCD45-APC, Viability-APC (catalog numbers 304006, 300408, 547 

300526, 307636, 303508, 310932, 301016, 103112 (BioLegend, San Diego, CA), and 65-0864-14 548 

(eBioscience, San Diego, CA). Raw data were analyzed with FlowJo (version 10.0; FlowJo LLC, 549 

Ashland, OR). 550 

 551 

Mouse fecal collection and DNA extraction 552 

 Individual mice were placed into autoclaved paper bags within a biosafety hood until fresh fecal 553 

samples were produced. Fecal samples were stored in 1.5 ml Eppendorf tubes at -80 °C until DNA 554 

extraction. DNA was extracted from the fecal samples using the phenol:chloroform:isoamyl alcohol with 555 

bead beating method described previously [100]. Briefly, fecal samples were washed three times with 1 556 

ml PBS buffer (pH 7). After the addition of 750 ul of lysis buffer, samples were transferred to tubes 557 

containing 300 mg of autoclaved 0.1 mm zirconia/silica beads (Biospec). 85 ul of 10% SDS solution and 558 

40 ul of Proteinase K (15mg/ml, MC500B Promega) were added and samples were incubated for 30 559 
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minutes at 60° C. 500 ul of Phenol:Chloroform:Isoamyl alcohol (25:24:1) was added and then samples 560 

were vortexed. Samples were then put into a bead beater (Mini-beadbeater 16 Biospec) for 2 minutes to 561 

physically lyse the cells. The upper phase of the sample was collected and an additional 500ul of 562 

Phenol:Chloroform:Isoamyl alcohol (25:24:1) was added. After samples were vortexed and spun down, 563 

the DNA in the upper phase was further purified twice with 500 ul of Phenol:Chloroform:Isoamyl alcohol 564 

(25:24:1). and was then precipitated with 100% Ethanol (2.5 x volume of sample) and 3M Sodium acetate 565 

(.1 x volume of sample) overnight at -20° C. Samples are then centrifuged and dried at room temperature. 566 

DNA was resuspended in 100 ul of Tris-Buffer (10mM, pH8) and stored at -20° C. DNA samples were 567 

quality checked by nanodrop (ND-1000 Nanodrop). 568 

 569 

16S rRNA gene sequencing 570 

16S rRNA gene sequencing was performed at the University of Nebraska Medical Center 571 

Genomics Core Facility. DNA normalization and library prep were performed followed by V3-V4 16S 572 

rRNA amplicon gene sequencing using a MiSeqV2 (Illumina) The following primer sequences were 573 

used: (Primer sequences: Forward Primer = 5' 574 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG 16S Amplicon 575 

PCR Reverse Primer = 5' 576 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC 577 

Illumina overhangs: Forward overhang: 5’ 578 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG�[locusspecific sequence] Reverse overhang: 5’ 579 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG�[locusspecific sequence]). 580 

 581 

Generation of the amplicon sequence variant table and data analysis 582 

 Illumina-sequenced paired-end fastq files were demultiplexed by sample and barcodes were 583 

removed by the sequencing facility. The University of Nebraska Holland Computer Center Crane cluster 584 
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was used to run the DADA2 v1.8 R package in order to generate an amplicon sequence variant (ASV) 585 

table[101]. The DADA2 pipeline was performed as follows, sequences were filtered and trimmed during 586 

which any remaining primers, adapters, or linkers were also removed. The sequencing error rates were 587 

estimated using a random subset of the data. Dereplication of the data combined all identical sequencing 588 

reads into unique sequences with a corresponding abundance. The core sample inference algorithm was 589 

then applied to the dereplicated data. The forward and reverse reads were then joined to create the full 590 

denoised sequences and an initial ASV table was generated. Any sequences outside the expected length 591 

for the V3-V4 amplicon were then filtered from the table. Chimeric sequences were then removed and a 592 

final ASV table was generated. Taxonomy was assigned using the Greengenes 13.8 database and RDP 593 

Classifier with a minimal confidence score of 0.80 [102, 103]. Analysis was performed using R package 594 

mctoolsr and samples were rarified to 4630 ASVs for downstream analysis. GraphPad Prism 5 and 595 

Tableau were used to create some figures. Correlations were performed in R using the rcorr.adjust 596 

function in the Hmisc package to compute matrices Spearman correlations along with the pairwise p-597 

values among the correlations. The p-values were corrected for multiple inference using Holm's method. 598 

The random forest models and accompanied variable importance values were generated in R using the 599 

randomForest package. 600 
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 973 

Figure Legends 974 

Figure 1. HIV-1 infected double hu-mice had a significantly different gut microbiome composition 975 

compared to uninfected double hu-mice. Non-metric multidimensional scaling (NMDS) and Principal 976 
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coordinate analysis (PCoA) plots AB) Clustering of post fecal material transplant (Post-FMT), HIV-1 977 

infected (Infected) and uninfected (Uninfected) double humanized mice gut microbiome profiles. CD) 978 

Clustering of post fecal material transplant (Post-FMT), HIV-1 infected (Infected) and uninfected 979 

(Uninfected) double humanized mice gut microbiome profiles based on sample collection date. EF) 980 

Clustering of post fecal material transplant (Post-FMT), HIV-1 infected (Infected) and uninfected 981 

(Uninfected) double humanized mice gut microbiome profiles based on body weight on collection date. 982 

 983 

Figure 2. HIV-1 infected double hu-mice had a significantly different gut microbiome composition 984 

compared to uninfected double hu-mice. Gut microbiome profiles for humanized mice before receiving 985 

antibiotic treatment and subsequent fecal material transplants (Pre-treatment), double humanized mice 986 

post fecal material transplant (Post-FMT), HIV-1 infected double humanized mice (Infected) and 987 

uninfected double humanized mice (Uninfected), and human donor fecal samples (Donor) A) Gut 988 

microbiome profiles displayed by Non-metric multidimensional scaling (NMDS). B) Gut microbiome 989 

profiles displayed by Principal coordinate analysis (PCoA). C) Alpha diversity of gut microbiome profiles 990 

shown by species richness. D) Alpha diversity of gut microbiome profiles shown by Shannon Index. E) 991 

Alpha diversity of gut microbiome profiles shown by Simpson Index. F) Taxa abundance plot of gut 992 

microbiome profiles by Order level. G) Taxa abundance plot of gut microbiome profiles by Family level. 993 

 994 

Figure 3. HIV-1 infected double hu-mice had increased systemic human inflammatory cytokines. 995 

Human inflammatory cytokine measures from plasma of double humanized mice. Samples were collected 996 

from double humanized mice at 7 and 12 weeks post infection (WPI). Cytokine levels shown by mean 997 

fluorescence intensity (MFI). A) IL-1β B) IL-6 C) IFN-γ D) TNF-α. 998 

Figure 4. HIV-1 infected double hu-mice had increased systemic human immune cell activation. A) 999 

Human immune cell populations from peripheral blood of double humanized mice up to 12 weeks post 1000 

HIV-1 infection. All immune populations were lymphocyte+, human CD45+ and mouse CD45-, and 1001 

human CD3+) and are represented by the percentage of their parent gate. B) Percentage of peripheral 1002 
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blood human immune cell populations shown as a mean for the longitudinally collected HIV-1 infected or 1003 

uninfected double humanized mice. For each population of human immune cells a multiple comparison 1004 

test for significance was performed between the sample groups (ANOVA with Tukey Test with adjusted 1005 

P values < 0.05). 1006 

 1007 

Figure 5. Diet significantly altered the gut microbiome of double hu-mice A) Non-metric 1008 

multidimensional scaling (NMDS) plot displaying double humanized mice on a mouse chow diet, a high 1009 

fat diet, or a low fat diet. B) Principal coordinate analysis (PCoA) displaying double humanized mice on a 1010 

mouse chow diet, a high fat diet, or a low fat diet. C) Alpha diversity plot of species richness comparing 1011 

double humanized mice on a mouse chow diet, a high fat diet, or a low fat diet. D) Alpha diversity plot of 1012 

the Shannon index comparing double humanized mice on a mouse chow diet, a high fat diet, or a low fat 1013 

diet. E) Alpha diversity plot of the Simpson index comparing double humanized mice on a mouse chow 1014 

diet, a high fat diet, or a low fat diet. F) Taxa abundance plot by Order level comparing double humanized 1015 

mice on a mouse chow diet, a high fat diet, or a low fat diet.  G) Taxa abundance plot by Family level 1016 

comparing double humanized mice on a mouse chow diet, a high fat diet, or a low fat diet. 1017 

 1018 

Figure 6. Double hu-mice fed a high fat diet had increased systemic human inflammatory cytokines. 1019 

Human inflammatory cytokine measures from plasma of double humanized mice. Samples were collected 1020 

from double humanized mice 0.5, 1.5, and 3.5 weeks post low fat diet (LFD) or high fat diet (HFD) 1021 

initiation. Cytokine levels shown by mean fluorescence intensity (MFI). A) All samples IL-1β B) 1022 

Longitudinal IL-1β C) All samples IL-6 D) Longitudinal IL-6 E) All samples IFN-γ F) Longitudinal IFN-1023 

γ G) All samples TNF-α H) Longitudinal TNF-α. 1024 

 1025 

Figure 7. Double hu-mice fed a high fat diet had increased systemic human immune cell activation. 1026 

A) Human immune cell populations from peripheral blood of double humanized mice up to 8 weeks on a 1027 
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regular mouse chow (Chow), low fat (LFD), or high fat diet (HFD). All immune populations were 1028 

lymphocyte+, human CD45+ and mouse CD45-, and human CD3+) and are represented by the percentage 1029 

of their parent gate. B) Percentage of peripheral blood human immune cell populations shown as a mean 1030 

for the longitudinally collected double humanized mice on a chow, LFD, or HFD. For each population of 1031 

human immune cells a multiple comparison test for significance was performed between the sample 1032 

groups (ANOVA with Tukey Test with adjusted P values < 0.05). 1033 
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