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Abstract

We present a novel combination of generative and predictive machine
learning models for discovering unique protein inhibitors. The new method
is assessed on its ability to generate unique inhibitors for the cancer
associated protein kinase, CDK9. We validate our method by performing
biochemical assays, attaining a hit rate of more than 10%, demonstrating
the method to be a notable improvement upon a more standard, and
somewhat naive approach. Moreover, we imposed the additional challenge
of finding inhibitors that are readily synthesized. Importantly, two new
inhibitors are found, with one being distinct from reported CDK9 inhibitors.
We discuss the results in the context of modern machine learning principles
and the desire expressed by the rational drug design community to secure
molecules that are structurally different, yet with high binding affinities,
to structurally determined protein targets.

1 Introduction

Modern machine learning tools have become impactful, perhaps even essential,
in the early stages of the drug design process. Today, deep learning models excel
at predicting various chemical properties [I], and deep generative models in con-
junction with reinforcement learning are able to efficiently search molecular space
for molecules that can optimize several chemical properties simultaneously [2].

*These authors contributed equally to this research. Correspondence to: Hagen Triendl
<hagentriendl@gmail.com>.
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The established predictive and generative benchmarks, however, only reflect
the real challenges of drug discovery to a limited degree; datasets are usually
limited to very small subsets of drug-like molecular space and it is much easier
to optimize rule-based or statistical predictors for chemical properties than true
values coming from experimental tests. Real-world demonstrations of utility and
impact of machine learning tools require far more effort, such as efficient incor-
poration of appropriate domain knowledge, optimization of computer resources,
and, most importantly, the flexibility to address new challenges not reflected in
well-curated benchmarks. The purpose of this work is to demonstrate how to
address some of the above challenges when pursuing machine-learning driven,
budget-constrained, drug discovery programs.

Recently, a machine learning model was employed to find new inhibitors
against the kinase target discoidin domain receptor 1, ostensibly demonstrating
that such methods can generate new lead candidates in a matter of weeks [3].
However, it was soon pointed out that the newly found inhibitors were very
similar to some of the molecules in the training set [4], calling the utility of such
methods into question.

In this work we aim to generate new inhibitors for the cyclin-dependent
kinase 9 (CDK9). CDK9 is a serine/threonine kinase that was first identified in
the early 1990s. It is a member of the CDK family, which plays critical roles
in the regulation of cell cycles and transcription. CDK9 is a transcriptional
regulator that controls the expression of anti-apoptotic proteins that institute
immortality in cancer cells. It interacts with many transcription factors (TFs)
and regulates their activities, and it is a recognized molecular target in prostate
cancer treatment [5].

We encountered a number of specific challenges in our attempts to find new
CDKO9 inhibitors:

e Data bias: Publicly available data for binding affinity prediction is very
limited, and moreover biased to successes and to non-diversity.

e Binding affinity bias: Most molecules are inactive against a given target,
and the chance to randomly find active molecules is very low. A successful
model must align with such a prior.

e Generalizability: Machine learning models often work in a certain domain
of chemical space but can fail spectacularly outside of that region. This is
particularly impactful in activity prediction, where datasets on individual
targets are very limited and non-diverse. Generative models can easily
generate molecules that are outside the domain to which predictive models
generalize. When optimizing for high binding affinity this means that
molecules are generated that are falsely predicted to be strongly binding.

e Commercially available molecules: We pursued a cost-efficient strategy
using minimal synthesis resources, and exclusively selected molecules from
existing molecule libraries. We restricted ourselves to molecules that are
in the Enamine Discovery Diversity Set [6], which is a set of molecules
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Figure 1: Schematical overview of the pipeline in the first approach. The different
parts of the pipeline are indicated by differently colored boxes. Green is for the
data curation, blue for predictive training and use of predictive models, yellow
indicates filtering processes, and orange is for biochemical testing.

already plated ready for assays, and the Enamine REAL database [7],
which consists of compounds that can be synthesized in one step. This
created a severe restriction on the available chemical search space.

Our first approach was to find new hits against CDK9 by performing virtual
screening of the Enamine Discovery Diversity Set using a deep predictive activity
model, and simultaneously using predictions against other kinase targets to
ensure selectivity in that class. After this approach failed, we analyzed the
aforementioned challenges in more detail and developed tools to overcome them.
Based on our enhanced approach, we observed, in a second round of synthesis
and biochemical testing, a hit rate above 10% (7 hits out of 69 tested molecules),
plus active molecules that are clearly distinct from known inhibitors.

2 Strategy for finding CDK9 inhibitors

Below we give an abbreviated description of the methodologies developed. More
detailed descriptions are provided in Section

2.1 A first approach: Virtual screening with a multitask
binding affinity model.

Our first approach to finding CDK9 inhibitors was based on virtual screening of
the Enamine Discovery Diversity library [6]. We used a predictive model that
was trained to predict pIC50 values for a set of 14 CDK targets, including CDK9.
We then chose molecules that were predicted to be active against CDK9 but not
any of the 13 other CDK targets, and had convincing docking poses. Figure
shows the pipeline that we used. In this way we chose 207 molecules, given in
Section [A78] that were tested in biochemical assay against CDK9. None of the
molecules was found to have an inhibition greater than 50% at a concentration
of 30 umolE In hindsight, we could already identify a problem in our naive
machine learning strategy related to optimizing for selectivity. It is well-known
that all kinases have very similar functions and, therefore, share a lot of binders.
Hence, activity predictions against different CDK targets are strongly correlated,
and predictions that a molecule is active against CDK9 but inactive against all
other considered targets have a high probability to be wrong on their CDK9

130 pmol is equivalent to 30 micromoles of the compound in 1 liter of solution for the assay.
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activity prediction. This means that we accidentally picked molecules that have
a high uncertainty on their CDK9 activity predictions. Together with the fact
that the used datasets over-represent active molecules, this could explain why
no inhibitors were found using this approach.

2.2 A refined strategy: Optimized inhibitor generation in
domain of predictive binding affinity model

2.2.1 Developing a generalizing binding affinity model

One obvious problem with our first attempt was the strong bias toward active
components in the dataset. In order to investigate how this bias in the dataset
translates into a bias of the predictive model, we decided to investigate the
distribution of pIC50 values and compare this to expectation from domain
experts to estimate the statistical chance for the model to be accurate. The
distribution of expected pIC50 values can be obtained by predicting pIC50 values
for randomly sampled molecules from the space of interest (i.e. the Enamine
REAL dataset). We found that using a model based on the original dataset
roughly three percent of all molecules were classified as active (meaning pIC50
> 7). This is a rate that is orders of magnitude higher than what one would
expect in reality, meaning that most molecules that the predictive model identifies
as actives must be false positives.

We first tested changing the distribution of predictions by randomly labelling
molecules as inactive during training, using either the same molecules or different
molecules in each epoch. This naive method unfortunately barely changed
the distribution of target values, but created a lot of noise that reduced the
performance of the model.

The distribution improved drastically after the negative results for the 207
molecules that had been tested in the first experiment were added to the dataset.
The number of active molecules reduced to 0.1 percent, corresponding to an
improvement in precision by roughly a factor of 30. Though a ratio of 0.1
percent was still too high, the hope was that it was a sufficient basis for further
improvements. This shows that having access to negative results is highly
impactful, and suggests an efficient active learning strategy: By synthesizing a
few diverse datapoints (in our case a single batch of less than 5% of the dataset
size) that the predictive model considers as active, the precision can be greatly
improved.

In general we can view this method as an active learning method, meaning a
method to acquire new labels in a way that improves the model optimally: If
we choose a diverse set of datapoints that are predicted to have high activity
and measure their activity against the target, each of those datapoints is either
an inhibitor, or, more likely, a datapoint of very high uncertainty whose label
improves the predictive model maximally. In contrast, our initial experiments
indicated that methods that estimate uncertainty based on a distribution of
models are sincerely limited for small and non-diverse datasets. Similarly, typical
active learning methods on molecular data seem to give negligible gains compared
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Figure 2: Some examples from the CDK9 activity dataset and their structures.
The two molecules from the training set contain the 2-aminopyridine substructure
(highlighted in bold) and the test set contains molecules without this moiety.

to random acquisition of datapoints [§]. For activity data our method seems
to be much more reliable and leads to drastic model improvements (precision
improved by a factor of 30) with less than 5% of newly acquired labels compared
to the dataset size.

A second concern was the generalizability of the model. In the first experiment
we had simply assumed that the predictive activity model could generalize
to the screening dataset. Testing generalizability is already a challenge for
small datasets: Scaffold splits, e.g. based on Murcko scaffolds [9] as found in
DeepChem [10], do not really capture the problem, as our models score nearly
as highly (R2=0.82) as on random splits (R2=0.84).

We addressed this problem by splitting the data manually, using expert
knowledge. Since the split was based on the presence of a particular substructure
(2-aminopyridine, a common motif in kinase inhibitor design), we refer to it
as a substructure split. Inhibitors containing the substructure where assigned
to the training set, see Figure |2l This substructure split allow us to evaluate
the ability of the model to predict against new scaffolds, and in contrast to
automated Murcko scaffold splits the advantage here is that training and test
set are consistently separated by certain motives. The substructure split proved
to be a much more exacting test of generalizability: validation R2 was 0.32 for
our predictive model.

In order to improve the generalizability of the model, we used Deep Graph
Infomax style unsupervised pre-training [I1} 12} [I3] regularized by early stopping.
With this method, we could raise the performance to R2=0.48 on the substructure
split, while performance on random splits only slightly decayed (from R2=0.84
to R2=0.78).

2.2.2 Guided molecule generation

One of the major limitations of the first experiment was its reliance on virtually
screening a specific dataset. A guided generative model brings more flexibility
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and possibilities to find new inhibitors. A generative model learns the distribution
of a specific dataset by training to produce data similar to samples from the
dataset. In our use case the objective of this pre-training is to learn to produce
valid and drug-like molecules with a good chance of being CDK9 inhibitors. In
a second training sequence the distribution represented by the generative model
gets optimized with respect to certain their inhibition qualities. Both training
steps are discussed in more detail in Section

In order to produce a high ratio of molecules that the predictive model can
generalize to, we chose the Enamine kinase library [I4] and added the molecules
from the CDK9 binding affinity dataset as a promising starting point for this
objective. For consistency between the generative and predictive model, we also
used the Enamine kinase library and the binding affinity dataset together for
the pre-training of the predictive model.

Since even in the optimistic case the precision of the predictive model is
rather low, the generative model might optimize for false positives, as these might
be more abundant than true positives. Therefore it is important to estimate
the reliability of binding affinity prediction on generated molecules. Our first
attempts using standard uncertainty measures like training a Bayesian neural
network or using Gaussian Processes on the features extracted for the predictive
model did not lead to solid results, mostly because the dataset was too small
and non-diverse to find a reliable probability distribution.

It was noticed before that out-of-distribution data points are a major source of
uncertainty [I5]. If generated molecules are outside the training set distribution,
binding affinity prediction will be unreliable. We therefore developed an out-
of-distribution classifier consisting of a support vector machine on top of the
final-layer features of the predictive model. We trained this model to distinguish
molecules from the CDK9 training set against generic molecules from the REAL
dataset. The classifier achieved a performance of 0.98 for both precision and
recall. We assumed that the predictive model should generalize to generated
molecules classified as in-distribution with the CDK9 training set, and therefore
used the classifier as an additional filter.

2.2.3 Finding candidate CDK9 inhibitors

For the refined strategy we updated the CDK9 data by adding the inactive
compounds from the first approach. With this dataset we trained an ensemble of
predictive models that was used to provide the generative model with feedback
during training.

In order to keep synthesis cheap we identified for each generated molecule
nearest neighbors in the REAL database and repeated the ensemble analysis
for those compounds. They were scored with the aforementioned ensemble
of predicted models, and filtered by physico-chemical properties and out-of-
distribution classification. From the remaining compounds, 69 were manually
selected for testing in biochemical assays. An overview of the procedure can
be found in Fig. and the details for the whole procedure are outlined in
Section
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Figure 3: Overview of the round 2 procedure. We use the same colour scheme as
in Figure [1| with the addition of teal indicating generative training and models,
and magenta for reinforcement learning.

From the 69 tested compounds, seven showed significant activity. These
are depicted in Figure 4] and their corresponding activity data can be found in
Table [
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Figure 4: Structures of the molecules that showed significant activity.

2.2.4 Novelty of hits

All seven active molecules have a maximum Tanimoto similarity of 0.6 to any
molecule in the CDK9 binding affinity training set, see Table |1} This shows that
there is a significant difference in the structures.

More generally, the novelty of hits was investigated with PubChem [16]
(accessed September 2019) which we used to first find compounds similar to
the seven active molecules. None of the molecules were in PubChem, that is,
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Molecule % Activity Highest
at 10uM/30uM  similarity

1 25 / 6.4 0.59

2 34 /12 0.51

3 55 / 16 0.52

4 55 / 21 0.47

5 63 / 37 0.45

6 64 / 38 0.48

7 61 / 44 0.45

Table 1: Properties of the molecules with significant activity shown in Figure
% Activity is the percentage of protein activity in the presence of the inhibitor.
In the last column we report the highest Tanimoto similarity of the molecule that
was found by comparing to all molecules in the CDK9 binding affinity dataset.

there was no hit with Tanimoto similarity of 1. We therefore identified all
compounds with a Tanimoto similarity greater than 0.9 and checked if the
obtained compounds can be found in any patent that covers the CDK family.

For our most tightly bound compound, there were 184 molecules with a
Tanimoto similarity > 0.9. Of these compounds only 2 were registered in a patent
(reported as D2 dopinergic receptor agonists, US5068325) with a chemotype
distinct from molecule 1.

For molecule 2, there were 584 molecules with a Tanimoto similarity > 0.9.
Of these compounds 88 were registered in patents. Two patents with compounds
with a Tanimoto similarity > 0.94 were analyzed further. The molecules in
both patents (US2015038516 and US2009221581) have examples of inhibitors
of CDK9. There is very little difference between 2 and the Markush structure
in the patent and therefore it is unsurprising the 2 is a CDK9 inhibitor. The
examples in these patents are not in the GoStar dataset [I7], from which we got
our data, and were not part of the CDK9 dataset used for training.

The molecules similar to the other five active molecules can be found in patents
covering other proteins than CDKs, such as Inducible I kappa-B kinase (IKK-e),
TANK-binding kinase 1 (TBK1), Kallikrein-1 (KLK1), Rho-associated coiled-
coil-containing protein kinase 1 (ROCK1). In cases where the similarity searches
yielded more than 100 hits, we looked at patents of the first 50 compounds with
the closest similarities.

Most importantly, in molecule 1 we have identified a double-digit micromolar
molecule with clear patent space as a CDK9 inhibitor that would serve as
promising ’hit’ for further optimization.

3 Discussion

In this work, we showed how a novel combination of machine learning models
can be employed to generate new kinase inhibitors, and found a hit rate of more


https://doi.org/10.1101/2020.03.18.996538
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.996538; this version posted March 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

than 10% (7 out of 69 compounds) as tested on CDK9. Moreover, we believe
our new machine learning method to have generic properties, and therefore,
is likely to be equally productive on other protein target classes for which
experimentally determined protein structures are available. Prior to our current
machine learning model, a simpler method was unsuccessful and led to 207
molecules tested in biochemical assays to be inactive. Even if we count the first,
unsuccessful attempt, the hit rate is still acceptable (> 2.5%). However, we are
confident that further rounds of testing would keep a hit rate similar to 10%, as
we only improve the data with each round.

All of the seven hits are distinct from our CDK9 activity dataset, and only one
of them turned out to be a known CDK9 inhibitor. These results were achieved
while constraining synthesis to very easily synthesizable compounds from the
REAL database. Now that we have validated our method, we expect much
better performance in the absence of such restrictions using bespoke synthesis.

During this work, we identified several challenges that needed to be addressed
to be successful: First, the bias in activity datasets requires active learning to give
a solid basis for a predictive activity model. We found that synthesizing cheap
molecules that are suspected by the predictive model to be active gives the best
‘active learning’ results to improve the model. We also found that it is challenging
to create a test set that captures the challenges of generalizing to larger portions
of chemical space, and we used extensive expert knowledge to do so. In our
experience, no available benchmark dataset or automated splitting method could
create a challenge of similar quality or difficulty. Perhaps most importantly, using
several different machine learning models together poses additional challenges,
as the generative model can easily optimize for molecules that the predictive
model is very uncertain about. Unsupervised pre-training gave us more robust
representations of molecules, while out-of-distribution classification allowed to
avoid regions of high uncertainty.

Our approach has several limitations that will prove even more challenging to
overcome. Our machine-learning-based approach could only be successful with
the amount of data available, which even for the CDK9 target tested here proved
to be challenging. On less explored targets machine learning has to be combined
with domain knowledge and computational methods in a more creative manner.
This is inevitable when exploring first-in-class targets.

Though we found new inhibitors for CDK9, kinase inhibitors are infamously
promiscuous, i.e. often bind to various other kinases, which leads to toxicity
issues in later drug discovery stages. We were unable to solve the major challenge
of producing selective inhibitors given the amount of data available. We believe
that this poses a sincere restriction in machine-learning-based drug design and
needs to be addressed either with substantially larger datasets or using domain-
knowledge-based methods embedded more purposefully in the machine learning
method.
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A Supplementary Material

A.1 Predictive binding affinity model

Molecules can be conveniently encoded as SMILES strings (Simplified molecular-
input line-entry system) or as molecular graphs. We use molecular graphs dressed
with additional atomic features as input to the predictive model. We then train
a graph-convolutional neural network, cf. [I8] and references therein, with an
architecture similar to Ref. [19].

A.1.1 Data curation

All activity data was obtained from the GoStar database [I7], which predomi-
nately contains patent data along with some datapoints from published articles.
The data consists of molecules represented by SMILES strings with one measure-
ment against a target protein per data point, the corresponding reference and
specifics about the assay. The data cleaning and filtering process was guided by
Refs. [20] 2], and adapted to the GoStar data with the following steps:

e Unifying the protein names to one naming system

e Canonicalizing SMILES using the RDKit [22], converting salts to the parent
SMILES, and removing entries with invalid SMILES.
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e Standardizing activities and units, and removing datapoints that don’t
have concentration measurements.

e Removing impossible activity values (e.g. negative pIC50 values) which
were found to be errors in copying the data from the original patents,
extremely high or low values (such as pIC50 > 10, pIC50 < 2), and unclear
values (e.g. when only an upper or lower bound was given).

e Removing all datapoints for which not a single activity measure was given
but a range in which the activity was found to be in.

e Removing duplicates with the same SMILES, activity value and reference.

e If there was a duplicated value but from different publications, remove
the newer one assuming that this is very likely a citation of the older
publication.

e Any remaining duplicated SMILES were manually checked, the correspond-
ing activity values were averaged or removed.

For the multitask dataset in our first approach, we started with a set of
38 cyclin-dependent kinases, that is all the cyclin-dependent kinases that were
available in GoStar and had at least 20 usable measurements after the filter
process. This resulted in a sparse dataset of 59,375 compounds that have
a measurement against at least one kinase. In order to reduce sparsity, the
dataset was reduced to 19,723 compounds by filtering out the kinases that
had less than 500 measurements against them. The kinases that were left are:
CDK1, CDK2, CDK2-CyclinA, CDK2-CyclinB, CDK3-CyclinEl, CDK4, CDK4-
CyclinD, CDK4-CyclinD1, CDK5, CDK6-CyclinD2, CDK6-CyclinD3, CDK9,
CDK9-CyclinT1.

For the CDK9 dataset, we used the measurements for CDK9 and CDK9-
CyclinT1 from the multitask dataset, and added updated data from the GoStar
database. After cleaning and filtering, the dataset comprised 4309 compounds.
To this data, we added the compounds that were found to be negative in our
first round of testing. Since the exact pIC50 values for these inactive compounds
is unknown, all of them were given the same activity values. In order to choose
that value, we tried different pIC50 values between 1 and 4, since any pIC50 <
5 indicates an inactive molecule. We found that in that range the value does
not influence the distribution of larger pIC50 value predictions significantly, and,
therefore, also not the chance of a molecule being predicted active. We choose
to assign a pIC50 of 4 to all tested inactive compounds.

A.1.2 Featurization

The SMILES strings in the dataset are converted with the help of the RDKit into
molecular graphs of atoms connected by bonds. With the RDKit we compute the
following atomic features: atom type, number of bonds to other atoms, number
of hydrogen atoms bound to the atom, type of hybridization, formal charge and
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whether the atom is aromatic. For the edges we used only one feature, the bond
type. Non-binary categorical features where cast to one-hot vectors.

A.1.3 Model Architecture

We input the graphs in sparse representation using node (a) and edge (e) feature
vectors

= a;, 1= 17---7 Tnodes) (1)

= €5, i,j =1,...,Nnodes fOI‘j S NN(’L), (2)

where j belongs to the set of nearest-neighbors NN(i) of i. For each chemical
graph, we encode the atom-based features in a;. The bond type is one-hot
encoded in e;;. Graph-convolutional models are based on a message-passing
framework and consist of alternating message-passing steps to process local
information, and (optionally) pooling steps to reduce the graph to a simpler
sub-graph. A read-out phase gathers the node features, and computes a feature
vector of the entire graph that is fed to a perceptron layer for the final prediction
step.

In this work we use pair-message and dual-message graph-convolutional layers
as discussed in Ref. [I8| 19], which are capable of taking both node and edge

features into account. The layer computes an aggregate message mgkﬂ) from

all neighboring source nodes j € NN() to a target node using a fully-connected
(k)

neural network fw acting on the source node features @, and the edge features

(k)

e;.” of the connecting edge. To the aggregated result, a self-message from the

original node features
s =whal 4o, (3)

with W being the weights and b, being the bias in the linear layer, was added.
New node features are computed by applying batch norm (BN) and a RELU
non-linearity, i.e.

k k k
m§ +1) _ Z fw, (a§ )761(‘j)) \ (4)
JEN()
o™V = ReLU (BN (m{*") 4 51} . (5)

In pair-message graph-convolutional layers the edge features are not updated
and remain constant during message-passing. In the dual-message graph-
convolutional layers, edge features are also updated with the feature vectors of
nodes at the end points of the edge via

k k k k
m{* = gw, (a7(L i af +1)7ez(‘j)) ; (6)

el "V = ReLU (BN (m{ ) + 50}, (7)
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where g is a fully-connected neural network and sgf) =w ez(-;-c) + b is the
edge feature self-message.

In our initial tests both pair-message and dual-message networks performed
comparably on the task of pIC50 prediction. We therefore settled for the
more economic pair-message network for most predictive models, but used a
dual-message network in the ensemble approach.

A.1.4 Hyperparameter tuning and measuring generalizability

In all of our models we tuned relevant hyperparameters using the hyperband
algorithm [23]. Performance of the model was measured in terms of the R2

metric )

> (Wi —9)
where fy is the predictive model. The optimal parameters we found for our
models are given in Table

: (8)

A.1.5 Pre-training

Part of the challenge of generalizing to new data is that the predictive model
has never actually learned a useful representation for such data. Therefore it
can help to separate learning a meaningful representation of the data before
training on the actual prediction task. We choose for this pre-training step an
unsupervised learning task, i.e. a task that does not require labels, so that we
can freely choose the training set for this first training step. As unsupervised
pre-training task we choose mutual information maximization between the neural
network layers and the output layer, as explored in Refs. [11] 12| [13], using the
negative of the Jensen-Shannon approximation of the mutual information as loss
function?]

Lyt ==Y By [log(D(af,9))] = B [Eq) [log(1 — D(af,§))]] , (9)
ki ki

where D is the discriminator that attempts to discriminate whether the activation
a¥ at node i and layer k and the final layer representation y belong to the same
data point. We choose as discriminator a simple bilinear layer

D(a,y)=a" - Wp-y. (10)

We tuned the hyperparameters of pre-training based on the performance
on the downstream task of activity prediction. We observed a high variability
between different pre-training runs that led to statistically significant difference
in that performance. Therefore we pre-trained a batch of models and then
decided on the best pre-trained model using the best performance evaluated by

2The fact that the Jensen-Shannon mutual information is essentially a cross-entropy loss
function makes training more stable.
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training five different models on the downstream task for each pre-trained model.
We also observed that early stopping was crucial in order for the pre-training to
have a positive impact. We determined the early stopping parameter together
with the other hyperparameters. Using these techniques we could improve
performance with the substructure split by 50% (from R2=0.32 to R2=0.48),
while performance on random splits slightly declined (from R2=0.84 to R2=0.78).

A.2 Generative model

Our generative model is an Recurrent Neural Network (RNN) with stacked
Long-Short-Term Memory (LSTM) cells [24] that in a pre-training step learns a
prior distribution over molecules by maximum likelihood estimation, minimizing

Lgen prior = —logP(z) = — Z logP(xk|z1, ..., xp—1) , (11)
k

with stochastic gradient descent.

We subsequently optimize the generative model to produce active molecules
using the reinforcement learning method Reinvent [25]: The network learns a
probability distribution whose likelihood logP(x) differs from the previously
learned prior likelihood log Pprior () by a term proportional to the scoring function
S(x), using the standard mean-squared error (MSE) loss

Lgen v, = (IogP(z) — logPyyior (z) — 0S(2)) . (12)

The scoring function S(z) is in our case determined by the activity of the molecule
x that is predicted by the predictive model trained prior to the generation step.
S(x) is one if the molecule is predicted to be active (pIC50> 7) and otherwise
zero.

A.3 Out-of-distribution classifier

In order to avoid the generative model to create adversarial examples for the
predictive model that score highly but are distinct from the CDK9 dataset, we
used an out-of-distribution classifier to classify whether molecules are similar
to the CDK9 dataset or not. We used this classifier as an additional filter in
selecting candidate CDK9 inhibitors.

The out-of-distribution classifier is a standard support vector machine (SVM)
with a linear kernel on top of the final-layer features of the activity predictive
model. The molecules in the CDK9 activity dataset served as data labeled in
distribution. For out of distribution data we randomly sampled an equal amount
of data from Enamine’s REAL library. The dataset we created turned out to
be essentially linearly separable, and the support vector machine achieved an
accuracy of 0.98, with an equal percentage of false positives and false negatives.
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Model Unsupervised Training Node Edge NN
Data Data Channels Channels Channels

First approach

Multitask multitask 512 [512, 512]

Second approach

Supervised CDK9 [512, 512] [256, 256] [256, 256]

Unsupervised1 REAL CDK9 [512, 512, 512] [128, 128]

Unsupervised2 First 6 RL Runs CDK9 [512, 512] [128, 128]

Unsupervised3 All RL Runs CDK9 [612, 512, 512] [128, 128]

Table S1: Graph-convolutional model hyperparameters of the predictive models
used in this work.

A.4 Hyperparameters used in this work

A.5 Docking detalils

We performed docking of the molecules found in our first approach into one
selected CDK9 protein to be able to visually analyze the binding quality. This was
used together with the predicted pIC50 values to select the molecules to be tested
experimentally. We used the RDKit to calculate conformations from the SMILES
representation of the molecules. The obtained conformations were protonated
with MoKa [26], and docked using FLAPdock [27], 28]. As the protein receptor
for docking, we used 4BCJ, obtained from the PDBbind database [29] 30, [31].
The protein was prepared for docking using pdbfixer [32]. The pocket was chosen
to be of a size of 4 A around the crystal ligand. As parameters for docking we
chose to optimize the docked ligands and to get the best quality of the poses.
We chose the ”CRY” probe instead of "DRY”, and used the “ampq” keyword to
include energetic terms. The eight best poses were calculated.

A.6 Detalils of virtual screening approach

Here we give the details of the our first, virtual screening approach with a
multitask pIC50 model. A graphical overview of the approach is shown in
Figure

As predictive model we used a multitask model that learned pIC50 predictions
for a set of 14 cyclin-dependent kinases, including CDK9 and CDK9-Cyclin-T1
(for details on the multitask dataset see Section [A.1.1)). After hyperparameter
optimization, we obtained a model with mean absolute error of 0.46 for CDK9
and 0.43 for CDK9-CyclinT1. Screening the Enamine Discovery Diversity library
(50k compounds) across the CDK family yielded around 600 molecules that were
predicted to have a pIC50 against CDK9 greater than seven. Those 600 molecules
were filtered based on highest selectivity for CDK9 over the rest of the CDK
family. Further analysis was done by docking into the 4BCJ protein. The details
for the docking procedure can be found in Section The docked poses were
additionally scored with Shape-It [33], and protein-ligand interaction fingerprints
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(PLIF's) similarities with the 4BCJ x-ray crystal ligand as a reference. The PLIFs
were obtained from the output of the protein-ligand interaction profiler (PLIP,
Ref. [34]), and Tanimoto similarity to the PLIF of the reference molecules were
calculated. For each compound, a visual analysis of the eight best docking poses
was done. The compounds were filtered considering the calculated scores, and
by manually determining the quality of the docking pose. 207 compounds, listed
in Section where selected and tested in biochemical assays against CDK9.
None of the molecules was found to have an inhibition greater than 50% at a
concentration of 30 pmol.

A.7 Detalils of selection procedure of candidate CDK9 in-
hibitors

This section outlines the details of our refined strategy; a graphical overview
over the whole refined procedure pipeline can be found in Figure [3]

The dataset for this second approach contains 4309 compounds from literature
tested against CDK9 and CDK9-CyclinT1. To this, the 207 inactive compounds
from the earlier test round where added. We call this the CDK9 dataset. This
dataset was used to train predictive, graph-convolutional models using random
splits.

We used an ensemble of predictive models, both an ensemble of three models
to determine the reward in the generative loop and an ensemble of seven predictive
models to select promising candidate inhibitors. The ensemble to determine the
reward in the reinforcement learning (RL) algorithm consisted of one model just
trained on the CDK9 dataset, and two models pre-trained using unsupervised
learning and then fine-tuned on different random splits.

To allow for more diversity in the generative run, we used models from 15
different iterations of the pre-training for the reinforcement learning. With those
models, we created 39 RL runs that also used different number of steps, that is
1000, 2000, or 5000. The reward in all RL trainings was given by scoring the
generated molecules with the three predictive models as explained above, where
a reward was given if one out of the three models predicted a pIC50 greater than
7. The molecules from all the runs were collected and duplicates were removed,
yielding a total of 4422 novel molecules.

We used all generated compounds to search for their nearest neighbors in
REAL using the KNIME [35] node for Chemspace, and from each hit picked the
10 nearest neighbors with a Tanimoto similarity greater than 0.7. This yielded
approx. 17,000 molecules. From those, duplicates were removed, and molecules
were filtered for physico-chemical properties calculated with the RDKit. We
selected molecules that have molecular weight greater than 250, a total polar
surface area between 70 and 220, and whose logarithm of the octanol-water
partition coefficient (logP) is between 1 and 3.

To score the obtained molecules, we trained additional predictive models
using two new unsupervised pre-training run. The first unsupervised training
was done with the molecules generated in the first six RL runs, the second
with the generated molecules from all RL runs. Both were fine-tuned with the
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CDK9 dataset on the two random splits that were used before, thus, we had four
additional predictive models and seven in total with the three models trained
earlier.

The molecules were then scored with these seven trained predictive models
and the obtained values were used as a basis for selection. The number of
molecules that were indicated to be active by at least one model was 4100.

We filtered out all molecules that were not in-distribution according to the
out-of-distribution classifier. To select compounds to synthesize and test, the
remaining molecules were clustered with DataWarrior [36], and we manually
selected 69 representatives (listed in Section from promising clusters.

The selected molecules were purchased from Enamine’s REAL dataset, ac-
cessed September 2019, and the activity of the molecules against human CDK9
was assessed using KINOMEscan (Eurofins, [37]).

A.8 Structures of compounds selected for testing
A.8.1 Round 1, 207 compounds

GCCC(CC) c1innc (NC(=0)N2CCCC[C@H]2c2cn[nH]c2)s1
C[Ce®@H] (CO)N(C)C(=0)NCC1(c2cc(F)cc(C(F) (F)F)c2)CCl
Cc1c(CNC(=0)CCn2cnc3sc4c(c3¢c2=0)CCCC4)cnnlC
0=C(Cclcsc(-c2ccoc2)nl1)Nclcc(C(=0)0)ccclF

N[C@@H] 1CCN(C(=0)Cn2cnc3scc(-clcccs4d)c3c2=0)C1
N#Cclcc(COc2cccc(F)c2C(N)=0)ccclF
CC(C)clcecec(-c2nc(C(=0)N(C)CC3(CO)CC3)cs2)ccl
Ccinc(-c2ccc(F)cc2)sc1[CeH] (C)NC(=0)N1CccCC(C) (0)CC1
Ccinc(-c2cccc(Cl)c2)sc1C(=0)Ncilccc(F)cnl

CS(=0) (=0) clcccc(-c2csc(-c3cccecec30)n2) cl
CN(Cclccencl)C(=0)Ncicc(Cl)cc2c10CC2
COclccc(C#N)cc1Cnlcnn(C(C) (C)C)c1=0

CS(=0) (=0)CC1(CNC(=0)N2CC[CeH] (0c3cccc(Cl)c3)C2)CCl
COc1lccc(Cl)ccINC(=0)Ncicen(CCC#N)nl
0=C(NCC1(CD)CCOCC1)clcc(C2CC2)nc2ccc(F)ccl2
CN(C)clccec(-c2noc(CC3(CS(C) (=0)=0)CC3)n2)ccl
CCCn1c(=0)n(CCC(=0)N2CCOC(C) (C)C2)c2cccecc21
CN(cc1(co)cC1)C(=0)cicsc(-c2ccc(Cl)c(Cl)c2)nl
CS(=0) (=0)Nclcccc2c1CCN(C(=0)Ncicc(F)cc(Cl)cl)C2
COciccc(F)cciNCecinc(-c2cnn(C)c2)csl
CN(C(=0)CNC(=0)ciccc(F)cclF)C1(C#N)CCC1
Cclccc(Cl)cc1S(=0) (=0)Nc1c(C(N)=0)n[nH]c1C
CCN1CN(C(=0)Nc2ccec3nc(C4CC4)sc3c2)CC1=0
CC1(CNC(=0)c2cc(-c3ccco3)nc3c(C(N)=0)ncn23)CCC1
CS(=0) (=0)Nc1cc(F)ccciINC(=0)clccecnl1C1CCl

CS(=0) (=0)CC1(Cc2nc(-c3ccc(F)c(F)c3)no2)CC1
Cc1c(NC(=0)Nc2ccn(CCC#N)n2) cccclIN(C)C
COclcc(F)c(NC(=0)c2cnc(-c3cccen3d)s2)cclF
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CCnicc(C(=0)N[C@E@H] (C)CC#N)c(=0)c2cc(Cl)ccc21
Cnlcnccl1C1CC(NC(=0)Nc2ccc(F)cn2)CCO1

0=C(CS(=0) (=0) [C@H] 1CCc2c (F)cc(F)cc21)NclccceccliCl
0=C(Nc1cc(Cl)cc2c10CC2)N1CCC(c2cencec2)CCl
Ccilccc(Cl)c(D0cc(p)enN2cc(c(N)=0)cccat)cl

N#Cclccc (NCc2ccecnc2N2CCC(C(N)=0)CC2)cciCl
CC1(CNc2ccececc2CN2CCC [CeH] (C(N)=0)C2)Cccocc1
COc1ccc(Cl)cclICN(C)C(=0)N[C@H] 1CCc2[nH]ncc2C1
C[CeH] (NC(=0)Nciccc(F)cclC#N)clcccecciINS(C) (=0)=0
CCnlcc(C(=0)N[CeH] (C)C(=0)NC)c(=0)c2cc(Cl)ccc2l
COc1cc(NC(=0)N(C)Cc2cnn(C)c2)ccciCl
CC(=0)Nc1ccc(Cl)c(NCc2nc(-c3cccs3)n[nH]2) cl
CCn1cc(C(=0)NCC(C) (CIC(N)=0)c(=0)c2cc(Cl)ccc21
N#CclcceccclN1CCN(C(=0)Nc2ccc (F)cn2)CCl
CC1CCC(N2C[C@QH] (C(=0)Nc3ccc(-c4cncod)cc3)CC2=0)CC1
COclccc(F)cclC(C)NC(=0)N(C)Cc1cceece1o
CCnlcc(C(=0)NCC(=0)NC2CC2)c(=0)c2cc(Cl)ccc21
Ccinc(-c2ccc(F)cc2)sc1[CeH] (C)NC(=0)N1CCN(C2CC2)CC1
CC(C) (C)nincn(Cc2cc(F)ccc2C#N)c1=0

CC[C@@H] (CC#N)NC(=0)Ncilcccc(N(C)C(C)C)cl
0=C(Nclcccc2c10CC02) clcecc(=0)n(-c2ccccc2F)nl
Cclcnc ([C@@H] (C)CNC(=0)NCc2cccc(N(C)C)c2)s1
Cnlncccl1C1CC2CCC(C1)N2C(=0)clccocl

Cclccc(S(=0) (=0)Nc2c(C(N)=0)n[nH]c2C)c(Cl)cl
COciccece(-c2nc(C(=0)N(C3CC3) [C@H]3CCS(=0) (=0)C3)c(C) [nH]2)c1
NS (=0) (=0) c1cc(C(=0)Nc2ccc (F)cc20CC2CC2) col
CCC(CC)n1incc(C(=0)N[C@H]2COc3cccc(F)c32)ciC
Cclcc(F)cececl-clnoc(CC2(CS(C) (=0)=0)CC2)n1
CC(C)N1C[CeeH] (C(=0)Nc2ccc(-c3cnco3)cc2)CC1=0
NC(=0) c1ncn2c (C(=0)NCCC3CCCC3) cc(-c3ccco3)ncl2
Cc1[nHInc(C(N)=0)ciNS(=0) (=0)clcc(F)ccciCl
NC(=0)clccc(NC(=0)c2cnc(-c3cccs3d)s2)c(F)cl
CC(=0)N(C)clcccc(NC(=0)NC[CeH] (C)c2ncc(C)s2)cl
0=C(Nc1cc(C1l)c(0)c(Cl)c1)Nciccc(F)cclF
0=C(CNC1(c2noc(C3CC3)n2)CCCC1)Nciccc(F)cciCl
COclcc(F)c(NC(=0)NCC2(CCO)CCCCC2) cclF
Ccilcnc([C@@H] (C)CNC(=0)Nc2ccenn2)si
COclccc(C)cc1CS(=0) (=0)Cc1inc(C2CC2)n[nH] 1
Cclnc2c(s1)CCC[C@E@H] 2CNC(=0)Ncilccc(F)cnl
CCn1cc(C(=0)NCC(C) (CIN(C)IC)c(=0)c2cc(Cl)ccc2l
CN(C)C(=0)C0clccc(NC(=0)Nc2ccc(F)cc2)ccl
COclccc([C@H]2CCN(C(=0)Nc3ccc(F)cn3)C2)ccl
CCn1c(NCc2cc(C(N)=0)cs2)nc2cc(F)ccc21
CCnlcc(C(=0)NCC(C) (C)CO)c(=0)c2cc(Cl)ccc21
Cclccnnl-clcccccINC(=0)Nclcen(CCC#N)ni
Ccinc(-c2ccc(F)cc2)sc1[C@H] (C)NC(=0)ciccncciCl
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0=C(Ncilccc(F)cciCl)clenc(-c2cccs2) sl
N#Cclc(F)cccclNCclccenc1N1CCC(C(N)=0)CC1
CCnicc([CO@H]2CS (=0) (=0)CCN2C(=0) c2cncc(F)c2)cnl
CC(C) (C)nincn(Cc2cc (C#N) ccc2F)c1=0
N#Cclccc(NCc2ccenc2N2CCC(C(N)=0)CC2)c(F)c1

CC(C) (C)nincn(Cc2ccc(F)c(C#N)c2)c1=0
Cclcecc(C)c(NC(=0)CN2CCC [CeH] (c3nncn3C3CC3)C2)cl
N#CCC(=0)N1CCCC[C@H] 1C(=0)Nciccc(Cl) cciCl
0=C(NCC1(C0)CCC1)Nc1cc(C(F) (F)F)ccclN1iCCCC1
CN(Ccinc(-c2ccc(F)cc2)no1)C1(CO)CCOCCL
CCn1cc(C2CCN(C(=0)NCCc3csc(C(C)CIn3)CC2)cnl
C[CeH] (Nc1enn(C(C) (C)C)c1)C(=0)Ncicc(F)ccclF
CCc1c(NC(=0) [C@H]2CCC(=0)N2)cnni-clcccc(Cl)cl
Cclccc(-c2ccc(C(=0)NCCn3cnnc3C3CC3)s2) ol

CS(=0) (=0)NcilccccciINC(=0)clccecnl1C1CCCCl
COc1lcc(Cl)c(Cl)ccINC(=0)N1CCC[CeH] (C(N)=0)C1
CCnlcc(C(=0)N(C)c2cnn(C)c2)c(=0)c2cc(Cl)ccc21
C[C@H] (NC(=0)Nclcccc2c10C(C) (C)C2)Cc1ccl
CCC(CC)n1inc(C(=0)N[C@H]2C0Oc3cccc(F)c32)cciC
0=C(CNC1(c2noc(C3CC3)n2)CCCC1)Nciccc(Cl)ccl
Ccinc(-c2ccccc2)sciINC(=0)N[C@@H] (C) cinnnniC1CC1
Cnlcc(NC(=0)N[C@H]2CC(=0)N(c3ccc(Ocdccceccd)cc3)C2)cenl
COclcecc(Cl)c(NC(=0)N(CCO)C(C)C)cl

Cninc (C2CCCC2) ccINC(=0)cicncc(0)cl
CN(Ccinc(-c2ccccc2)nol)C1(CO)CCOCCL

C[CeH] (Nc1cccc(CN2CCC(C(N)=0)CC2)c1)clccencl
CN(C)C(=0)CCNC(=0)Nciccc(0c2ccccc2C#N) ccl

C[CeH] (Nc1enn(C(C) (C)C)c1)C(=0)Nciccc(F)cclF
NC(=0)C1CCN(C(=0) c2csc(-c3cccc(Cl)c3)n2)CC1
0=C(Nclccc(F)cc1)Ncicc(Cl)c(D)c(Cl)cl
CN(Ccinc(-c2ccc(Cl)cc2)nol1)C1(CO)CCOCCL
N#Cclcccc(N2C(=0)CN(Cc3ccc(F)cc3)C2=0)c1
Cnlcc(CNc2cceccc2N2CCC(C(N)=0)CC2)cnl
CC(=0)Nc1ccc(C1l)c(NC(=0)Nc2cen(C)n2)cl
CcilcnccclNC(=0)Ncicc(Cl)c(0)c(Cl)cl
Cclcen(CC(=0)N2CC(0)CC2c2cc(F)ccc2F)c(=0)cl
Cnlccc(NC(=0)N[C@H]2CC(=0)N(c3ccc(0c4cccececd)cc3)C2)nl
COclccc(NC(=0)c2nn(-c3ccccc3F)cc20)cclF
COclccceclICN(C)C(=0)NcicencclF

clcc(-c2noc ([C@H]3CCnd4cncc4C3)n2)csl
N#Cclcc(F)cccINC(=0)NCclccnccl
0=C(NCcilnnc(-c2ccccc2)s1)N1CCC[C@H] 1clccesl
Ccinc(-c2ccc(Cl)cc2)sc1C(=0)N[C@GH] (C) cinnnniC1CC1
Cclcsc(C(C) (C)NC(=0)Cn2c(=0)cnc3ccccec32)nl

CN(C) clnccc (N2C[CeeH] (F)C[C@H] 2CNC(=0)NCc2ccco2)nl
NC(=0) [C@H] 1CCCN(C(=0)Nc2cc (F)ccc20CC2CC2)C1
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0=C(CNC(=0)Ncicccncl-clcccccl)NCC1CC1
NC(=0)C1CCN(c2ccccc2NCc2ccenc2)CCl
CN(CCN(C)clcccececl)C(=0)clcnc(-c2ccco2) sl

Cc1c(Cl) cccclINC(=0)CN1CCC[COH] (c2nncn2C2CC2)C1
Cc1c(C(=0)Nc2ccc(F)cc2C#N)cnnl-clcccenl

CN(C) clnccc(N2C[C@®@H] (F)C[C@H] 2CNC(=0)Nc2ccsc2)nl
C[CeH] (NC(=0)Ncicnn(Cc2cccen2)cl)ciccecc(D)cl
Ccicsc([CO@H] (C)CNC(=0)Nc2ccccec2-n2nccc2C)nl
Ccinc(-c2ccc(F)cc2)sc1C(=0)N[C@eH] (C) cinnnniC1CC1
CC(C)nlcnncl-clcccccINC(=0)Nclcc(CC(C) (C)C) [nH]ln1
CCC(CC)n1inc(C)cci1C(=0)N1CCOc2ccc(F)cc2Cl
Cclcnc(C(C) (C)NC(=0)N[C@H]2CCN(c3ccc(Cl)c(F)c3)C2)s1
0=C(Nciccc(0)cc1)Ncinc2ccc (F)cn2nl
N#Cclcc(F)ccclNC(=0)N[C@@H] (CO)Cclcccccl

0=S(=0) (NcinncniCclcccccl)clcc(F)ccciCl
CninccclCNclccccclIN1CCC(C(N)=0)CC1
CclcncccINC(=0)NC[Ce@H] 1C[C@H] (F)CNiclccnc(N(C)C)nl
CS(=0) (=0)CC1(Cc2nc(-c3cccecec3Cl)no2)CCl
O=clccc(F)cniCcincc(-c2ccccc2F) ol
N#CclcccecclOclccc (NC(=0)NCCCO)ccl
COclccecc(CNC(=0)Nc2cc(Cl)ccec2-c2nc(C3CC3)no2)nl
Cnlcc([C@H]20CCC [C@EH]2NC(=0)Nc2ccc(F)cn2)cnl
CCC(CCIn1nc(C)ccl1C(=0)N[C@H] 1CCOc2ccc(F)cc21
CCc1nc (C2CCN(C(=0) c3ccc(-clcccod) [nH] c3=0)CC2)n[nH]1
CCnlcc ([Ce@H]2CS (=0) (=0)CCN2C(=0)NCCC2=CCCC2) cn1l
COcicccc(F)c1INC(=0)Ncicnn(C2CCCC2)ci1C
CCC(CC)n1inc(C(=0)N[C@H]2CCOc3ccc(F)cc32)cclC
Ccin[nH] ccINC(=0)NciccnniCclccc(Cl)c(F)cl

CC [C@@H] (CC#N)INC(=0)Nciccc(NC(C)=0)cclCl

C[C@H] (NC(=0)Ncilcccc2c10C(C) (C)C2)clnnnniC
0=C(Nclccc(F)cn1)N1CCC[C@H] 1clcccsl

0=S(=0) (Ccinc(C2CC2)n[nH]1)cinccnl-clcccc(F)cl
Cclcc(Cl)c(NC(=D)N[C@eH] (C)C(=0)N(C)C)cciCl

0=C1N [C@@H] (Cc2c [nH] c3cc (F)ccc23)C(=0)NicicccecclCl
Cclcc(C)n(-c2ccc(Cl)c(C(=0)Nc3ccc(F)cn3)n2)nl
CN(CCnlccenl)C(=0)cicnc(-c2ccco2)sl
COclcc(F)ccclINC(=0)cicn(C)ncl-clccccciCl
Cclnnnnl-clcc(NC(=0)NCCc2ccnn2C)ccclF

NC(=0) [C@H] 1CCCN(C(=0)Nc2cc(F)c(OC(F)F)cc2F)C1
C[CeH] (NC(=0)N1CCC(c2ccn[nH]2)CC1)cic(F)cccclCl
CCninc(C)c(CNC(=0)N(C)Cc2ccc(0C)c(F)c2)ciC

CC(C) (NC(=0)N[CeH] (cinccs1)C1CC1)cicn(-c2ccccc2)nnl
0=C(Nclccc(F)cn1)N1CCC[C@H] (c2nnc3n2CCC3)C1
Cclcen(CC(=0)N(C)Cc2ccccc2F)c(=0) c1C#N
COc1lcncecc1C(C)NC(=0)NcicenniC(C)C1CC1
CCn1c(NCc2cnn(C)c2)nc2cc(F)ccc2l
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CCn1c ([C@OH] 2CCCN2C(=0)Cc2cccc(0) c2F)nc2cccecc2l
0=C(Nclccn(Cc2ccncc2)nl)Nclcc(Cl)ccclF
NC(=0)clccc(NC(=0)N(Cc2c(F)cccc2F)C2CC2)cnl
C[C@H] (NC(=0)NC1CCN(C2CC2)CC1)clccec(Oc2ceccecc2)c(F)cl
CCnlcc ([C@H]20CCC[C@E@H] 2NC(=0)Nc2ccon2)cnl
CN(Cclccc(C#N)cc1)C(=0)NclcecncclF
Ccinnnni-clcc(NC(=0)Nc2ccn(C)n2)ccclF

Cc1nn(C(C) (C)C)c(=0)niCcinc(-c2ccco2)nol
Cclc(C(=0)N[C@H] (CS(C) (=0)=0)c2cccecec2) cnnlC1CCCCL
Ccinnc(Cn2cnc3c(cnn3C(C) (C)C)c2=0)n1C1iCC1
Fclccc(-c2noc ([C@H] 3CCn4ccnc4C3)n2)c(Cl)cl
NC(=0) [C@H] 1CCCN(C(=0)Nc2ccc(-c3ccco3) cc2F)C1
Cc1c(C(=0)N2c3cccce30C[CeeH] 2C)nnniCciccc(F)cclF
Cc1c(C(=0)N2c3ccccc3C[CeH]2C(N)=0)nnniCciccc(F)cclF
Cc1c(C(=0)N2CC(C) (C)0c3cccece32)nnniCcliccc(F)cclF
C[CeH] (NC(=0)cicsc(-c2cccecec2Cl)nl) cinnnniC1CC1
CCnlcc(NC(=0)Nc2ccnc(C)c2Cl)cnl
0=C(Ncilcccnnl)N[C@@H] (Ccicccccl)C1CCl

NS (=0) (=0)Cclccc (NC(=0) c2ccecn2C2CCCC2) ccl

CN(C) cincc(NC(=0)NC(C) (C)c2cn(-c3ccccec3)nn2)cnl
C[CeeH] (NC(=0)Nciccc(F)cnl)clcccccl
CCc1nc2cc(CNC(=0)c3ccco3)ccec2ni1Ci1CCl
0=C(Nclccccnl)N[C@@H] (Cclccccc1)CiCCl
0=C(CCnlcnc2ccccc2c1=0)N(clcccenl)C1CCCCL
CCcincc (NC(=0)NC(C) (C)c2cn(-c3ccccec3)nn2)cnl
CCS(=0) (=0)C[C@H] (C)NC(=0)C(C) (C)clccc(Cl)cclF
C[CeH] (NC(=0)N(C)CC1(0)CCOCCL)clcecec(Cl) sl
CCS(=0) (=0)c1cc(F)cccINC(=0)NCclcccol
C=C(C)CNC(=0)Ncilcccc(CS(C) (=0)=0)c1

Cc1nn(C(C) (C)C)c(=0)n1CCOclccccciCl
CNC1CCN(C(=0)c2nn(-c3ccc(F)c(F)c3)c3c2CCC3)CC1
CN1CCC(NC(=0)Nc2cnn(C(C) (C)C)c2)Cilcicccccl
C[CeH] (Oc1lccc(C(C) (C)C)ccl)C(=0)N1CCC(C(N)=0)CC1
CC(C) (NC(=0)NciccncclF)clen(-c2cccecc2)nnl

NC(=0) [C@H] 1CCCN(C(=0)Nc2ccc (F)cc2F)C1

NC(=0) cincn ( [C@H]2CCCN(C(=0)NCc3ccoc3)C2)n1l
0=C(c1n[nH]c2c1CCC2)N(Cclccscl) [CEH] 1CC12CCNCC2
0=C(NCC(=0)N1CCCC1)NclccccclOclcccecel
CN(C)C[C@H] (NC(=0)NCclccocl)clccc(Cl)ccl
Cc1c(C(=0)N(C)Cc2ccc(F)c(F)c2)nnn1C1CCNCC1
Cc1c(C(=0)NCCc2ccc(F)cc2F)nnn1C1CCNCC1

A.8.2 Round 2, 69 compounds

CC1=C(C2=CC=CC=C2)SC(NC(=0)C2CCCCNC2)=N1
C0C1=CC=CC=C1C1=CC=NC(NC [C@H] 2C [C@Q@H] 3CC [C@H] (C2)N3)=N1
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0=C(CC1=CC(F)=CC=C1)NCC(=0)N1CC=C(C2=C [NH] C3=NC=CC=C23)CC1
0=C(N1CC=C(C2=C [NH] C3=NC=CC=C23)CC1)N1CCC1
C0C1=CC=C(C2=CC=NC(NC(=0)C3=NC=C(C1)C=N3)=N2)C=C1
0=C(CNC1=CC=CC=N1)N1CC=C(C2=C [NH] C3=NC=CC=C23)CC1
CC(C)C(0)CC(=0)N1CC=C(C2=C[NH]C3=NC=CC=C23)CC1
€C0C1=CC=C(C)N=C1INC(=0)CC1=N0OC2=CC=C(Br)C=C12
C0C1=CC=C20N=C (CC(=0)NC3=NC(C)=CC=C30) C2=C1
CCC(CNC(=0)CC1=N0C2=CC=CC=C12)NC(=0)CC1=NOC2=CC=CC=C12
CC1=CON=C1NC (=0) CC1=N0C2=CC=C(Br)C=C12

NC(=0)C1 (CNC2=NC=NC3=CC=CC (Br)=C23)CCOCC1

NC(=0) C1 (CNC2=NC=NC3=C2C2=CC=CC=C2 [NH] 3) CCOCC1
C0C1=CC=CC=C1C1=CC=NC(NC(=0)C2=CC=C(NS(C) (=0)=0)N=C2)=N1
CC(C)COCC(0)CN1C=NC2=C(NCC3=CC=CC=C3)N=CN=C21
0=C(C0C1=CC=CC=C1C1=CC=CC=C1)NC1=CN=CC=N1
0=C(C0C1=CC=CC=C1C1=CC=CC=C1)NC1=NC=CC=N1
0=C(C0C1=CC(F)=CC(F)=C1)NC1=NN=C(C2=CC=CC=C2C1) [NH]1
C0C1=CC=CC=C1C1=NN=C(NC(=0)C0C2=CC(F)=CC(F)=C2) [NH]1
0=C(C0C1=CC=C(F)C=C1C1)NC1=CC=CC=C1N1N=CC2=C1N=C[NH]C2=0
0=C(C0C1=CC=C(F)C=C1Br)NC1=CC=C(N2N=CC3=C2N=C [NH] C3=0)C=C1
C0C1=CC=C(Br)C=C1SCCCN1C=NC2=C(N)N=CN=C21
N#CCCN1N=CC2=C (NC3=CC=C4NC (=0) CC4=C3) N=CN=C21
0=C(CC1=C[NH] C2=NC=CC=C12)NC1=NOC (C2=CC=CC=C2)=C1
C1C1=CC=CC (CN2N=CC3=C (NCCNC4=CN=CC=N4) N=CN=C32)=C1
C0C1=CC=C(C1)C=C1NC(=0) CCN1C=NC2=C (N)N=CN=C21

C[C@H] 1CN(C(=0)N2CC=C (C3=C [NH] C4=NC=CC=C34)CC2)C[C@@H] (C)01
NC(=0) C1 (CNC2=NC=NC3=C2C=NN3C2=CC=CC (Br)=C2)CCOCC1
0=C(C0C1=CC(F)=CC(F)=C1)NC1=NN(C2=CC=NC=C2)C=C1

CC1=N [NH] C2=NC=C(NC (=0) CC3=N0C4=CC=CC=C34)C=C12
0=C(C0C1=CC(F)=CC(F)=C1)NC1=NC2=CC=CN=C251
0=C(CC1=N0C2=CC=CC=C12)NC1=CC=CC(C2=C [NH]N=C2)=C1
CC1=NC(NCC2=CC=CC (0CC(N)=0)=C2)=C2C=NN(C3=CC=CC(F)=C3)C2=N1
NC1=NC=NC2=C1C=NN2CC1=CSC(C2=CC=C (F)C=C2)=N1
C0C1=CC=C(C2=NN=C (NC(=0) CC3=N0C4=CC=CC=C34) [NH]2)C(0C)=C1
C0C1=CC=CC2=C10C(CNC1=C3C=NN(CCC#N)C3=NC=N1)=C2
CN1N=CC2=C1N=C (N [C@H] 1C [C@@H] (NC(=0) CC3=N0C4=CC=CC=C34)C1) [NH] C2=0
0=S (=0) (NC1=NC2=CC=CC=C2N=C1NCCC1CC(0)C1)C1=CC=CC=C1
CN(C)CC1=CC=NC(NC(=0)C0C2=CC=C(F)C=C2C1)=C1
CCN(CC1=CC=C20CC0C2=C1)C(=0) CN1C=NC2=C(N) N=CN=C21
0=C(C0C1=CC=C(Br)C=C1F)NC1=NC=C(C1)C(0)=C1
C0C1=CC(F)=CC=C1C1=CC=C(NC(=0)C2CCCNC2)N=C1
CC1=CC(NC(=0)C0C2=CC=C(Br)C(F)=C2)=N01
NC1=NC=NC2=C1N=CN2CCCOC1=NN=C(C2=CC=CC=C2)01
0=C(C0C1=CC=CC=C1F)NC1=CC=C(N2C=NC=N2)C=N1
0=C(C0C1=CC=CC(Br)=C1)NC1=N[NH] C(CC2=CC(F)=CC=C2)=N1
CC1=CC=NC(NC(=0)CCC2=C(C)C3=C([NH]C2=0)N(C)N=C3C)=C1
€0C1=CC=C(0CC (=0) NC2=NN=C(C3=CC=CC=C30C) [NH]2)C=C1
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CNC1=NN=C(SCC2=NC3=CC=CC=C3C(=0) [NH]2)S1
CC(NC(=0)CCN1C=NC2=C(N)N=CN=C21) C1=CC=CC=C1

C[C@H] (NC(=0)CCN1C=NC2=C (N) N=CN=C21) C1=CC=CC=C1

0=C(CC1=C [NH] C2=NC=CC=C12)NC1=CC=C (NC2=NC=CC=N2)C=C1
CNC1=NN=C(SCC2=NC (N)=C3C=CC=CC3=N2)S1

C0C1=CN=C (NS (=0) (=0) C2=CC=C(NC(=0) CC3=N0C4=CC=CC=C34) C=C2)N=C1
C0C1=CC=C20N=C (CC(=0) NC3=NN=C4C=C (C) C=CN34)C2=C1
C0C1=CC=CC=C1C1=CC=NC(NC(=0)C0C2=CC=CC=C2)=N1
C0C1=CC=CC=C10CC(=0)NC1=CC=C (N2N=CC3=C2N=C [NH] C3=0) C=C1
0=C(C0C1=CC=CC=C1F)NC1=CC=C20CC(=0)NC2=N1
C0C1=CC=C(C1)C=C1NC(=0)C0C1=NC=NC2=C1C=NN2C1=CC=CC=C1
CC1=N0C2=NC=C(NC(=0)C3=CC=C(NC(=0) CC4=CC=CN=C4)C=C3)C=C12
0=C(CC1=CC=CC(0CC2=CC=CN=C2)=C1)NC1=CC=C(S(=0) (=0)NC2=NC=CC=N2)C=C1
€0C1=CC(0C)=CC(C2=CC=CC(NC(=0)C3CCCOC3)=N2)=C1
CCOC1=CC=CC=C10CC (=0)NC1=CC=CC(OCC(F)F)=N1
0=C(C0C1=CC=C(Br)C=C1F)NC1=CN=CC=N1
CC1=CC(C)=NC(NC(=0)CCC2=CC=C30CC(=0)NC3=C2)=C1
0=C(C0C1=CC(C1)=CC=C1)NC1=NN(CC2=CC=NC=C2)C=C1
N#CCCN1N=CC2=C (NCC3 (C4=CC=C (F)C=C4)CC3) N=CN=C21

NC(=0) C(CNC1=NC=NC2=C1C=NN2C1=CC=NC=C1)CC1=CC=CC=C1Cl
C0C1=CC=CC=C1CCNC (=0) CCN1C=NC2=C(N)N=CN=C21
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