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Abstract 

We introduce a novel approach to study neurons as sophisticated I/O information processing units by 

utilizing recent advances in the field of machine learning. We trained deep neural networks (DNNs) to 

mimic the I/O behavior of a detailed nonlinear model of a layer 5 cortical pyramidal cell, receiving rich 

spatio-temporal patterns of input synapse activations. A Temporally Convolutional DNN (TCN) with 

seven layers was required to accurately, and very efficiently, capture the I/O of this neuron at the 

millisecond resolution. This complexity primarily arises from local NMDA-based nonlinear dendritic 

conductances. The weight matrices of the DNN provide new insights into the I/O function of cortical 

pyramidal neurons, and the approach presented can provide a systematic characterization of the 

functional complexity of different neuron types. Our results demonstrate that cortical neurons can be 

conceptualized as multi-layered “deep” processing units, implying that the cortical networks they form 

have a non-classical architecture and are potentially more computationally powerful than previously 

assumed.   
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Introduction 

Neurons are the computational building blocks of the brain. Understanding their input-output (I/O) 

transformation has therefore been a major quest in neuroscience since Ramon y Cajal’s “neuron 

doctrine”. With the recent development of sophisticated genetical, optical and electrical techniques it has 

become clear that many key neuron types (e.g., cortical and hippocampal pyramidal neurons, cerebellar 

Purkinje cells) are highly complicated I/O information processing devices. They receive a barrage of 

thousands of synaptic inputs via their elaborated dendritic branches; these inputs interact with a plethora 

of local nonlinear regenerative processes, including the back-propagating (Na+- dependent) action 

potential (G. J. Stuart and Sakmann 1994), the multiple local dendritic NMDA-dependent spikes (Polsky, 

Mel, and Schiller 2004; Branco, Clark, and Häusser 2010; Kastellakis et al. 2015), and the large and 

prolonged Ca2+ spike at the apical dendrite of L5 cortical pyramidal neurons (M E Larkum, Zhu, and 

Sakmann 1999). As a result of local nonlinear dendritic processing, a train of output spikes are generated 

in the neuron axon, carrying information that is communicated, via synapses, to thousands of other 

(postsynaptic) neurons. Indeed, as a consequence of their inherent nonlinear mechanisms, neurons can 

implement highly complicated I/O functions (Poirazi, Brannon, and Mel 2003b; Shepherd et al. 1985; C 

Koch, Poggio, and Torres 1982; Bar-Ilan, Gidon, and Segev 2012; Christof Koch and Segev 2014; 

London and Häusser 2005; Behabadi and Mel 2013; Häusser and Mel 2003; Mel 1992; Poirazi, Brannon, 

and Mel 2003a; Moldwin and Segev 2018; Hawkins and Ahmad 2016; Zador, Claiborne, and Brown, 

n.d.; Bai, Zico Kolter, and Koltun 2019; Cazé, Humphries, and Gutkin 2013; Doron et al. 2017; Greg 

Stuart, Spruston, and Häusser 2007), and see recent work on dendritic computations in human cortical 

neurons in (Gidon et al. 2020).  

 

A classical approach to study the I/O relationship of neurons is to ignore their biological details and 

obtain a highly reduced phenomenological abstraction of the neuron’s I/O characteristics (McCulloch 

and Pitts 1943; Lapicque 1907). One such abstraction was provided by the “perceptron” (Rosenblatt and 

F. 1958), which lies at the heart of some of the most advanced pattern recognition techniques to date 

(LeCun, Bengio, and Hinton 2015) . However, the basic function of the perceptron, a linear summation 

of its inputs and thresholding for output generation, highly oversimplifies the synaptic integration 

processes taking place in real neurons. Some studies have addressed this gap, but not at the scale of a 

realistic number of synaptic inputs, full dendritic biophysical mechanisms, and high temporal precision 

of spike output (Poirazi, Brannon, and Mel 2003b; Polsky, Mel, and Schiller 2004; Ujfalussy et al. 2018). 
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Another common approach to study the I/O of neurons is to simulate, via a set of partial differential 

questions, the fine electrical and anatomical details of the neurons using the cable and compartmental 

modeling methods introduced by Rall (Rall 1959; Rall 1964; Segev and Rall 1988). Using these models, 

it is possible to account for nearly all of the above experimental phenomena and to explore conditions 

that are not accessible with current experimental techniques. However, this success comes at a price 

because compartmental and cable models are composed of a high dimensional system of coupled 

nonlinear differential equations, which is notoriously challenging to understand (Strogatz 2001). 

Specifically, it is a daunting task to extract general principles that govern the transformation of thousands 

of synaptic inputs to a train of spike output at the millisecond precision from such detailed simulations, 

but see (Rapp, Yarom, and Segev 1992; G. J. Stuart and Sakmann 1994; G Stuart et al. 1997; Matthew 

E Larkum et al. 2009; Schiller et al. 2000; Magee and Johnston 1995; Spruston et al. 1995).  

 

Here we propose a novel approach to study the neuron as a sophisticated I/O information processing unit 

by utilizing recent advances in the field of machine learning. Specifically, we utilized the capability of 

deep neural networks (DNNs) to learn very complex I/O mappings, in particular that of neurons. Towards 

this end, we trained DNNs with rich spatial and temporal patterns to mimic the I/O behavior of a layer 5 

cortical pyramidal neuron with its full complexity, including its elaborated dendritic morphology, the 

highly nonlinear local dendritic membrane properties, and a large number of excitatory and inhibitory 

inputs that bombard the neuron. Consequently, we obtained a computationally efficient DDN model that 

faithfully predicted the output of this neuron at a millisecond temporal resolution. We then analyzed the 

weight matrices of the DNN to gain new insights into the I/O function of cortical neurons. By 

systematically varying the DNN size, this approach allowed us to characterize the functional complexity 

of a single biological neuron and to pin down its origin. We demonstrated that cortical pyramidal neurons, 

and the networks that they form, are potentially computationally much more powerful, and “deeper”, 

than previously assumed.   
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Results 

Our goal is to fit the I/O relationship of a detailed biophysical neuron model to an analogous DNN. This 

DNN receives, as a training set, the identical synaptic input and the respective axonal output of the 

biophysical model. By changing the connection strengths of the DNN using a back-propagation learning 

algorithm, the DNN should replicate the I/O transformation of the detailed model. To accommodate for 

the temporal aspect of the input, we employed temporal convolutional networks (TCN) throughout the 

study. 

 

Figure 1 demonstrates  the feasibility and usefulness of this paradigm starting with the I/O transformation 

of a well understood neuron model: the integrate and fire (I&F) neuron (Lapicque 1907; Burkitt and N. 

2006). This neuron receives a train of random synaptic inputs and produces a subthreshold voltage 

response as well as a spiking output (see Methods). But what is the simplest DNN that faithfully captures 

the I/O properties of this most basic single neuron model? To answer this question, we constructed DNN 

consisting of one hidden layer with a single hidden unit (Fig. 1A). The time axis was divided into 1ms 

time bins in which only a single spike can occur in the I&F neuron model. The objective of the DNN 

network is to predict the binary spike output of the I&F model at time t0, based on the preceding input 

spike trains up to t0. This input is represented using a binary matrix of size 𝑁𝑠𝑦𝑛 × 𝑇, where Nsyn is the 

number of input synapses, and 𝑇 is the number of preceding time bins considered (Fig. 1B). We used 

𝑁𝑠𝑦𝑛 = 100, and trained a DNN with a single hidden unit on 5000 seconds of simulated data. When 

using T = 80ms we achieved a very good fit, namely: a simple DNN with a single hidden unit that 

accurately predicted both the subthreshold voltage dynamics as well as the spike output of the respective 

I&F neuron model at a millisecond precision (Fig. 1C). 

  

Figure 1D depicts the weights (“filters”) of the single hidden unit of the respective DNN as a heatmap. 

It shows that the learning process automatically produced two classes of weights (“filters”), one positive 

and one negative, corresponding to the excitatory and inhibitory inputs impinging on the I&F model. In 

agreement with our understanding of the I&F model, the excitatory inputs contribute positively to output 

spike prediction (red color), whereas the inhibitory inputs contribute negatively it (blue color). Earlier 

inputs, either inhibitory or excitatory, contribute less to this prediction (teal color). Figure 1E depicts the 

temporal cross-section of those filters and reveals an exponential profile that reflects the temporal decay 

of post synaptic potentials in the I&F model (in the reverse time direction). From these filters one can 

recover the precise membrane time constant of the I&F model. These two temporal filters (excitatory 
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and inhibitory) are easily interpretable as they agree with our previous understanding of the temporal 

behavior of synaptic inputs that give rise to an output spike in the I&F model. 

 

Figure 1F quantifies the model performance in terms of spike prediction using the Receiver Operating 

Characteristic (ROC) curve (Fig. 1F left and see Methods) and the area under it (AUC). AUC for the 

I&F case is 0.9971, indicating a very good fit. Figure 1F right shows an additional quantification of spike 

temporal precision using the DNN prediction, by plotting the cross correlogram between the predicted 

spike train and the target I&F simulated spike train (the “ground truth”). The cross correlogram shows a 

sharp peak at 0 millisecond and has a short, ~10 millisecond, half-width, suggesting high temporal 

accuracy of the DNN. We also quantified the DNN performance to predict the subthreshold membrane 

potential by using standard regression metrics, and, in Fig 1G, depict the scatter plot of the predicted 

voltage versus the ground truth simulated output voltage. The Root Mean Square Error (RMSE) is 

1.23mV, indicating a good fit between the I&F and the respective DNN.  

 

In conclusion, as a proof of concept, we have demonstrated that a simple DNN can learn the I/O 

transformation of a simple I&F model with a high degree of temporal accuracy. The weight matrix (the 

“filter”) obtained by the learning process represents known features of the I&F model, including the 

existence of two classes of inputs (excitatory and inhibitory), the convolution of the synaptic inputs with 

the exponential decay representing the passive membrane RC properties, and the transformation from 

subthreshold membrane potential to spike output.  
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Fig. 1. Integrate and Fire neuron model is faithfully captured by a DNN with one hidden layer consisting of a single 

hidden unit. (A) Illustration of an I&F neuron model receiving a barrage of synaptic inputs and generating voltage/spiking 

output (left), and its analogous DNN (right). Orange, blue, and magenta represent the input layer, the hidden layer and the 

DNN output, respectively. (B) Schematic overview of our prediction approach. The objective of the DNN is to predict the 

spike output of the respective I&F model based on its synaptic input. The binary matrix, denoted by 𝐱, represents the input 

spikes in a time window T (black rectangle) preceding t0. 𝐱 is multiplied by the synaptic weight matrix, 𝐰 (represented by 

the heatmap image) and summed up to produce the activation value of the output unit 𝐲. This value is used to predict the output 

(magenta rectangle) at t =  t0. Excitatory input is denoted in red; inhibitory in blue. Note that, unlike the I&F, the DNN has 

no a priori information about the type of the synaptic inputs (E or I). (C) Top. Example inputs (red – excitatory, blue – 

inhibitory) presented to the I&F neuron model. Middle. Response of the I&F model (cyan) and of the analogous DNN 

(magenta). Bottom. Zoom in on the dashed rectangle region in the top trace. Note the great similarity between the two traces. 

(D) Learned weights of the DNN modeled synapses. Top 80 rows are excitatory synapses to the I&F model; bottom 20 rows 

are its inhibitory synapses. Columns correspond to different time points relative to t0 (right most time point). The prediction 

probability for having a spike at t0 increases if the number of active excitatory synapses increases (red) and the number of 

active inhibitory synapses decreases (blue) just before t0. (E) Temporal cross section of the learned weights in D. (F) Left. 

Receiver Operator Characteristic (ROC) curve of spike prediction. The area under the curve (AUC) is 0.997, indicating high 

prediction accuracy at 1ms precision. Inset: zoom in on up to 1% false alarm rate. Red circle denotes the threshold selected 

for the DNN model shown in C. Right. Cross Correlation between the I&F spike train (ground truth) and the predicted spike 

train of the respective DNN, when the prediction threshold was set to 0.2% false positive (FP) rate (red circle in left plot). (G) 

Scatter plot of the predicted DNN subthreshold voltage versus ground truth voltage produced by the I&F model). 
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We next applied our paradigm to a morphologically and electrically complex detailed biophysical 

compartmental model of a 3D reconstructed layer 5 cortical pyramidal cell (L5PC) from rat 

somatosensory cortex (Fig. 2A). The model is equipped with complex nonlinear membrane properties, a 

somatic spike generation mechanism and an excitable apical nexus capable of generating calcium spikes 

(Hay et al. 2011; M E Larkum, Zhu, and Sakmann 1999). The excitatory synaptic inputs are mediated 

through both voltage-independent AMPA-based conductance as well as by voltage-dependent NMDA-

type conductance; the inhibitory inputs are mediated through conductance-based GABAA-type synapses. 

Both excitatory and inhibitory synapses are uniformly distributed across the dendritic tree of the model 

neuron (see Methods).  

 

A thorough search of configurations of deep and wide fully-connected neural network architectures 

(FCNs) have failed to provide a good fit to the I/O characteristics of the L5PC model. These failures 

suggest a substantial increase in the complexity of I/O transformation compared to that of I&F. Indeed, 

only temporally convolutional network architecture (TCN) with 7 layers and 128 channels per layer, 

provided a good fit (Fig. 2B, C Fig. S5). The example in Fig. 2C shows that this TCN, when provided 

with a previously unseen input pattern from the test set, can predict the somatic voltage and spikes of a 

highly complex neuron with high precision.  

 

It is important to note that the accuracy of the model was insensitive to the temporal kernel sizes of the 

different DNN layers when keeping the total temporal extent of the entire network fixed, so the temporal 

extent of the first layer was selected to be larger than subsequent layers mainly for visualization purposes 

(see Fig. 2G-I). Figure 2H shows a filter from a unit at the first layer of the DNN. This filter is somewhat 

similar to the filter in Fig. 1D but integrates only basal and oblique subtrees and ignores the inputs from 

the apical tree. Figure 2I, however, shows a filter of another unit that, in contrast to Fig. 2H, has 

negligible weights assigned for basal and oblique dendrites but a very strong apical tuft dependency. By 

examining additional first layer filters (not shown) we found a wide variety of different activation 

patterns that the TCN utilized as an intermediate representation, including many temporally directionally 

selective filters (similar to those of Fig. 4D). Figure 2D,2E,2F shows the quantitative performance 

evaluation of this DNN model. For binary spike prediction (Fig. 2D), the AUC is 0.9911.  For somatic 

voltage prediction (Fig. 2E), the RMSE is 0.71mV and 94.6% of the variance is explained by this model. 

Note that, despite its seemingly large size, the resulting TCN represents a substantial decrease in 

computational resources relative to a full simulation of a detailed biophysical model (involving numerical 
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integration of thousands of non-liner differential equations), as indicated by a speedup of simulation time 

by several orders of magnitude. 

 

Now that we have obtain an alternative DNN model that can replicate very accurately the I/O relationship 

of a detailed biophysical/compartmental model of a real neuron, can we learn from it what are the 

essential features that contribute to neuron complexity? Detailed studies of synaptic integration in 

dendrites of cortical pyramidal neurons suggested the primary role of the voltage-dependent current 

through synaptic NMDA receptors, including at the subthreshold and suprathreshold (the NMDA-spike) 

regimes (Polsky, Mel, and Schiller 2004; Branco, Clark, and Häusser 2010). As NMDA receptors depend 

nonlinearly on voltage it is highly sensitive not only to the activity of the synapse in which the receptors 

are located but also to the activity of (and the voltage generated by) neighboring synapses and to their 

dendritic location. Moreover, the NMDA-current has slow dynamics, promoting integration over a time 

window of tens of milliseconds (Major, Larkum, and Schiller 2013; Doron et al. 2017). Consequently, 

we hypothesized that removing NMDA dependent synaptic currents from our L5PC model will 

significantly decrease the size of the respective DNN.  
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Fig 2. Detailed model of a layer 5 pyramidal neuron is faithfully captured by a TCN with 7 hidden layers consisting of 

128 feature maps at each layer. (A) The modeled L5PC. Basal, oblique, and apical dendrites are marked purple, orange, and 

green, respectively. (B) analogous DNN. Orange, blue, and magenta circles represent the input layer, the hidden layer, and 

the DNN output, respectively. Green units represent linear activation units (see Methods). (C) Top. Exemplar voltage response 

of the L5PC model with NMDA synapses (cyan) and of the analogous DNN (magenta) to random synaptic input stimulation. 

Bottom. Zoom in on the dashed rectangle region in the top trace. (D) ROC curve of spike prediction; the area under the curve 

(AUC) is 0.9911, indicating high prediction accuracy at 1ms precision. Zoom in on up to 4% false alarm rates is shown in the 

inset. Red circle denotes the threshold selected for the DNN model shown in B. (E) Scatter plot of the predicted DNN 

subthreshold voltage versus ground truth voltage. (F). Cross Correlation plot between the ground truth (L5PC with NMDA 

synapses) spike train and the predicted spike train of the respective DNN, when the prediction threshold was set according to 

red circle in D. (G) Learned weights of a selected unit in the first layer of the DNN. Top Left, top center and top right, inputs 

located on the basal dendrites, on the oblique dendrites and on the apical tuft, respectively. For each case, top half of the rows 

are excitatory synapses whereas bottom half of rows are its inhibitory synapses. Different columns correspond to different 

time points relative to t0 (rightmost time point). Bottom. temporal cross-section of the learned weights above. (H) Similar to 

G, first layer weights for a different unit in the first layer but with a different spatio-temporal pattern. (I) An additional unit 

that is weakly selective to whatever happens in the basal dendrites, weakly sensitive to oblique dendrites, but very sensitive 

to apical tuft dendrites. The output of this hidden unit is increased when there is apical excitation and lack of apical inhibition 

in a time window of 40 ms before t0. Note the asymmetry between the amplitudes of the temporal profiles of excitatory and 

inhibitory synapses, indicating that inhibition decreases the activity of this unit more than excitation increases it.  
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Fig. 3 shows that, after removing the NMDA voltage dependent conductance, such that the excitatory 

input relies only on AMPA mediated conductances, we have managed to achieve a similar quality fit as 

in Fig. 2 when using a much smaller network - a fully connected DNN (FCN) with 128 hidden units and 

only a single hidden layer (Fig. 3B). This significant reduction in complexity is due to the ablation of 

NMDA channels. Also, in our DNN training attempts, we have failed to achieve a good fit when using 

the architecture that was successful for the I&F model neuron shown in Fig. 1. This indicates that, 

whereas the DNN model for L5PC is greatly simplified in the absence of NMDA conductance, additional 

neuronal mechanisms still contribute to the richness of its I/O transformation as compared to that of the 

I&F neuron model.   

 

Fig. 3C shows an exemplar test trace for the DNN illustrated in Fig. 3B, whereas Fig. 3H depicts a 

representative exemplar of the weight matrix for one of the hidden units of the DNN. By examining the 

filters of the hidden layer of the DNN we observed that the weights representing inputs to the oblique 

and basal dendrites had profiles that resembles PSPs (but mirrored in time). Interestingly, the weights to 

the apical tuft are essentially zero. This pattern remains consistent for all first layer filters of the network, 

implying that, for this model, the apical dendritic synapses had negligible information regarding 

predictions of the output spikes of the neuron, even in the presence of calcium spikes occasionally 

occurring in the nexus. Contrasting this filter with the one presented in Fig. 2I, suggests that the NMDA 

non-linearity greatly assists in the activation of apical tuft dendrites. 

 

Fig. 3D, 3E and 3F show the quantitative performance evaluation. For binary spike prediction (Fig. 3E), 

the AUC is 0.9913. For somatic voltage prediction (Fig. 3F), the RMSE is 0.58mV and 95.0% of the 

variance is explained by this model. 
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Fig 3. Detailed model of L5PC neuron without NMDA synapses is faithfully captured by DNN with one hidden layer 

consisting of 128 hidden units. (A) Illustration of L5PC model (B) analogous DNN. As in previous figure, orange, blue and 

magenta circles represent the input layer, the hidden layer and the DNN output, respectively. Green units represent linear 

activation units. (C) Top. Response of the L5PC model (cyan) and of the analogous DNN (magenta) to random AMPA-based 

excitatory and GABAA-based inhibitory synaptic input (see Methods). Bottom. Zoom in on the dashed rectangle region in 

the top trace. Note the great similarity between the two traces. (D). ROC curve of spike prediction; the area under the curve 

(AUC) is 0.9913, indicating high prediction accuracy at 1ms precision. Inset: zoom in on up to 4% false alarm rates. Red 

circle denotes the threshold selected for the DNN model shown in B. (E) Cross Correlation plot between the ground truth 

(L5PC model response) and the predicted spike train of the respective DNN, for prediction threshold indicated by red circle 

in left plot. (F) Scatter plot of the predicted DNN subthreshold voltage versus ground truth voltage. (H) Learned weights of  

selected units in the DNN, separated by their morphological (basal, oblique and apical) location. Like in the previous figure, 

in each case, the top half rows are excitatory synapses and the bottom half are the inhibitory synapses. As in Fig 1D, different 

columns correspond to different time points relative to t0 (rightmost time point). Note that, just before t0, the output of this 

hidden unit increases if the number of active excitatory synapses increases at the basal and oblique dendrites (red), whereas 

the number of active inhibitory synapses decreases (blue) at these locations. However, this unit is non-selective to activity at 

the apical tuft, indicating the lack of influence of the tuft synapses on the neuron’s output. 

 

To further investigate the NMDA contribution to computational complexity, we studied it in isolation on 

a single dendritic branch and attempted to fit the somatic voltage of a Layer 2/3 Pyramidal Cell (L23PC), 

taken from the visual cortex of the mouse (Branco, Clark, and Häusser 2010), in response to random 

activation of only 9 excitatory synapses uniformly distributed across a single dendritic branch (Fig. 4A). 

We found that a single dendritic branch with NMDA synapses is faithfully captured by a single layer of 

a fully connected DNN with 4 hidden units (Fig. 4A&B). Examining the 4 filters of the first layer reveals 

interesting shapes that make intuitive sense (as first explored by the pioneering theoretical studies of 

(Goldstein and Rall 1974; Rall 1969; Rall 1964)). The topmost filter in Fig. 4D appears to be summing 

only very recent and proximal dendritic activation. The second-from-top hidden unit sums up recent 

distal dendritic synaptic inputs. The third filter clearly shows a direction selective hidden unit, preferring 

patterns in which synaptic activation are temporally activated from distal to proximal series, and the last 
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hidden unit responds to a prolonged distal dendrite summation of activity combined with precisely timed 

proximal input activation.  

 

Fig. 4C specifically examines the special cases studied in (Branco, Clark, and Häusser 2010), of 

sequential activation of the 9 synapses in the distal to proximal direction and, conversely, in the proximal 

to distal direction. Our DNN network, trained on random synaptic activation patterns, successfully 

replicated this behavior. Fig. 4E shows our reconstruction of the results of Branco et al. (Branco, Clark, 

and Häusser 2010), whereby a directionality index was suggested as a possible predictor for the peak 

somatic voltage for random activation sequence of the 9 input synapses. Fig. 4F shows the prediction of 

the respective DNN for the same sequences as in Fig. 4E. Interestingly, our DNN acts as a much better 

predictor for the peak somatic voltage. It is important to note that the special case of 9 synaptic activations 

equally spaced in time is highly unlikely to occur during the random input stimulation regime which was 

used to train the DNN. Nevertheless, the network can generalize even to this new input regime with high 

precision. 

These results demonstrate the power of our approach in interpretability and ability of our models to 

generalize to previously unseen input patterns (out of distribution generalization). By examining the four 

kernels we provide an intuitive (Fig. 4D), yet powerful (Fig. 4F), interpretation for the complex process 

of nonlinear synaptic integration in a single dendrite with NMDA synapses. In addition, the network 

generalizes and predicts the outputs for temporal patterns very different from those on which it was 

trained.  
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Fig 4. Response of a single dendritic branch of L2/3PC neuron model receiving spatio-temporal pattern of NMDA 

synapses activation is faithfully captured by a DNN with one hidden layer consisting of 4 hidden units. (A) Left. Layer 

2/3 pyramidal neuron used in the simulations with a zoom in on one selected basal branch (dashed rectangle). Same modeled 

branch with 9 excitatory synapses (depicted schematically by the “ball and stick” at bottom) was also used in the study of 

Branco et al. (Branco, Clark, and Häusser 2010). Right. Illustration of the analogous DNN. Colors as in Fig. 2A. (B) Example 

of the somatic voltage response (cyan) and DNN predicted output (magenta) to a randomly generated input spike pattern on 

that basal branch (red dots above). (C) Example of somatic response to two spatio-temporal sequences of synaptic activation 

patterns (red: distal-to-proximal direction” and blue: “proximal-to-distal direction”) and the DNN predicted output for these 

same sequences (orange and light blue traces, respectively). (D) Learned weights of the 4 hidden units by the respective DNN 

model. Heatmaps are spatio-temporal filters as shown in Figs. 1D and 2C. Note the direction selective shapes and long 

temporal extent of influence by distal synaptic activations. (E) Scatter plot that shows the discrimination ability between 

different orders of synaptic activations on the modeled basal branch. Vertical axis is the ground truth maximum voltage at the 

soma during a specific synaptic order of activation. Horizontal axis is directionality index proposed in Branco et al. (Branco, 

Clark, and Häusser 2010). Correlation coefficient is 0.86. (F) Same as E, but the DNN estimation of the max voltage of the 

respective order of activation, showing a superior performance of the DNN prediction relative to the directionality index 

previously proposed. Correlation coefficient is 0.99. 
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Discussion 

Recent advances in the field of deep neural networks (DNNs), provide, for the first time, a powerful 

general-purpose tool that can learn a mapping of I/O relationships from examples, including that of single 

complex nonlinear neurons, as demonstrated by the present work. We constructed a large dataset of pairs 

of input-output examples by simulating a neuron model receiving a rich repertoire of synaptic inputs and 

recorded its output in terms of spikes at millisecond precision as well as its subthreshold membrane 

potential. We then trained networks of various configurations on these input-output pairs until we 

obtained an analogous “deep” network with close performance to that of the neuron’s detailed simulation. 

We applied this framework to a series of neuron models with various levels of morpho-electrical 

complexity. 

 

For simple I&F neuron models, our framework provides simple DNNs that capture the full I/O 

relationship of the model while providing key insights that are consistent with our understanding of the 

I&F models (Fig. 1). Surprisingly, even a neuron model of a layer 5 cortical pyramidal neuron with 

complex dendritic trees and with a host of dendritic voltage dependent currents and AMPA-based 

synapses is well-captured by a relatively simple network with a single hidden layer (Fig. 3). However, in 

a full model of a L5 pyramidal neuron consisting of NMDA-based synapses, the complexity of the 

network is significantly increased, and we found a good fit with a temporal-convolutional network that 

has 7 hidden layers (Fig. 2, see also Fig. S4 & S5).  However, in the case where there wasonly a single 

dendritic branch consisting of NMDA synapses, a shallow (one hidden layer) DNN with only a few units 

was required to capture different aspect of spatio-temporal integration of synaptic inputs (Fig. 4).  

 

These results suggest that the single cortical neuron with its nonlinear synaptic inputs is already, on its 

own, a sophisticated computational unit. Consequently, cortical networks are “deeper” and 

computationally more powerful than they seem to be just based on their anatomical (pre-to-post synaptic) 

connections. Importantly, the implementation of the I/O function using a DNN also provides practical 

advantages as it is much more efficient than the traditional compartmental model. In our tests we obtained 

speed up of several orders of magnitude when using the DNN instead of its compartmental-model 

counterpart. This could make an important contribution to simulating large scale realistic neuronal 

networks (Markram et al. 2015; Egger et al. 2014). Furthermore, the size of the respective DNN for a 

given neuron could be used (under certain assumptions, see below) as an index for its computational 

power; the larger it is the more sophisticated computations this neuron could perform. Such an index will 
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enable a systematic comparison between different neuron types (e.g., CA1 pyramidal cell, cortical 

pyramidal cell, and Purkinje cell, or for the same type of cell in different species, e.g., mouse vs. human 

cortical pyramidal cells).  

 

It is important to emphasize that, due to optimization, the complexity measure described above is an 

upper bound of the true computational complexity of the I/O of a single neuron, i.e., it is possible that 

there exists a much smaller neural network that could mimic the biophysical neuron with a similar degree 

of accuracy but the training process we used could not find it. Additionally, we note that we have limited 

our architecture search space only to fully connected (FCN) and temporally convolutional (TCN) neural 

network architectures. It is likely that additional architectural search could yield even simpler and more 

compact models for any desired degree of prediction accuracy. In order to facilitate this search inthe 

scientific community, we hereby release our large readymade dataset of simulated inputs and outputs of 

a fully complex single layer 5 cortical neuron in an invivo like regime so that the community can focus 

on modelling various aspects of this endeavour and avoid running the simulations themselves. 

 

The analysis of deep neural networks is a challenging task and a rapid growing field (Olah, Mordvintsev, 

and Schubert 2017; Mordvintsev, Olah, and Tyka 2015; Mahendran and Vedaldi 2015). Nevertheless, 

observing the weight matrix of units (“filters”) in first layer of the respective DNN is straightforward and 

can provide ample insights regarding the I/O transformation of the neuron. The full network can be 

interpreted as consisting of a basic set of filters that span the space of possible spatio-temporal patterns 

of synaptic inputs that will drive the original neuron to spike. The first layer defines this space, and the 

rest of the network mixes and matches within that space. For example, as shown in Fig. 3, in the case of 

a pyramidal neuron without NMDA synapses, most filters have significant weights only for basal and 

oblique inputs, and the weight given for apical tuft synapses is negligible (despite the existence of voltage 

dependent Ca2+ and other nonlinear currents in this model including occasional Ca2+ spikes). The picture 

is fundamentally different when NMDA synapses were included in the model. In this case the weights 

assigned to apical dendrite synapses is significant. Moreover, the filters devoted to these apical inputs 

tend to have a temporal structure that is significantly wider (in time) than for the proximal synapses, 

suggesting that the temporal precision of input to the apical synapses is less important. These are basic 

insights that could be drawn by just observing first layer filters of the resulting DNN. 

 

This work opens multiple additional avenues for future research. One important direction is the isolation 

of the contribution of specific mechanisms to the computational power of the neuron in a similar way to 
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that performed here for NMDA (See also Fig. S5 & S7). By fitting a DNN while manipulating specific 

dendritic currents (e.g., VGCa, Kv, HCN channels), we will better understand their contribution to the 

overall synaptic integration process and to the complexity of the respective DNN.  An additional 

interesting direction is to utilize this work to improve our understanding of dendritic integration. Rather 

than modelling a neuron bombarded with random meaningless input, one could utilize the neuron’s 

equivalent-DNN to make the neuron compute some interesting meaningful functions. For example, now 

that we estimate that a cortical L5 pyramidal neuron is equivalent to a deep network with 7 hidden layers, 

this DNN could be used to teach the respective neuron to implement a function which is in the scope of 

the capabilities of such a network, such as classifying hand written digits or a sequence of auditory 

sounds. One can then both validate the hypothesis that single neurons could perform complex 

computational tasks and investigate how these neurons can implement such complex tasks. 

 

If one cortical neuron is equivalent to a multi-layered DNN, what are the implications for the cortical 

microcircuit? Is that circuit merely a “deeper” DNN composed of simple “point neurons”? In fact, a key 

difference is that, under our model, synaptic plasticity can take place only in the synaptic layer (input) of 

the respective DNN for a single cortical neuron, whereas the weights of the hidden layers are fixed (and 

dedicated to represent the I/O function of that single cortical neuron). Taken together with the myriad of 

recurrent connections and network motifs between cortical neurons of different types (Markram et al. 

2015), we hereby propose a very specific network architecture for cortical networks. Indeed, the 

architecture of artificial neural networks is one of the most rewarding avenues of machine learning today 

(He et al. 2015; Vaswani et al. 2017; Lin, Chen, and Yan 2014), and studying the specific architecture 

suggested by our work may unravel some of the inductive bias hidden within the cortical microcircuit 

and harness it for future AI applications.  
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Methods 

I&F simulation 

For Fig.1 simulations, membrane voltage was modeled using a leaky I&F simulation 𝑉(𝑡) =

∑ 𝑤𝑖 ∑ 𝐾(𝑡 − 𝑡𝑖)𝑡𝑖

𝑁𝑠𝑦𝑛

𝑖=1
, where 𝑤𝑖 denotes synaptic efficacy for each synapse, 𝑡𝑖 denotes presynaptic spike 

times, and 𝐾(𝑡 − 𝑡𝑖) denotes the temporal kernel of each postsynaptic potential (PSP). We used a 

temporal kernel with exponential decay 𝐾(𝑡 − 𝑡𝑖) = 𝑒−
𝑡−𝑡𝑖

𝜏 ∙ 𝑢(𝑡 − 𝑡𝑖) where 𝑢(𝑡) is the Heaviside 

function 𝑢(𝑡) = {
0, 𝑡 < 0
1, 𝑡 ≥ 0

  and 𝜏 = 20𝑚𝑠 is the membrane time constant. When threshold was reached, 

an output spike was recorded, and the voltage was reset to 𝑉𝑟𝑒𝑠𝑡 = −95𝑚𝑉. As input to the simulated 

I&F neuron, 𝑁𝑒𝑥𝑐 = 80 excitatory synapses and 𝑁𝑖𝑛ℎ = 20 inhibitory synapses were used. Synaptic 

efficacies of 𝑤𝑒𝑥𝑐 = 5𝑚𝑉 were used for excitatory synapses and 𝑤𝑖𝑛ℎ = −5𝑚𝑉 for inhibitory synapses. 

Each presynaptic spike train was taken from a Poisson process with a constant instantaneous firing rate. 

Values used 𝑓𝑒𝑥𝑐 = 3.3𝐻𝑧 for excitatory synapses and 𝑓𝑖𝑛ℎ = 3.2𝐻𝑧 for inhibitory synapses. Resulting 

output average firing rate for these simulation values was 2.1Hz. 

 

L5PC simulation 

For Fig. 2 and Fig. 3 simulations, we used a detailed compartmental biophysical model of cortical L5PC 

as is, modeled by Hay et. al, 2011. For full description of the model please see Methods in the original 

paper. Briefly, this model contains in total 12 ion channels for each dendritic compartment. Some of the 

channels are unevenly distributed over the dendritic arbor. In Fig. 3 double exponential conductances 

based AMPA synapses were used in simulations with  𝜏𝑟𝑖𝑠𝑒 = 0.3𝑚𝑠, 𝜏𝑑𝑒𝑝𝑟𝑒𝑠𝑠 = 3𝑚𝑠 and 𝑔𝑚𝑎𝑥 =

0.4𝑛𝑆. For Fig. 2 and Fig. 4, in related simulations we used the standard NMDA model by Jahr and 

Stevens, 1993, with  𝜏𝑟𝑖𝑠𝑒 = 2𝑚𝑠, 𝜏𝑑𝑒𝑝𝑟𝑒𝑠𝑠 = 70𝑚𝑠, 𝛾 = 0.08 𝑚𝑉−1 and 𝑔𝑚𝑎𝑥 = 0.4𝑛𝑆. For both Fig. 

2 and Fig. 3, we also used double exponential GABA A synapses with 𝜏𝑟𝑖𝑠𝑒 = 2𝑚𝑠, 𝜏𝑑𝑒𝑝𝑟𝑒𝑠𝑠 = 8𝑚𝑠 and 

𝑔𝑚𝑎𝑥 = 1𝑛𝑆 on each independent dendritic segment, we placed a single AMPA (for Fig. 3) or 

AMPA+NMDA (for Fig. 2) synapse as well as a single GABA A synapse. In order to mimic uniform 

coverage of excitatory and inhibitory synapses on the entire dendritic tree, we stimulated each 

compartment with a firing rate proportional to the segment’s length. Each presynaptic spike train was 

taken from a Poisson process with a smoothed piecewise constant instantaneous firing rate. The Gaussian 

smoothing sigma, as well as the time window of constant rate before smoothing were independently 

resampled for each 6-second simulation from the range 10ms to 1000ms (Fig. S1D). This was chosen, as 

opposed to a constant firing rate, to create additional temporal variety in the data in order to increase the 
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applicability of the results to all possible situations. For Fig. 2 simulations with NMDA synapses, the 

total amount of excitatory and inhibitory presynaptic spikes per 100ms range between 0 and 800 spikes 

(Fig. S1). This is equivalent to 8000 excitatory synapses with an average rate of 1Hz and 2000 inhibitory 

synapses with an average rate of 4Hz. The average output firing rate of the simulated cell across all 

simulations was 1.0Hz. For Fig. 3 simulations, with AMPA only synapses, the total amount of excitatory 

and inhibitory presynaptic spikes per 100ms range were increased in order to account for the smaller 

amount of total current injected due to lack of NMDA current, with the purpose to achieve similar output 

firing rates of 1.0Hz. See Fig. S8 for detailed comparison. 

 

L23PC simulation 

For Fig. 4 simulations, we used a detailed compartmental biophysical model of cortical L23PC as is, 

modeled by Branco et. al, 2010. In these experiments we stimulated a single branch with 9 dendritic 

segments with an NMDA synapse on each compartment, with parameters as in the simulation for Fig. 4. 

The branch was selected as in Branco et al, 2010 in order to perform comparison with original paper. 

Similarly, to Fig. 2. and Fig. 3 simulations, each presynaptic spike train was taken from a Poisson process 

with a smoothed piecewise constant instantaneous firing rate. The number of presynaptic input spikes to 

the branch per 100ms ranged between 0 and 15 in simulations used for training. In Fig. 4C,4E,4F, we 

repeated input stimulation protocol suggested by Branco et. al, 2010, consisting of single presynaptic 

spike per synapse with constant time intervals of 5ms between subsequent synaptic activations, only 

randomly permuting the order of activation between trials. 

 

DNN fitting 

In order to represent the input in a suitable manner for fitting with a DNN, we discretize time using 1ms 

time bin ∆𝑡. Using this discretization, we can represent a spike train as a sequence of binary values 𝑆[𝑡], 

such that 𝑆[𝑡] ∈ {0,1}, since the length of a spike is approximately 1ms there cannot be more than a 

single spike in such a time interval. We denote the spike trains the neuron receives as input as 𝑋[𝑠, 𝑡], 𝑠 ∈

{1,2, … ,𝑁𝑠𝑦𝑛}, 𝑡 ∈ {1,2, … , 𝑇}, where 𝑠 denotes the synapse index, and 𝑡 denotes time. The spike trains 

a neuron emits as output we denote as 𝑦𝑠𝑝𝑖𝑘𝑒[𝑡], The somatic voltage trance we denote as 𝑦𝑣𝑜𝑙𝑡𝑎𝑔𝑒[𝑡]. 

For every point in time, we attempt to predict both somatic spiking 𝑦𝑠𝑝𝑖𝑘𝑒[𝑡] and somatic voltage 

𝑦𝑣𝑜𝑙𝑡𝑎𝑔𝑒[𝑡] based only a 𝑇𝑖𝑛𝑝𝑢𝑡 sized  window of presynaptic input spikes. i.e. define the vector 𝑥𝑡𝑖⃗⃗ ⃗⃗  =

[𝑋[𝑠, 𝑡]], 𝑠 ∈ {1,2, … ,𝑁𝑠𝑦𝑛}, 𝑡 ∈ {𝑡𝑖, 𝑡𝑖 − 1, 𝑡𝑖 − 2,… , 𝑡𝑖 − 𝑇𝑖𝑛𝑝𝑢𝑡} and a neural network that maps 𝑥𝑡⃗⃗  ⃗  to 

𝑦̂𝑠𝑝𝑖𝑘𝑒[𝑡] and 𝑦̂𝑣𝑜𝑙𝑡𝑎𝑔𝑒[𝑡]. i.e. 𝑦̂𝑣𝑜𝑙𝑡𝑎𝑔𝑒[𝑡], 𝑦̂𝑠𝑝𝑖𝑘𝑒[𝑡] = 𝐷𝑁𝑁(𝑥𝑡⃗⃗  ⃗, 𝜃). We treat spike prediction as a binary 
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classification task and use standard log loss and treat voltage prediction as regression task and use 

standard MSE loss. We wish to find a model’s parameters 𝜃 such that we minimize a combined loss 

𝐿(𝜃) =  𝐿𝐿𝑜𝑔𝐿𝑜𝑠𝑠(𝑦𝑠𝑝𝑖𝑘𝑒 , 𝑦̂𝑠𝑝𝑖𝑘𝑒) + 𝑤𝑣𝑜𝑙𝑡𝑎𝑔𝑒 ∙  𝐿𝑀𝑆𝐸(𝑦𝑣𝑜𝑙𝑡𝑎𝑔𝑒 , 𝑦̂𝑣𝑜𝑙𝑡𝑎𝑔𝑒), where 𝑤𝑣𝑜𝑙𝑡𝑎𝑔𝑒 is the relative 

importance of the spike prediction loss with respect to the somatic voltage prediction loss. For most of 

our experiments we set 𝑤𝑣𝑜𝑙𝑡𝑎𝑔𝑒 to be about half the size of the spike loss. The DNN architecture we 

used was a temporally convolutional network (TCN) (Bai, Zico Kolter, and Koltun 2019) and we applied 

it in a fully convolutional manner on all possible timepoints. Note that when the temporal filter size after 

the first layer is 1 in a TCN applied as described, this is effectively a fully connected neural network. In 

most of our experiments we used fully connected neural networks, except for Fig. 2 in which we used a 

proper TCN with hierarchical convolutional structure. After every convolutional layer, a batch 

normalization layer immediately follows. We employed a learning schedule regime in which we lowered 

the learning rate and increased batch size as we progressed through training. Full details of the learning 

schedule in each case are in the attached code repository. For generation of Fig. 5S. we trained many 

networks with different hyperparameters and trained each network for 2-7 days on a GPU cluster 

consisting of several V100, K80 and 2080Ti Nvidia GPUs. All results of the different hyperparameters 

and results can be found in the data link on the Kaggle platform. 

 

Model evaluation 

We divided our simulations to train, validation and test datasets. We fitted all DNN models on train 

dataset, and all reported results are on an unseen test dataset. A validation dataset was used for modeling 

decisions, hyperparameter tuning and snapshot selection during the training process (early stopping). We 

evaluated binary spike prediction results using receiver operator characteristic (ROC) curve and 

calculated the area under curve (AUC). We note that due to the relatively low firing rate of the neuron, 

the binary classification problem of instantaneous spike prediction problem is highly unbalanced. For 

every second of simulation there was on average 1 positive sample (spike) for every 999 negative samples 

(non-spikes). Therefore, we used a very conservative threshold over the binary spike probability 

prediction output of the DNN in order to create the final spike train prediction and examine the cross-

correlation plot. Note also that a prediction without a single True Positive on the 1ms time binning binary 

spike prediction problem can still be in fact a very good solution, e.g., if our model outputs, as its 

prediction, the exact same spike train as the original but offset by 1ms in time. In this case, there will be 

no True positives, and many False positives, but the predicted spike train is quite good nonetheless, 

namely: the temporal cross correlation between the original and predicted spike trains is not directly 
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related to binary prediction metrics used and therefore we display it. For creating a binary prediction, we 

chose a threshold that corresponds to 0.2% false positive rate. In order to evaluate the temporal precision 

of the binary spike prediction we plotted the cross-correlation between the predicted output spike train 

and the ground truth simulated spike train. In order to evaluate the voltage prediction, we calculated the 

RMSE and plot the scatter plot between predicted voltage and the ground truth simulated voltage. 

 

Code and data availability 

Data and pretrained networks that were used in this work are available on Kaggle at the following link: 

https://www.kaggle.com/selfishgene/single-neurons-as-deep-nets-nmda-test-data.  

A short python script that loads a pretrained artificial network and makes a prediction on the entire 

NMDA test set that replicates the main result of the paper (Fig. 2) can be found in the following link: 

https://www.kaggle.com/selfishgene/single-neuron-as-deep-net-replicating-key-result.  

A short python script that loads the data and explores the dataset (Fig. S1 & Fig. S2) can be found in the 

following link: https://www.kaggle.com/selfishgene/exploring-a-single-cortical-neuron. 
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Supplementary Figures 

 

Fig S1. Simulations Input-Output of an in vivo like regime of a detailed L5PC neuron model with NMDA synapses. 

(A) Inputs and outputs of a sample simulation. Top, raster plot of presynaptic input excitatory spikes (red) and inhibitory 

spikes (blue). Middle, total number of excitatory spikes per 1 millisecond. Smoothed with a Gaussian kernel with tau=20ms. 

Bottom, somatic voltage trace and spiking output of the same simulation (B) Histograms of number of excitatory input spikes 

(left), inhibitory input spikes (middle) received as input on the entire dendritic tree in a 200ms time window for the L5PC 

model with NMDA synapses. Right. Histogram of number of output spikes in the same time period. (C) Scatter plot expanding 

the information presented in (B): horizontal axis is number of inhibitory spikes, vertical axis is the number of excitatory spikes 

and the color of each dot represents the number of output spikes for the same time window of 200ms. (D) Example illustration 

of inputs, in units of spikes per millisecond per subtree and synapse type, for 5 different simulations. We can see a wide 

amount of variability in input regimes of our simulations. 
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Fig S2. Dendritic voltage traces of in vivo like input regime of a detailed L5PC neuron model with NMDA synapses. 

(A) Illustration of the simulated cell morphology. (B) Top. Local dendritic voltage traces of all 639 simulated compartments. 

The colors of each trace are color-coded as the colors of the morphology illustration in (A). Bottom. Somatic (black) and 

nexus (red) voltage traces.  
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Fig S3. Additional ground truth vs prediction traces of a large TCN mimicking an L5PC neuron with NMDA synapses 

(Fig. 2). (A) Illustration of TCN architecture used to predict somatic voltage and spiking of L5PC detailed simulation. Same 

as Fig. 2 (B) Five randomly selected exemplar voltage responses of the L5PC model with NMDA synapses (cyan) and of the 

analogous DNN (magenta) to random synaptic input stimulation. 
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Fig S4. Detailed L5PC neuron model with NMDA synapses is not captured by a FCN with 1 hidden layer consisting of 

128 hidden units at each layer. (A) Illustration of L5PC model. Basal oblique and apical dendrites are marked by respective 

purple, orange and green colors. (B) analogous DNN. Orange, blue and magenta circles represent the input layer, the hidden 

layer and the DNN output, respectively. Green units represent linear activation units. (Detailed architecture: 1 hidden layer, 

128 units per layer, time window extent of 43ms) (C) Top. Exemplar voltage response of the L5PC model with NMDA 

synapses (cyan) and of the analogous DNN (magenta) to random synaptic input stimulation. Bottom. Zoom in on the dashed 

rectangle region in the top trace. (D) ROC curve of spike prediction; the area under the curve (AUC) is 0.9769. Zoom in on 

up to 4% false alarm rates is shown in the inset. Red circle denotes the threshold selected for the DNN model shown in B. (E) 

Scatter plot of the predicted DNN subthreshold voltage versus ground truth voltage. (F). Cross Correlation plot between the 

ground truth (L5PC with NMDA synapses) spike train and the predicted spike train of the respective DNN, when the 

prediction threshold was set according to red circle in D. (G) Learned weights of a selected unit in the DNN. Top Left, top 

center and top right, inputs located on the basal dendrites, on the oblique dendrites, and on the apical tuft, respectively. For 

each case, top half of the rows are excitatory synapses whereas bottom half of rows are its inhibitory synapses. Different 

columns correspond to different time points relative to t0 (rightmost time point). Bottom. temporal cross-section of the learned 

weights above. (H) Similar to G, first layer weights for a different unit in the first layer but with a different spatio-temporal 

pattern. (I) An additional unit, similar to G & H.  
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Fig S5. The complexity of DNNs required to fit L5PC with NMDA synapses is substantially greater than L5PC with 

AMPA only synapses. (A) Left, spiking prediction accuracy measure (AUC) as function of the depth of the fitted DNN for 

3 different cases. Green curve is full biophysical model with NMDA synapses, blue curve is full biophysical model with 

AMPA only synapses, and orange curve is similar to the AMPA only case but with an additional SK ion channel removed 

from the soma. Variance bars are across different test data subsets. Middle, similar plot to the one on the left but for the width 

of the DNN (i.e., number of channels/feature maps). Right, like previous two plots, but for the temporal extent of the input 

time window (i.e., effective “memory” of the neuron) (B) Similar plots in A, but now the vertical axis represents the somatic 

subthreshold prediction accuracy (as depicted by percent of variance explained). Note: each point of each of the individual 

curves represents the best network across all other variables in that figure. 
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Fig S6. Moderately large TCN fits detailed L5PC neuron model with AMPA synapses with an extremely high degree 

of prediction accuracy. (A) Illustration of L5PC model. Basal, oblique, and apical dendrites are marked by purple, orange 

and green colors, respectively. (B) Analogous DNN. Orange, blue, and magenta circles represent the input layer, the hidden 

layer, and the DNN output, respectively. Green units represent linear activation units. (detailed architecture: 4 temporally 

convolutional layers, 64 features maps per layer, time window extent of 120ms) (C) Top. Exemplar voltage response of the 

L5PC model with AMPA synapses (cyan) and of the analogous DNN (magenta) to random synaptic input stimulation. Bottom. 

Zoom in on the dashed rectangle region in the top trace. (D) ROC curve of spike prediction; the area under the curve (AUC) 

is 0.9959. Zoom in on up to 4% false alarm rates is shown in the inset. Red circle denotes the threshold selected for the DNN 

model shown in B. (E) Scatter plot of the predicted DNN subthreshold voltage versus ground truth voltage. (F). Cross 

Correlation plot between the ground truth (L5PC with AMPA synapses) spike train and the predicted spike train of the 

respective DNN, when the prediction threshold was set according to red circle in D. (G) Learned weights of a selected unit in 

the DNN. Top Left, top center, and top right, inputs located on the basal dendrites, on the oblique dendrites, and on the apical 

tuft, respectively. For each case, top half of the rows are excitatory synapses whereas bottom half of rows are its inhibitory 

synapses. Different columns correspond to different time points relative to t0 (right most time point). Bottom. temporal cross-

section of the learned weights above. (H) Similar to G, first layer weights for a different unit in the first layer but with a 

different spatio-temporal pattern. (I) An additional unit, similar to G & H. 
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Fig S7. Removal of SK channels results in even higher prediction accuracy of both large and small DNNs. (A) DNN 

illustration of 1-layer FCN and exemplar traces of prediction. Like Fig. 3A,3B,3C (B) Quantitative performance evaluation 

of the network depicted in A, similar to Fig. 3D,3E,3F, only this time without SK channels in the cell. (C) Learned weights 

of a selected first layer unit of the network depicted in A. (D) DNN illustration of 4-layer TCN and exemplar traces of 

prediction. Similar to B (E) Quantitative performance evaluation of the network depicted in D. (C) Learned weights of a 

selected first layer unit of the network depicted in D. 
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Fig S8. Input-Output regimes of detailed L5PC model in the 3 different simulation cases: NMDA synapses, AMPA 

synapses and AMPA synapses with an additional SK channel removed. (A) Histograms of number of excitatory input 

spikes (left), inhibitory input spikes (middle) received as input on the entire dendritic tree in a 100ms time window for the 

L5PC model with NMDA synapses. Right. Histogram of number of output spikes in the same time period. (C) Scatter plot 

expanding the information presented in A: horizontal axis is number of inhibitory spikes, vertical axis is the number of 

excitatory spikes and the color of each dot represents the number of output spikes for the same time window of 200ms. (C-

D) Similar to A-B, but for the case of L5PC model with AMPA only synapses. (E-F) Similar to A-B, but for the case of L5PC 

model with AMPA only synapses and SK channels removed from the cell.  
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Fig S9. Interpretation of first layer filter activations of DNN representing a single dendritic branch. (A) Top. Raster 

plot of presynaptic input spikes to the branch from Fig. 4. Middle. Somatic voltage trace (cyan) and predicted voltage by the 

DNN from Fig. 4. (magenta). Bottom. Activations of the DNNs 4 units (B) Illustration of the DNN first layer weights and the 

colors they are represented by in the bottom plot of A (circles on the left of each filter).  
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