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Abstract

This paper presents a portable computer vision system, that is able to attract and detect live insects.
More specifically, the paper proposes detection and classification of species by recording images of live
moths captured by a light trap. A light trap with multiple illuminations and a camera was designed to
attract and monitor live insects during twilight and night hours. A computer vision algorithm referred to
as Moth Classification and Counting, based on deep learning analysis of the captured images then tracked
and counted the number of insects and identified moth species. This paper presents the design and the
algorithm that were used to determine and identify the moth species. Observations over 48 nights resulted
in the capture of more than 250,000 images with an average of 5,675 images per night. A customized
convolutional neural network was trained on 864 labelled images of live moths, which were divided in to
eight different species, achieving a high validation F1-score of 0.96. The algorithm measured an average
classification and tracking F1-score of 0.83 and a tracking detection rate of 0.79. This result was based on
an estimate of 83 individual moths observed during one night with insect activity in 122 minutes collecting
6,000 images. Overall, the proposed computer vision system and algorithm showed promising results in
nondestructive and automatic monitoring of moths as well as classification of species. The system provides
a cost-effective alternative to traditional methods, which require time-consuming manual identification and
typically provides coarse temporal solution to capturing data. In addition, the system avoids depleting
moth populations in the monitoring process, which is a problem in traditional traps that kill individual
moths. As image libraries grow and become more complete, the images captured by the trapping system
can be processed automatically and allow users with limited experience to collect data on insect abundance,
biomass, and diversity.
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1. Introduction

There is growing evidence that insect pop-
ulations are declining in abundance, diversity,
and biomass Wagner (2020). Multiple anthro-
pogenic stressors are proposed as drivers of these
changes Harvey et al. (2020), but the complexities
of the responses and differences in the ecology of the
millions of species involved makes it difficult to pin-
point causes of these declines as well as mitigation
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measures. For many taxa, long-term population
census data are also non-existing and more exten-
sive monitoring. Thus, more especially of species
rich taxa, is critically needed.

More than half of all described species on Earth
are insects. With more than 160,000 described
species, the insect order Lepidoptera, which con-
sists of moths (95%) and butterflies (5%), is one
of the largest. Moths are important as pollinators,
herbivores and prey for e.g. birds and bats. Re-
ports of declining moth populations have come from
Great Britain Fox et al. (2013) Sweden Franzén
and Johannesson (2007) and the Netherlands Groe-
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nendijk and Ellis (2011). Recently however sta-
ble populations have also been observed Macgregor
et al. (2019). Changes in the abundance of moths
could have cascading effects through the food web
suggesting that moths are a very relevant group of
insects to monitor more effectively in the context of
global change.

The most widely applied methods of monitor-
ing moths are to use light traps Jonason et al.
(2014). The moths are typically killed and manu-
ally counted and classified by human intervention.
However, most methods requires experts and te-
dious manual labor to visit the traps and classify
individual species. In this paper, we describe a new
method for automatic counting and classification
of moth species in order to accelerate the study of
moth population ecology and minimize the impact
on moth population.

1.1. Related work

Attempts to trap and record insects with com-
puter vision or identify moths based on images have
already been described in various papers.

A survey of moths using light traps has been
done in Jonason et al. (2014), where two different
light sources were used to attract different species of
moths. The specimens were collected in a box with-
out killing them. The box was then emptied every
morning for manual species identification. The sur-
vey explored the influence of weather, time of year
and light source. It was observed that a high levels
of species richness and abundance per night were
mainly influenced by a high temperature, low hu-
midity and a lamp type with high power intensity.
It was concluded that sampling during the warmest
nights in each month (March to October) achieved
the best results for understanding the species’ phe-
nology. Inspired by the work of Jonason et al.
(2014) our work includes the use of light to attract
insects and moths during twilight and night hours.

Ding and Taylor (2016) have presented a trap
for automatic detection of moths, which contained
a pheromone lure to attract insects of interest
and an adhesive surface, where the insects became
stuck. Digital images with a relatively low reso-
lution (640x480 pixels) were taken of the dead and
live insects at a fixed time point daily and transmit-
ted to a remote server. The paper showed that it
is possible to train a convolutional neural network
(CNN) to identify moths. However, it only dealt
with a binary classification problem to recognize if

an insect in the landfill was a moth or another type
of pest insect.

Watson et al. (2004) and Mayo and Watson
(2007) have provided an analysis of 774 live indi-
viduals from 35 different moth species to determine
whether if computer vision techniques could be used
for automatic species identification. Focusing on
data mining for feature extraction and a Support
Vector Machine (SVM) for classification, their work
achieved a classification accuracy of 85% among 35
classes distributed across 774 images.

While previous analyses of the same dataset
would require manual selection of regions on the
moths to identify an individual, Mayo and Watson
(2007) could effectively classify from a single image.
In addition, Batista et al. (2010) have proposed a
nearest neighbor algorithm based on features such
as texture, color and shape to classify moth species
from the same dataset obtaining an accuracy of
79.53%. The work of Watson et al. (2004), Mayo
and Watson (2007) and Batista et al. (2010) were
published before CNNs became a widespread tech-
nology, and their work contributed to the future,
as a foundation of solving the problem of species
classification, with deep learning.

Several of the issues associated with moth clas-
sification when the dataset contains a large num-
ber of classes have been illustrated by Chang et al.
(2017). Their work presented a dataset of 636 but-
terflies and moths distributed over 14,270 highly
detailed images, which were collected using inter-
net search engines. The challenge with such a
large dataset is that the variation between species
is minimal while the variation within the individual
classes can be large. In addition, the dataset con-
sisted of images with complex backgrounds which
makes it difficult to distinguish the individual in-
sects. This makes it necessary to use more com-
plex and larger models such as Visual Geometry
Group (VGG) Simonyan and Zisserman (2015), In-
ception Szegedy et al. (2015) and Residual Net-
works (ResNet) He et al. (2016) to perform classi-
fication reliably. Furthermore, training an effective
model with is challenging with rare species, where
there is not enough data. In our work, we presents a
simpler CNN model, which is able to classify moth
species based on images with a controlled illumina-
tion, background and camera setup.

Several others Chang et al. (2017); Xia et al.
(2018) have proposed deep CNNs to make fine-
grained insect, butterfly and moth classifications
based on images from the Internet. The challenge
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of using this approach is that butterflies and moths
are typically captured with unfolded wings in such
images. This is not the natural resting position for
live moths on a plane surface and thus not the way
they would appear in a light trap such as the one
presented in the present paper.

Zhong et al. (2018) have also worked on a trap
that captures individual insects for later analysis.
Their system was implemented on a Raspberry Pi
2 model B with the corresponding Raspberry cam-
era module. An algorithm was proposed for the de-
tection and classification of different orders of flying
insects. To detect and count the number of individ-
uals, a first version of the deep neural network ”You
Only Look Once” (YOLO) Redmon et al. (2016)
was used. A SVM was after wards used to perform
classification of insect order based on features. Us-
ing a combination of YOLO and SVM minimized
the amount of training data required. The work
concentrated on the classification of insect orders
and thus did not make the determination of differ-
ent families or species. The result was a counting
and classification precision of 92.5% and 90.8% re-
spectively. Since the classification was made with
SVM based on manually defined features, it is un-
likely the method would be easy to expand for
moth species classification as selecting useful fea-
tures would be challenging. Since the trap captures
and retains the individuals, counting the individu-
als would be a relatively trivial task compared to
tracking live moving insects.

This paper presents a new light trap with a cam-
era and several illuminations to attract and monitor
flying and resting insects and moth species auto-
matically without killing them. The computer vi-
sion system is based on a Raspberry Pi and a high
resolution web camera, which is able to capture de-
tailed images of the individual insects.

In relation to image processing, our paper
presents a novelty in the form of an extended image-
processing pipeline that also considers the temporal
image dimension. Compared to the results in Wat-
son et al. (2004); Xia et al. (2018) and Eliopoulos
et al. (2018), we present a fully functional image-
processing pipeline that includes tracking of insects
and utilizes a CNN for moth spices classification
in the intermediate steps of the pipeline. In the
last part of the pipeline, we incorporate a novel
image-processing algorithm named Moth Classifi-
cation and Counting (MCC) which is able to track
and count moth species in the temporal time di-
mension.

Figure 1: The portable light trap with a light table, a white
sheet and UV light to attract live moths during night hours.
The computer vision system consisted of a light ring, camera
with computer and electronics and a powered junction box
with DC-DC converter.

2. Materials and methods

In this section, the portable light trap and com-
puter vision system is described, which was used
to detect and monitor live insects and moths. The
system was designed to attract moths and insects in
the night hours and automatically captured images
based on motion. Whenever a change in the camera
field of view was detected by the computer vision
system a sequence of images of the moth or insect
was captured and stored on a hard drive. Any in-
sect above a certain size would be detected by the
camera and insect motion would be captured. The
construction and selection of components of the sys-
tem and algorithm to count and identify the species
of moth is described in the following sections.

2.1. Hardware equipment

The primary components of the light trap vision
system was the ultra-violet (UV-light) fluorescent
tube from Bioform (accessed on 1/3-2020) (Article
No.: A32b), light table from Computermester (ac-
cessed on 1/3-2020) and computer vision system as
illustrated in figure 1. The purpose of the UV-light
was to attract insects to the location of the trap
from a long distance. A light table (LED A3 for-
mat) placed in front of the computer vision system
was covered with a white sheet to ensure a diffuse
illumination without reflection in the images. The
white uniform background ensured easy detection
of the insects and the light table helped to ensure
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Figure 2: A picture of 3840x2160 pixels taken of light table
and resting moths with a light ring illumination on a white
uniform background.

that insects settled on the white sheet. The com-
puter vision system was composed of a light ring
from 24hshop (accessed on 1/3-2020), web camera
from Logitec (accessed on 1/3-2020) (Brio Ultra HD
Pro Webcam) with a resolution of 3840x2160 pix-
els and a Raspberry Pi 4 computer. The light ring
(diameter 153/200 mm) was placed in front of the
light table to ensure a diffuse foreground illumina-
tion of the insects. The intensity of the light ring
could be adjusted from a combination of yellow and
blue/white LED light. Camera focus and exposure
was manually adjusted to achieve an optimal image
quality as seen in figure 2. The field of view was
adjusted in order to ensure sufficient resolution of
the insects and cover approximately half of the area
of the light table. A working distance of 200 mm
from camera to light table was chosen. This gave a
field of view of 320x170 mm and resulted in a suffi-
cient image quality being able for identifying moth
species. The camera and light were adjusted so that
the moth species could be identified by an expert
based on an enlarged photo of as shown in figure 3.

Sugar water was sprinkled on the white sheet to
attract insects. The sugar water caused more in-
sects to stay on the sheet for a longer period of time.
However, the trap also worked without sugar water,
although less effectively. A motion program run-
ning on the Raspberry Pi 4 was installed to capture
a sequence of images whenever a movement was de-
tected in the camera view. It was programmed to
save images in JPG format whenever it detected
change in more than 1500 pixels. This setting en-
sured that only larger insects where captured and
thus filtered smaller insects such as mosquitos and
flies from the footage. The maximum frame rate
was limited to 0.5-2 fps, resulting in a timeframe

Figure 3: An enlarged picture taken of a moth identified as
species Agrostis puta by an expert.

Figure 4: Photo of the light trap and computer vision sys-
tem.
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of 0.5-2 seconds between images. On warm sum-
mer nights with a high level of insect activity more
than 20,000 images were captured per night. To
save space on the hard drive, a frame rate of 0.5
fps was selected, which was sufficient for identify-
ing and counting moth species. To save power, the
Raspberry Pi was programmed to capture images
between 9pm and 5am and to turn off the UV-
light during daytime. A circuit with relay was con-
structed to control the UV-light placed inside the
computer and camera box. A solid-state drive (500
GB) was connected to the Raspberry Pi to store the
captured images. Inside the junction box, a DC-DC
converter was installed to convert the supply volt-
age from 12V to 5V. The Raspberry Pi and light
ring was supplied with 5V and UV-light, and the
light table was supplied with 12V.

The whole system was supplied with 12V. The
power consumption was 12.5 Watt during daytime
when the UV-light was turned off and the com-
puter system was idle. During the night, the system
used 30 Watt when the UV-light was turned on
and the computer vision system was recording im-
ages. With a power consumption of only 12.5 Watt
during day hours and 30 Watt during night hours,
a 12V battery with a 25Wp solar panel and regu-
lator should be sufficient for powering the system
during the entire summer period. Figure 4 shows
a photograph of the actual constructed light trap
and computer vision system seen from the outside.

2.2. Counting and classification of moths

We developed a novel computer vision algorithm
refered to as Moth Classification and Counting
(MCC), which was able to count the number of in-
sects and identify known species of moths. The
algorithm produced statistical data of individual
moths and their species, as well as the number
of unknown insects detected. For every individual
moth detected, the time and identity was recorded.
In the following subsections, important parts of the
algorithm are explained in more detail. However,
we will first present brief overview of the MCC al-
gorithm. The MCC algorithm was composed by a
number of sequential steps, where each image in the
recording was analyzed as illustrated in figure 5.

The first step was to read an image for a selected
observed night sorted by time of capture. This was
segmented as black and white, followed by blob de-
tection to mark a bounding box around each de-
tected insect. This was achieved via the blob de-
tection and segmentation described in section 2.2.1.

The position of each insect region in the image was
estimated based on the center of the bounding box.

The second step tracked insects in the image se-
quence as described in section 2.2.2. Tracking was
important for recording the movement and behav-
ior of the individual insect during its stay in the
light trap and ensuring it only was counted once.

For every insect track, it was evaluated whether
the insect was a known moth species. A trained
customized CNN, which used a fixed cropped and
resized image of each insect, was used to predict
moth species. This third step is described in more
detail in section 2.2.3.

The final step collected information and derived
a summary of counted individuals of known moth
species and unknown insects detected and tracked
by the algorithm. The summary information were
annotated to the image with highlighted marks of
each insect tracks.

2.2.1. Blob detection and segmentation

A grey-scaled foreground image was made by sub-
tracting a fixed background image of the white
sheet without insects. Several methods were in-
vestigated to perform segmentation of a black and
white image like using a global threshold or re-
gions of adaptive threshold segmentation. The
Otsu (1979) threshold algorithm turned out to be
the best choice. A black and white image was made
using Otsu threshold on the foreground image, fol-
lowed by a morphological open and close operations
to filter small noisy blobs and closing of blobs. Fi-
nally the contour of blobs was found and the bound-
ing box of insect regions was estimated. Estimating
the position of insects based on bounding boxes did
not work properly in rare cases, when the individ-
uals were too close to each other. A result of seg-
mentation and bounding box estimation is shown
in figure 6.

2.2.2. Insect tracking and counting

If the same insect was found in a sequence of im-
ages, it should only be counted once. Thus, it was
necessary to track the insect in order to count the
number of individual insects correctly. The individ-
ual insects were relatively stationary during their
stay, and images were captured at two second inter-
vals in case of activity. Therefore, it was assumed
that a match was more likely for the shortest dis-
tance between two bounding boxes. That is, two
boxes that were close to each other were likely to
be the same individual.
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Figure 5: The processing pipeline of the intermediate- to high-level image processing algorithms to track and count the number
of insects. A customized trained convolutional neural network (CNN) was used for the moth species classification.

Figure 6: A blob segmented image of a detected moth (Noc-
tua fimbriata) with bounding box.

The position and size of each insect were esti-
mated for every single frame, and tracking could
therefore be solved by finding the optimal assign-
ment of insects in two consecutive images. The
Hungarian Algorithm Munkres (1957) was our cho-
sen method for finding the optimal assignment for a
given cost matrix. In this application, the cost ma-
trix should represent how likely it was that an insect
in the previous image had moved to a given posi-
tion in the current image. The cost function was
defined as a weighted cost of distance and area of
matching bounding boxes in the previous and cur-
rent image. The Euclidean distance between center
position (x, y) in the two images was calculated as
follows:

Dist =
√

(x2 − x1)2 + (y2 − y1)2 (1)

This distance was normalized according to the
diagonal of the image:

Maxdist =
√

(Iheight)2 + (Iwidth)2 (2)

The area cost was defined as the cost between the
size of bounding boxes:

Areacost =
Minarea

Maxarea
(3)

A final cost function in equation 4 was defined
with a weighted cost of distance Wdist and weighted
cost of area Warea.

Cost =
Dist

Maxdist
Wdist+(1−Areacost)Warea(4)

The Hungarian Algorithm required the cost ma-
trix to be squared and, in our case, was defined as
an N×N matrix, where each entry was the cost as-
signing insecti in previous image to insectj in cur-
rent image. After a match with minimum cost, the
entry in the current matrix was assigned a Track ID
from the entry in the former. The found Track IDs
and entries were stored and used in the upcoming
iteration. Dummy rows and columns were added to
the matrix to ensure that it was always squared. All
entries in the dummy row or column had to have a
cost significantly larger than all other entries in the
cost matrix to ensure that the algorithm did not
make a “wrong” assignment to a dummy. The re-
source or task being assigned to a dummy could be
used to determine which insect from the previous
image had left, or which insect had entered into the
current image.

To evaluate the performance of the tracking al-
gorithm, two metrics were defined based on the pa-
per Bashir and Porikli (2006). The measure False
Alarm Rate (FAR) was an expression of the proba-
bility that a given track was incorrect. It describes
the number of false alarms relative to the total num-
ber of tracks; that is, how many times the tracker
made a wrong track compared to the times it made
a track.

FAR =
FP

TP + FP
(5)

While a true positive (TP) was defined as an indi-
vidual who retained its uniquely assigned Track ID
in its entire presence of the observation. A false pos-
itive (FP) was defined as an individual who was ei-
ther counted multiple times or assigned a new Track
ID.
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The term Tracking Detection Rate (TDR) was
a measure of the number of individuals who main-
tained their own Track ID in relation to the es-
tablished ground truth (GT), during the course of
observation. The size was therefore used as the pri-
mary scale to express the tracker’s ability to main-
tain the same Track ID for the individual insects in
an observation.

TDR =
TP

TG
(6)

GT was defined as the total number of unique in-
dividuals in the test set measured by manual count-
ing.

2.2.3. Moth species classification

In the field of deep learning, specific architectures
of CNNs have provided particularly positive results
in many areas of computer vision Liu et al. (2017).
CNNs use both pixel intensity values and spatial in-
formation about objects in the image. It was a chal-
lenging task to find a suitable CNN architecture for
classification of moth species. Several CNN archi-
tectures Bjerge et al. (2019); Sandler et al. (2018),
were investigated. A customized network was fi-
nally designed inspired by Krizhevsky et al. (2017).
Hyperparameters of the architecture were explored
to find the optimal network architecture to clas-
sify moth species. The model was designed to be
light and fast for the purpose of being able to be
executed on the embedded Raspberry Pi computer
used in the light trap.

Since the camera recorded images of insects with
a constant working distance, the insects did not
change in size in the images. The moths were la-
beled with bounding boxes with an average size of
473×475×3 pixels and a standard deviation of 100
for pixel height and width. Initial experiments gave
poor results with a resized input size of 224×224×3,
which many CNNs Huang and Wang (2017) use.
Improved results were achieved by reducing the in-
put size, while still being able to visually iden-
tify the moth species. Based on the given camera
setup the bounding boxes were finally resized ap-
proximately seven times to a fixed window size of
64×64×3 as input for the customized CNN model.

Several images with eight different species of
moths were used for training the CNN model. The
CNN model had four layers for feature detection
and two fully connected layers for final species clas-
sification. The optimal architecture was found by
using combinations of hyperparameters for the first

and last layer in the CNN. Below are the parameters
used to train different CNN’s for species classifica-
tion:

Fixed pool size and stride, n× n, n ∈ {2}

Kernel size n× n, n ∈ {3, 5}

Convolutional depth n, n ∈ {32, 128}

Fully connected size n, n ∈ {256, 512}

Optimizer n, n ∈ {Adam,SGD}

The optimal chosen CNN architecture is shown in
figure 7. The first layer performed convolution us-
ing 128 kernels with a kernel size of 3×3 followed
by maximum pooling of size 2×2 and stride 2. The
second and third layer performed convolution us-
ing 64 kernels with the same kernel and pooling
size as mentioned above. The final layer used 128
kernels based on the optimization of hyperparame-
ters. All convolutional layers used the rectified lin-
ear unit (ReLu) activation function. The last fully
connected layer had two hidden layer with 2048 and
256 neurons and a softmax activation function in
the output layer. Two of the most commonly used
optimizers, Adaptive Moment Estimation (Adam)
and Stochastic Gradient Decent (SGD), were inves-
tigated. While Adam was an optimizer that con-
verged relatively quickly, it did so at the expense of
a greater loss. SGD, on the other hand, converged
more slowly, but achieved a smaller loss.

The final architecture was chosen because it
achieved average precision, recall and an F1-score
of 96%, which indicated a suitable model classifica-
tion. More results regarding the moth classifier are
described in section 3.2.

2.2.4. Statistic

Statistics were generated based on the number
of counted insects, the number of moth species
found, and the number of unknown insects found
(i.e. unknown to the trained CNN algorithm). The
statistics were updated live as the images were pro-
cessed and analyzed. Thus, the statistics were al-
ways updated through the execution of one itera-
tion of the algorithm see figure 5. The classifica-
tion phase simultaneously classified each individ-
ual and assigned labels to each individual species.
That is, individuals in an image could be classified
as a different moth species in the previous image.
This phase ensured that the moth species most fre-
quently classified in a track were represented in the
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Figure 7: CNN architecture for moth species classification used an input of a 64×64 RGB image.

final statistics. Several parameters were defined and
adjusted to filter noisy tracks such as insects flying
close to the camera.

3. Results

An experiment was conducted in Aarhus, Den-
mark in the period 3 August to 20 September 2019,
capturing 272,683 images in total over 48 nights.
The constructed light trap was located close to the
forest of Risskov, where it was active in the pe-
riod from 9pm to 5am each night. The collection
of image data was limited to a smaller sample of
Danish moths of the family Noctuidae. An observa-
tion was defined as the images from a single night’s
footage. On average, one observation consisted of
5,675 images. It should be noted that the number
of images captured in the observations varied signif-
icantly. The smallest observation consisted of 134
images, while the largest consisted of 27,300. The
primary reason for this was the variation in weather
conditions. While the activity of moths was lim-
ited during rainy weather or strong winds, for in-
stance, it increased in warm late summer evenings
and nights. Figure 8 shows an example of many
moths in the trap on a warm summer night.

In the following sections, the results from the ex-
periment, and the last stages of the algorithm con-
cerning tracking, classification and statistics (as de-
scribed in figure 5) will be presented.

3.1. Insect tracking and counting

Tracking was tested on an observation consist-
ing of 6000 different images distributed over 122
minutes of insect activity. The observation was col-
lected on the night between 25 August and 26 Au-
gust 2019 and represents the average observation
for a single night. The set was selected in order
to provide the tracking algorithm with a sufficient
challenge. The observation was challenging because

Figure 8: Photo of the light trap with moths on the sheet of
the light table during a warm summer night.

the individual insects moved in and out of the cam-
era view repeatedly. In addition, there were exam-
ples of two insects siting close together. Further-
more, some insects flew very close to the camera
lens. The algorithm was therefore challenged in its
ability to retain the correct tracking. The observa-
tion was manually reviewed to establish a ground
truth (GT) thereby enabling evaluation of the per-
formance. In total, a GT of 82 individual moths
was observed.

The tracker algorithm measured 83 individual
tracks, where 65 were identified as true positive
(TP) and 18 as false positive (FP) moth tracks.
Table 1 shows a calculated Tracker Detection Rate
(TDR) of 79% and False Alarm Rate (FAR) of 22%
based on the observation of 6,000 images.

3.2. Moth species classification

From the experiment mentioned in the begin-
ning of this section, images of eight different
species with, frequent-occurring species from dif-
ferent dates were selected, annotated and identified
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Metric Equation Result
TDR 6 0.79
FAR 5 0.22

Table 1: Result of the tracking algorithm. From a ground
truth (GT) of 82 moth tracks here 65 were identified as true
positive (TP) and 18 as false positive (FP). The Tracker
Detection Rate (TDR) and False Alarm Rate (FAR) is cal-
culated.

No. Moth Species Numbers
1 Arotis puta 108
2 Amphipyra pyramedia 108
3 Autographa gamma 108
4 Caradrinina 108
5 Mythimna pallens 108
6 Noctua fimbriata 108
7 Noctua pronuba 108
8 Xestia c-nigrum 108

Total 864

Table 2: Number of moth species in the dataset used for
training and validation.

to train different CNN models. Examples of indi-
vidual moth species are shown in figure 9

Table 2 shows an overview of the occurrence of
all species in the chosen dataset for training and
validation of the CNN algorithm.

The moth class Caradrinina consists of the
three moth species Hoplodrine ambigua, Hoplodrina
blanda and Hoplodrina octogenaria. These species
are very similar in appearance and it was too dif-
ficult to distinguish between them from the images
alone. Data augmentation was applied to all im-
ages with a flip vertical, horizontal, zoom, different
illumination intensity and rotation of different de-
grees. This operation provided more training data
and was used to create a uniform distribution of
moth species. The dataset was scaled with a factor
of 32 times resulting in 27,648 images where each
class contained 3,456 data points after augmenta-
tion. From this dataset, 80% was used for training
and 20% for validation of the CNN model.

To find the best CNN architecture for moth
species classification, different hyperparameters
were adjusted as described in section 2.2.3. A to-
tal of 64 architectures were trained using a dropout
probability of 0.3 after the second last hidden layer.
The average F1-score for all classes was used as a
measure for a given architecture’s performance. Ta-

Rating Hyperparameters Learnable F1-score
parameters

1. 3, 3, 128, 128, 256 714760 0.95831
2. 5, 1, 32, 128, 256 592776 0.95827
3. 3, 3, 128, 32, 256 266152 0.95817
...
31. 5, 1, 128, 32, 512 389288 0.88462
32. 5, 3, 128, 32, 512 405672 0.88112
33. 5, 3, 32, 128, 256 658312 0.87377
34. 5, 3, 128, 128, 512 1247496 0.87249
...
62. 3, 1, 128, 32, 512 655368 0.80969
63. 3, 3, 32, 32, 256 341544 0.79608
64. 5, 3, 32, 32, 256 591240 0.63751

Table 3: Ranking of the CNN architectures with highest and
lowest F1 classification scores. Rank 1 to 32 were trained
using the Adam optimizer. Rank 32 to 64 were trained us-
ing the SGD optimizer. The hyperparameters column shows
values of: {kernel size layer 1, kernel size last layer, convo-
lutional depth layer 1, convolutional depth last layer, fully
connected size}.

ble 3 shows a summary of the architectures with the
highest validation F1-scores.

The three best architectures had very high F1-
scores, which only varied by 0.00024, but had a
varying number of learnable parameters. Com-
pared to SGD, Adam turned out to be the superior
optimizer for training of all models as shown in ta-
ble 3. In the end, the architecture with the highest
amount of learnable parameters (714,760) was cho-
sen because it had the highest F1 score and was still
fast to train. However, there was a risk of overfit-
ting with many parameters and few training data.
The chosen model shown in figure 7 had an F1-score
of 95.8%, which indicated that the trained CNN was
very accurate in its predictions. The confusion ma-
trix (figure 10) was based upon the validation of the
chosen model. The confusion matrix has a diago-
nal trend, which indicates that the model matched
the validation set well. The model had a recall of
96% indicating that only 4% of the moth species in
the validation set were missed. A similar precision
of 96% was obtained indicating that only 4% were
wrongly classified.

3.3. Summary statistics

To evaluate the final system, including tracking
and classification, the same observation was used
as a test for the tracking algorithm. None of the
images from this observation were used to train the
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Figure 9: Examples of the eight moth species that were observed and labelled for training of the CNN models.

Figure 10: Confusion matrix for the validation of the best
model. The numbers corresponds to the species numbers in
table 2

Moth Species GT TP FP FN
Arotis puta 2 2 1 0

Amphipyra pyramedia 0 0 5 0
Autographa gamma 0 0 2 0

Caradrinina 8 5 0 1
Mythimna pallens 2 0 0 2
Noctua fimbriata 10 14 3 1
Noctua pronuba 33 26 2 4
Xestia c-nigrum 22 19 2 3

Unknown 5 0 2 0
Total 82 66 17 11

Table 4: Number of individuals of each moth species in the
test dataset detected by the MCC algorithm and ground
truth (GT). A true positive (TP) is defined as an insect that
retained the same Track ID and correct classification in the
entire observation. A false positive (FP) is defined as an
insect that was incorrect classified or counted several times
or assigned a new Track ID. A false negative (FN) is defined
as an insect that was not detected and counted in the final
statistic.

CNN model. In this way, the algorithm was by
this way tested on data material it had never seen
before.

The observation represents a typically night,
where 6,000 images were collected in the trap. The
images were studied to establish a GT. This in-
volved a manual count of occurrences for each moth
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Moth Species Precision Recall F1-score
Arotis puta 0.67 1.00 0.80

Amphipyra pyra. 0.00 NA NA
Autographa gam. 0.00 NA NA

Caradrinina 1.00 0.83 0.91
Mythimna pallens 0.00 NA NA
Noctua fimbriata 0.82 0.93 0.87
Noctua pronuba 0.93 0.87 0.90
Xestia c-nigrum 0.90 0.86 0.88

Unknown 0.00 NA NA
Total 0.80 0.86 0.83

Table 5: Precision, recall and F1-score based on the test
dataset of one nights observation consisting of 6000 images.

species. Table 4 shows the algorithm’s estimate of
the number of moth species and the established GT
of the observation. Note that the two species Am-
phipyra pyramidea and Autographa gamma did not
occur in this observation. There were also unknown
moth species in the dataset. However, none of them
were detected correctly. Table 5 shows the algo-
rithm’s precision, recall and F1-score based on the
tracked and predicted moths in table 4. In total a
precision of 80%, recall of 86% and F1-score of 83%
was achieved.

4. Discussion

The tracker measured a Tracking Detection Rate
(TDR) of 79% which means it tracked the major-
ity of the observed insects correctly. However, the
algorithm had a False Alarm Rate (FAR) of 22%
which means that nearly one quarter of the de-
tected tracks were incorrect. The test was made
on a night with average insect activity, but with
many challenges and variations of movements. The
MCC algorithm measured an average combination
of tracking and classification F1-score of 0.83 where
recall was 6% higher than precision. This score was
an accepted performance of the hole system. How-
ever, the final validation was only performed on 82
individual moths and only six of the eight species
was represented.

The most frequent source of error were individual
insects moving at the edge of the camera’s field of
view. This resulted in insects disappearing com-
pletely or partially from an observation only to
potentially appear again later. Furthermore, er-
rors occurred in cases where an insect flew close
to the camera lens. In such cases, the algorithm

could place multiple boxes on a single individual
and make a match with these fake boxes. How-
ever, because the insects flying in front of the lens
rarely stayed in the field of view for more than
a few frames, the design of the tracker often pre-
vented this type of error. An individual insect had
to be detected in at least 50 images before it was
counted. Consequently, a flying insect appearing
in few frames was below the threshold filter value,
and the final statistics were therefore not affected.
The last identified source of error occurred when
two individuals were located closely together in the
image. In this case, the tracking algorithm could
not separate the two individuals and therefore only
placed one bounding box.

One of the primary sources of error in the algo-
rithm was the dataset used for training and vali-
dation of the CNN model. One expert did a sam-
ple study of the dataset and concluded that espe-
cially the classes Caradrinina and Ampipyra pyra-
media included individuals that were annotated in-
correctly. This means that noise was introduced
into the dataset and the CNN model must thus be
expected to have had a deteriorated performance.
Collecting a sufficiently large dataset with enough
data points for efficient classification of the rarer
species was also a significant challenge.

The current classification algorithm relies heav-
ily on padding the bounding box found during
blob segmentation. The performance of the sys-
tem changes significantly with variation in padding
before CNN prediction. The CNN algorithm was
trained on a dataset using manual annotations of
the moths. These do not surround the moths near
as closely as the bounding boxes placed by the blob
segmentation (see figure 6 and figure 9). Thus,
there is a difference in the sizes. It is likely that
accuracy could be improved with training on im-
ages cropped by the blob segmentation.

As a proof of concept, the proposed light trap
and MCC algorithm is promising as an automated
system for insect observations during night hours.
In order to conduct better statistical analysis and
draw empirical conclusions about the proposed sys-
tem, there is a need for more recordings from dif-
ferent observations and locations. In addition, the
CNN classification algorithm can be improved by
ensuring that the dataset for training is annotated
correctly.
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5. Conclusion

In this paper, we have present a light trap and
computer vision system to monitor live insects and
moth species. The automated light trap was com-
posed of a web camera, Raspberry Pi computer
and special illumination to attract insects during
the night. The camera and illumination was ad-
justed to achieve a high resolution and quality of
images of eight different moth species. The light
trap recorded more than 250,000 images during 48
night over the summer 2019 with an average of 5675
images per night.

A customized convolutional neural network was
proposed and trained on 864 labeled images of live
moths. This allowed us to detect and classify eight
different species. The network achieving a high val-
idation F1-score of 0.96.

The algorithm measured an average classification
and tracking F1-score of 0.83 and a tracking detec-
tion rate of 0.79. This result was based on an es-
timate of 83 individual moths observed during one
night with insect activity in 122 minutes collecting
6,000 images.

Furthermore, the paper identified potential im-
provements to the system where the amount of
training data for the presented CNN model for
species classification was highlighted as a focus
area.

Overall, the proposed light trap and computer
vision system showed promising results in nonde-
structive and automatic monitoring of moths and
classification of species. It should be considered as
a viable alternative to traditional methods which
typically requires tedious manual labor (i.e. visiting
the trap several times in a season for observation)
and often rare species of insects are killed.
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