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Abstract 

Background: Autism spectrum disorder (ASD) has phenotypically and genetically 

heterogeneous characteristics. A simulation study demonstrated that attempts to categorize 

patients with a complex disease into more homogeneous subgroups could have more power to 

elucidate hidden heritability. 

Methods: We conducted cluster analyses using the k-means algorithm with a cluster number of 

15 based on phenotypic variables from the Simons Simplex Collection (SSC). As a preliminary 

study, we conducted a conventional genome-wide association study (GWAS) with a dataset of 

597 ASD cases and 370 controls. In the second step, we divided cases based on the clustering 

results and conducted GWAS in each of the subgroups vs controls (cluster-based GWAS). We 

also conducted cluster-based GWAS on another SSC dataset of 712 probands and 354 controls in 

the replication stage. 

Results: In the preliminary study, we observed no significant associations. In the second step of 

cluster-based GWASs, we identified 65 chromosomal loci, which included 30 intragenic loci 

located in 21 genes and 35 intergenic loci that satisfied the threshold of P<5.0×10−8. Some of 

these loci were located within or near previously reported candidate genes for ASD: CDH5, 

CNTN5, CNTNAP5, DNAH17, DPP10, DSCAM, FOXK1, GABBR2, GRIN2A5, ITPR1, NTM, 

SDK1, SNCA and SRRM4. Of these 65 significant chromosomal loci, rs11064685 located within 

the SRRM4 gene had a significantly different distribution in the cases vs. controls in the 

replication cohort. 

Conclusions: These findings suggest that clustering may successfully identify subgroups with 

relatively homogeneous disease etiologies. Further cluster validation and replication studies are 

warranted in larger cohorts. 
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Introduction 

Autism spectrum disorder (ASD) has heterogeneous characteristics in terms of both phenotypic 

features and genetics. ASD is mainly characterized by difficulties in communication and 

repetitive behaviors (1), but ASD also shows many other symptoms (2). Regarding genetics, 

previous studies have not consistently identified genetic variants that are associated with an 

increased risk of ASD (3), although several lines of evidence suggest that genetic factors strongly 

contribute to the increased risk of ASD. Monozygotic twins have higher concordance rates of 

ASD (92%) than dizygotic twins (10%) (4). The recurrence risk ratio is 22 for ASD among 

siblings (5). The Human Gene module of the Simons Foundation Autism Research Initiative 

(SFARI) Gene provides a comprehensive reference for suggested human ASD-related genes in 

an up-to-date manner (6) and currently demonstrates ~1,000 genes that may have links to ASD, 

potentially indicating the heterogeneity of ASD. In addition to phenotype and genotype 

heterogeneities, ASD shows heterogeneous responses to interventions. Several kinds of 

pharmacological treatments are suggested, but the effects of these treatments are controversial 

(7). 

If the heterogeneous phenotypes and responses to treatment in some way correspond to 

differences in genotype, grouping persons with ASD according to phenotype and responses to 

treatment variables may increase the chances of identifying genetic susceptibility factors. Traylor 

and colleagues (8) demonstrated that attempts to categorize patients with a complex disease into 

more homogeneous subgroups could have more power to elucidate the hidden heritability in a 

simulation study. Several studies on Alzheimer’s disease, neuroticism, or asthma indicated that 

items or symptoms were to some degree more useful for identifying high-impact genetic factors 

than broadly defined diagnoses (9-11), although a study of ASD demonstrated modest effects of 
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two-way stratification by individual symptoms (12). Additionally, medical researchers have 

begun to use machine learning methods (13), which is an artificial intelligence technique that can 

reveal masked patterns of data sets. In view of the abovementioned circumstances, clustering 

algorithms of machine learning could be hypothesized to make novel and more genetically 

homogeneous clusters, but these algorithms using phenotypic variables have not, to the best of 

our knowledge, been applied to subgrouping ASD to date. 

We therefore explored whether grouping persons with ASD using a clustering algorithm 

with phenotype and responses to treatment variables can be used to discriminate more 

genetically homogeneous persons with ASD. In the present study, we conducted cluster-based 

genome-wide association studies (named cluster-based GWASs) using real data based on the 

concept of a previous simulation study (8) adopting a machine learning k-means (14) algorithm 

for cluster analysis. 

 

Methods and Materials 

We conducted the present study in accordance with the guidelines of the Declaration of Helsinki 

(15) and all other applicable guidelines. The protocol was reviewed and approved by the 

institutional review board of Tohoku University Graduate School of Medicine, and written 

informed consent was obtained from all participants over the age of 18 by the Simons 

Foundation Autism Research Initiative (SFARI) (16). For participants under the age of 18, 

informed consent was obtained from a parent and/or legal guardian. Additionally, for participants 

10 to 17 years of age, informed assent was obtained from the individuals. 

 

Datasets 
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We used phenotypic variables, history of treatment, and genotypic data from the Simons Simplex 

Collection (SSC) (16). The SSC establishes a repository of phenotypic data and genetic 

data/samples from mainly simplex families. 

The SSC data were publicly released in October 2007 and are directly available from the 

SFARI. From the SSC dataset, we used data from 614 affected white male probands who had no 

missing information regarding Autism Diagnostic Interview-Revised (ADI-R) scores (17) and 

vitamin treatment (18, 19) and 391 unaffected brothers for whom genotype data, generated by 

the Illumina Human Omni2.5 (Omni2.5) array, were available for subsequent clustering and 

genetic analyses. We excluded participants whose ancestries were estimated to be different from 

the other participants using principal component analyses (PCAs) performed by EIGENSOFT 

version 7.2.1 (20, 21) for the genotype data. Based on the PCAs, we excluded data beyond 4 

standard deviations of principal components 1 or 2 (Figure S1). Therefore, we used data from 

597 probands and 370 unaffected brothers. 

In the replication study, we used another SSC dataset genotyped using the Illumina 1Mv3 

(1Mv3) array. In the dataset, data from 735 affected male probands with no missing information 

regarding ADI-R scores or vitamin treatment and 387 unaffected brothers were available. After 

conducting PCA, we excluded data beyond 4 standard deviations of principal components 1 or 2 

as outliers. In this way, we used data from 712 probands and 354 unaffected brothers in the 

replication study. 

 

Clustering 

We conducted cluster analyses using phenotypic variables of ADI-R (17) scores and history of 

vitamin treatment (18, 19). We chose these variables because the ADI-R is one of the most 
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reliable estimates of ASD and has the ability to evaluate substructure domains of ASD (17). 

Among the ADI-R scores, “the total score for the Verbal Communication Domain of the ADI-R 

minus the total score for the Nonverbal Communication Domain of the ADI-R”, “the total score 

for the Nonverbal Communication Domain of the ADI-R”, “the total score for the Restricted, 

Repetitive, and Stereotyped Patterns of Behavior Domain of the ADI-R”, and “the total score for 

the Reciprocal Social Interaction Domain of the ADI-R” were included in the preprocessed 

dataset. 

Among the treatments, we selected the variable of history of vitamin treatment because 

we recently found that a cluster of persons with ASD is associated with potential responsiveness 

to vitamin B6 treatment (18, 19). The history of treatment is not always compatible with 

responsiveness, but we considered that continuous treatment indicates responsiveness to some 

degree. The SSC dataset includes history of treatment but not variables of responsiveness. 

We applied the machine learning k-means (14) algorithm to conduct a cluster analysis to 

divide the dataset including data from ASD persons into subgroups using phenotypic variables 

and history of treatment. The k-means algorithm requires cluster numbers determined by 

researchers. When using k-means algorithms, we set a priori the cluster numbers of 2, 3, 4, 5, 10, 

15, and 20. We performed the analyses using the scikit-learn toolkit in Python 2.7 

(Supplementary Information S1) (22). 

Clustering is an exploratory data analysis technique, and the validity of the clustering 

results may be judged by external knowledge, such as the purpose of the segmentation (23). 

Several methods have proposed to prespecify a cluster number (k), such as visual examination of 

the data, and likelihood and error-based approaches; however, these methods do not necessarily 

provide results that are consistent with each other (24). Although there are measures for 
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evaluating the quality of the clusters (25), the number of clusters should also be determined 

according to the research purposes. We regarded the inflation factor (λ) of quantile-quantile 

(Q-Q) plots of the logarithm of the P-value to base 10 (-log10P) as one of the indicators of 

successful clustering in the present study. We calculated λ for each cluster number. 

When conducting clustering, we combined the two datasets of male probands, one 

genotyped using the Omni2.5 array and the other genotyped using the 1Mv3 array. After 

clustering, we redivided the new dataset according to the SNP arrays used. In the discovery stage, 

we used the Omni2.5 dataset and the 1Mv3 dataset in the replication stage. 

 

Genotype data and quality control 

We used the SSC dataset, in which probands and unaffected brothers had already been genotyped 

in other previous studies (16, 26). In the discovery stage, we used the dataset genotyped by the 

Omni2.5 array, which has 2,383,385 probes. We excluded SNPs with a minor allele frequency 

(MAF) < 0.01, call rate < 0.95, and Hardy-Weinberg equilibrium test P < 0.000001. 

In the replication study, where we used the dataset genotyped using the 1Mv3 array, we 

applied the same cutoff values for quality control as those used in the discovery stage. The 1Mv3 

array includes 1,147,689 SNPs. The Omni2.5 array and the 1Mv3 array shared 675,923 SNPs. 

 

Statistical analysis 

As a preliminary study, we conducted a conventional GWAS in the whole Omni2.5 dataset, with 

a total of 597 male probands and 370 unaffected brothers. Here, we used the brothers of the cases 

as controls, in contrast to many previous studies in which genetically unrelated controls were 

used. We thus adopted the sib transmission disequilibrium test (sib-TDT) (27), a family-based 
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association test, to take into account familial relationships among the participants. In the second 

step, in the discovery stage, we conducted cluster-based GWAS in each subgroup of the cases, 

which had been divided using the k-means (14) algorithm, and the controls. As mentioned above, 

the controls were the brothers of the cases, and we then excluded the unaffected brothers of the 

cases belonging to the subgroup being analyzed. Details of the study design are shown in Figure 

1. We applied the Cochran-Armitage trend test (28), which examines the risk of disease in those 

who do not have the allele of interest, those who have a single copy, and those who are 

homozygous. 

We further tested the significantly associated loci found in the discovery studies in the 

replication stage. The level of significance for association was set as P <0.05 in the replication 

studies. 

Association analyses were performed with the PLINK software package (29). The 

detected SNPs were subsequently annotated using ANNOVAR (30). Manhattan plots and Q-Q 

plots were generated using the 'qqman' package in R version 3.0.2. 

 

Data availability 

All the data used in the study are available only to those granted access by the Simons 

Foundation. 

 

Results 

Cluster-based genome-wide association study 

As a preliminary study, we conducted a conventional GWAS with the Omni2.5 dataset using the 

sib-TDT. We observed no significant associations (Figure 2). Although we adopted the sib-TDT 
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here because we used the brothers of the cases as controls, we also used the Cochran-Armitage 

trend test and found that the -log10P values were distributed downward compared with the 

expected values, as shown in Figure S2. 

We also applied the sib-TDT to cluster 1, which was obtained by dividing all the cases 

using k-means with k of 15, and all the controls and found that the observed -logP values were 

lower than expected, as shown in Figure S2. Since the sib-TDT may efficiently work in a 

population consisting of a substantial number of sibs, a limited number of brothers of the 

probands among all the controls probably contributed to a substantial loss of power. Thus, we 

excluded the brothers of the probands in each subset from the controls so that each subset of 

probands has no genetic relations with the rest of the controls and conducted the 

Cochran-Armitage trend test, as in many other studies. In the present study, therefore, we applied 

the sib-TDT to the GWAS of the whole dataset, whereas in the cluster-based GWAS, we 

excluded in turn the unaffected brothers of the cases belonging to the subgroup being analyzed 

and used the Cochran-Armitage trend test to account for the relationships between participants. 

Under the hypothesis that ASD consists of hundreds of subgroups (16), we compared λ 

values giving larger numbers of clusters as priority. The λ for the cluster-based GWAS with a k 

of 20 ranged from 1.015 to 1.107, and the average was 1.053 (Table 1), indicating that the rate of 

false positives was relatively high. Several lines of evidence suggest that regarding an 

appropriate threshold of inflation factor λ, empirically, a value less than 1.050 is deemed safe for 

avoiding false positives (31-33). 

In contrast, λ with k of 15 ranged from 1.017 to 1.091, and the average was 1.038, which 

was below 1.050 (Table 1 and Figure 3). 

According to the above results, we considered the cluster-based GWAS using the 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 24, 2020. ; https://doi.org/10.1101/614958doi: bioRxiv preprint 

https://doi.org/10.1101/614958


11 

 
 

Cochran-Armitage trend test, coupled with k-means cluster analysis with k of 15, to be the most 

appropriate approach to the present dataset. The characteristics of each cluster are presented in 

Table 2. 

 

Gene interpretation 

We observed 65 chromosomal loci that satisfied the threshold of P < 5.0 × 10−8 (Table 1 and 

Figure 3); 30 out of the 65 loci were located within 21 genes, and the remaining 35 loci were 

intergenic (Table 3). Among them, 8 loci were located within or near the genes associated with 

the Human Gene module of the SFARI Gene scoring system (6); GABBR2 (score 4, Rare Single 

Gene Mutation, Syndromic, Functional) in Cluster 1; CNTNAP5 (score 4, Rare Single Gene 

Mutation, Genetic Association) in Cluster 3; ITPR1 (score 4, Rare Single Gene Mutation) in 

Cluster 5; DNAH17 (score 4, Rare Single Gene Mutation) in Cluster 7; SDK1 (score none, Rare 

Single Gene Mutation, Genetic Association) in Cluster 13; SRRM4 (score 5, Rare Single Gene 

Mutation, Functional) in Cluster 13; CNTN5 (score 3, Rare Single Gene Mutation, Genetic 

Association) in Cluster 14; and DPP10 (score 3, Rare Single Gene Mutation) in Cluster 15. 

The SFARI Gene scoring system ranges from “Category 1”, which indicates “high 

confidence”, through “Category 6”, which denotes “evidence does not support a role”. Genes of 

a syndromic disorder (e.g., fragile X syndrome) related to ASD are categorized in a different 

category. Rare single gene variants, disruptions/mutations, and submicroscopic 

deletions/duplications related to ASD are categorized as “Rare Single Gene Mutation”. 

In addition to genes in the Human Gene module of the SFARI Gene, several important 

genes associated with ASD or other related disorders (34-37) from previous reports were 

included in our findings as follows: CDH5 in Cluster 14, DSCAM in Cluster 8, FOXK1 in Cluster 
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13, GRIN2A in Cluster 5, NTM in Cluster 8, and SNCA in Cluster 11 previously reported with 

ASD (38-43); PLCH2 in Cluster 11 previously reported with mental retardation (44); 

ARHGAP18 in Cluster 18, CDC42BPA in Cluster 3, CXCL12 in Cluster 8, and HS3ST2 in 

Cluster 5 previously reported with schizophrenia (45-48); KCTD12 in Cluster 9 and PSAT1 in 

Cluster 8 previously reported with depressive disorder (49, 50); ADAMTS1 in Cluster 10, 

DOCK2 in Cluster 10, HS3ST2 in Cluster 5, NAMPT in Cluster 5, and NAV in Cluster 5 

previously reported with Alzheimer’s disease (51-55); and PEX10 in Cluster 11 previously 

reported with Down syndrome (56). 

 

Replication study 

We conducted replication studies with another independent dataset that included a total of 712 

male probands and 354 unaffected brothers and had been genotyped using the 1Mv3 array. As 

mentioned before, we had previously carried out cluster analyses in the combined dataset 

genotyped with either Omni2.5 or 1Mv3 and then redivided it according to the SNP arrays used. 

The characteristics of each of the 15 clusters in the 1Mv3 dataset are presented in Table S1. 

Among the 65 genome-wide significant chromosomal loci found in the discovery study, 

seven chromosomal loci were included in the 1Mv3 array. Of these loci, rs11064685, within 

SRRM4 in Cluster 13, had a significantly different distribution (p =0.03) in cases vs. controls in 

the replication cohort (Table 4). 

 

Discussion 

One of the most important findings of our study was that reasonably decreasing the sample size 

could increase the statistical power. A plausible explanation is that our clustering may have 
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successfully identified subgroups that are etiologically more homogeneous. At least three reasons 

could reduce the possibility of false positives of the present results of statistically significant 

SNPs in cluster-based GWAS. First, the present study validated the usefulness and feasibility of 

the concept of a previous simulation study (8), which indicated that homogeneous case 

subgroups increase power in genetic association studies by Traylor and colleagues, using 

measurement data in the real world. Second, a substantial number of statistically significant 

SNPs in cluster-based GWAS observed in the present study were located within or near 

previously reported candidate genes for ASD (6, 38-43). Third, we calculated λ of Q-Q plots of 

logarithm of P-values to base 10 (-log10P) for each cluster number and compared them for the 

validity of clustering. Genomic control is widely used to control false positive signals due to 

population stratification in GWAS. λ is commonly used for genomic control. 

We observed many statistically significant SNPs in cluster-based GWAS: CDH5, CNTN5, 

CNTNAP5, DNAH17, DPP10, DSCAM, FOXK1, GABBR2, GRIN2A5, ITPR1, NTM, SDK1, 

SNCA and SRRM4. In particular, loci within the SRRM4 gene had significantly different 

distributions in the cases vs. controls in the replication cohort. Previous studies indicate that 

SRRM4 is strongly associated with ASD, indicating that our results may be valid to some degree. 

The gene regulates neural microexons. In the brains of individuals with ASD, these microexons 

are frequently dysregulated (57). Additionally, nSR100/SRRM4 haploinsufficiency in mice 

induced autistic features such as sensory hypersensitivity and altered social behavior and 

impaired synaptic transmission and excitability (58). 

In addition to SMMR4, we observed several genes located within or near previously 

reported candidate genes for ASD. The relatively high correspondence between our results in 

part and the SFARI Gene scoring system (6) indicates that the statistically significant loci we 
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found may be associated with ASD subgroups (Table 1 and Figure 3). We also observed several 

important genes associated with ASD and other related disorders (34-37) from previous reports. 

These findings suggest that the statistically significant SNPs might explain autistic symptoms 

because these diseases are suggested to have shared etiology, even in part, with ASD (34-37). 

Associations at the remaining significant loci that were not in the SFARI module or described 

above have not been previously reported, and to the best of our knowledge, some of them might 

be novel findings. These results might suggest that novel genetic loci of ASD could be found by 

identifying better defined subgroups, although further confirmation is needed in future cohorts 

with larger sample sizes. 

Previous studies regarding Alzheimer’s disease, neuroticism, or asthma found that items 

or symptoms showed, to some degree, increased ORs between the case loci and control loci 

compared to those from previous studies using broadly defined disease diagnoses (9-11). These 

findings may indicate that GWAS based on a symptom or an item could identify genetically 

more homogeneous subgroups and let us hypothesize that a relatively reasonable combination of 

symptoms or items could identify more genetically homogeneous subgroups. 

In contrast, Chaste and colleagues showed that stratifying children with ASD based on 

the phenotype only modestly increased power in GWAS (12). The discrepancy between their 

findings and ours might be explained by at least two reasons. First, Chaste and colleagues used 

one item or symptom alone, whereas we used combinations of them with a machine learning 

method. DeMichele-Sweet and colleagues reported that subgrouping only by having psychosis 

could lead to the identification of limited loci that had small effects (59), but Mukherjee and 

colleagues found a substantial number of suggestive loci that had extreme ORs after categorizing 

persons with Alzheimer’s disease based on relative performance across cognitive domains by 
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modern psychometric approaches (9). It may be necessary to utilize an appropriate combination 

of data to reveal masked patterns of data sets. Second, the number of subgroups was quite 

different between Chaste and colleagues’ study and ours. Chaste and colleagues divided their 

participants mainly into two subgroups, but we divided ours into 15. In fact, when we employed 

a cluster number of two in our study, we observed no significant loci (Table 1). If ASD consists 

of more than hundreds of subgroups (6), grouping with a sufficient number of clusters may be 

necessary. 

Validation of clusters is essential. In the present study, we selected the k-means algorithm, 

focused on ADI-R items and treatment as variables, and determined cluster numbers based on the 

λ of the Q-Q plots. Although we believe this approach is one of the relevant ways, selection of 

variables, selection of algorithms and selection of cluster numbers still remain to be considered 

in future mathematical and biological cluster validation studies because controversies 

surrounding evaluation of the quality of the clusters are important issues and are still ongoing 

and because validated clusters may lead to elucidate the genetic architectures of ASD (24). 

The present study has a limitation to be noted. Substantial differences in the two 

genotyping platforms may have affected the results of the replication study. The Omni2.5 array 

includes 2,383,385 autosomal SNPs, whereas the 1Mv3 array includes 1,147,689 SNPs, with 

675,923 shared SNPs between the two. Of the 65 statistically significant chromosomal loci in the 

discovery data, only seven chromosomal loci were shared between the two arrays. 

Our study demonstrated that if the data set consists of multiple heterogeneous subgroups, 

even a subgroup that includes a much smaller number of homogeneous individuals could detect 

high-impact genetic factors. Hypothetical examples of the concept of cluster-based GWAS are 

shown in Figure S3. As shown in this figure, in the conventional design in which a whole data set 
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is involved, an actual effect of a variant would be "diluted" to a modest OR of, e.g., 1.5, and at 

least thousands or tens of thousands of individuals would be required to detect it as a 

significantly associated variant. In contrast, cluster-based GWAS would be more likely than the 

conventional design to detect associated variants, without their effects being diluted, and with 

much higher ORs. As shown in Table 3, only 30 etiologically homogeneous probands and 300 

controls can have a statistical power of approximately 1.00, calculated using the method based 

on the results in Nam’s study (60). Although the integral model, which assumes many genetic 

variants have a small effect, may contribute to the formation of some subgroups of ASD, our 

results indicate that clustering by specific phenotypic variables may provide a candidate example 

for identifying etiologically similar cases of ASD. 

Our data indicate the relevance of cluster-based GWAS as a means to identify more 

homogeneous subgroups of ASD than broadly defined subgroups. Future investigation of cluster 

validation and replication with a larger sample size is therefore warranted. Such studies will 

provide clues to elucidate the genetic structures and etiologies of ASD and facilitate the 

development of precision medicine for ASD. 

 

Acknowledgments 

We are grateful to all of the families at the participating Simons Simplex Collection (SSC) sites, 

as well as the staff at the Simons Foundation Autism Research Initiative (SFARI). The present 

study was supported by the Ministry of Education, Culture, Sports, Science and Technology 

(MEXT) KAKENHI Grant Numbers 19390171 and 16H05242. MEXT had no role in the design 

or execution of the study. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 24, 2020. ; https://doi.org/10.1101/614958doi: bioRxiv preprint 

https://doi.org/10.1101/614958


17 

 
 

Disclosures 

The authors declare no competing interests. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 24, 2020. ; https://doi.org/10.1101/614958doi: bioRxiv preprint 

https://doi.org/10.1101/614958


18 

 
 

References 

1. American Psychological Association (2013): Diagnostic and Statistical Manual of Mental 

Disorders (DSM–5). Washington: American Psychological Association. 

2. Rapin I (1997): Autism. N Engl J Med 337: 97-104. 

3. Geschwind DH, State MW (2015): Gene hunting in autism spectrum disorder: on the path 

to precision medicine. Lancet Neurol 14: 1109-1120. 

4. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, et al. (1995): 

Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 

25: 63-77. 

5. Lauritsen MB, Pedersen CB, Mortensen PB (2005): Effects of familial risk factors and 

place of birth on the risk of autism: a nationwide register-based study. J Child Psychol 

Psychiatry 46: 963-971. 

6. Gene S (2018): Gene scoring. https://gene.sfari.org/database/gene-scoring/. 

7. Eissa N, Al-Houqani M, Sadeq A, Ojha SK, Sasse A, Sadek B (2018): Current 

enlightenment about etiology and pharmacological treatment of autism spectrum disorder. 

Front Neurosci 12: 304. 

8. Traylor M, Markus H, Lewis CM (2015): Homogeneous case subgroups increase power 

in genetic association studies. Eur J Hum Genet 23: 863-869. 

9. Mukherjee S, Mez J, Trittschuh EH, Saykin AJ, Gibbons LE, Fardo DW, et al. (2018): 

Genetic data and cognitively defined late-onset Alzheimer’s disease subgroups. Mol 

Psychiatry. doi: 10.1038/s41380-018-0298-8. 

10. Nagel M, Watanabe K, Stringer S, Posthuma D, van der Sluis S (2018): Item-level 

analyses reveal genetic heterogeneity in neuroticism. Nat Commun 9: 905. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 24, 2020. ; https://doi.org/10.1101/614958doi: bioRxiv preprint 

https://doi.org/10.1101/614958


19 

 
 

11. Lavoie-Charland E, Berube JC, Boulet LP, Bosse Y (2016): Asthma susceptibility 

variants are more strongly associated with clinically similar subgroups. J Asthma 53: 

907-913. 

12. Chaste P, Klei L, Sanders SJ, Hus V, Murtha MT, Lowe JK, et al. (2015): A genome-wide 

association study of autism using the Simons simplex collection: does reducing 

phenotypic heterogeneity in autism increase genetic homogeneity? Biol Psychiatry 77: 

775-784. 

13. Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, et al. (2016): 

Genome-wide prediction and functional characterization of the genetic basis of autism 

spectrum disorder. Nat Neurosci 19: 1454-1462. 

14. MacQueen J (1967): Some methods for classification and analysis of multivariate 

observations. In: Fifth Berkeley Symposium on Mathematical Statistics and Probability. 

Berkeley: University of California Press, pp 281-297. 

15. World Medical Association (2013): World medical association Declaration of Helsinki: 

ethical principles for medical research involving human subjects. JAMA 310: 2191-2194. 

16. Fischbach GD, Lord C (2010): The simons simplex collection: a resource for 

identification of autism genetic risk factors. Neuron 68: 192-195. 

17. Beggiato A, Peyre H, Maruani A, Scheid I, Rastam M, Amsellem F, et al. (2017): Gender 

differences in autism spectrum disorders: divergence among specific core symptoms. 

Autism Res 10: 680-689. 

18. Kuriyama S, Kamiyama M, Watanabe M, Tamahashi S, Muraguchi I, Watanabe T, et al. 

(2002): Pyridoxine treatment in a subgroup of children with pervasive developmental 

disorders. Dev Med Child Neurol 44: 284-286. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 24, 2020. ; https://doi.org/10.1101/614958doi: bioRxiv preprint 

https://doi.org/10.1101/614958


20 

 
 

19. Obara T, Ishikuro M, Tamiya G, Ueki M, Yamanaka C, Mizuno S, et al. (2018): Potential 

identification of vitamin B6 responsiveness in autism spectrum disorder utilizing 

phenotype variables and machine learning methods. Sci Rep 8: 14840. 

20. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006): 

Principal components analysis corrects for stratification in genome-wide association 

studies. Nat Genet 38: 904-909. 

21. Patterson N, Price AL, Reich D (2006): Population structure and eigenanalysis. PLoS 

Genet 2: e190. 

22. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. (2011): 

Scikit-learn: machine learning in Python. J Mach Learn Res 12: 2825-2830. 

23. Cutting DR, Karger DR, Pedersen JO, Tukey JW (1992): Scatter/gather: a cluster-based 

approach to browsing large document collections. In: Proceedings of the 15th Annual 

ACM SIGIR Conference on Research and Development in Information Retrieval. New 

York: Association for Computing Machinery (ACM), pp 318-329. 

24. Raykov YP, Boukouvalas A, Baig F, Little MA (2016): What to do when K-means 

clustering fails: a simple yet principled alternative algorithm. PLoS One 11: e0162259. 

25. Guo G, Chen L, Ye Y, Jiang Q (2017): Cluster validation method for determining the 

number of clusters in categorical sequences. IEEE Trans Neural Netw Learn Syst 28: 

2936-2948. 

26. Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D, et al. 

(2011): Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams 

syndrome region, are strongly associated with autism. Neuron 70: 863-885. 

27. Spielman RS, Ewens WJ (1998): A sibship test for linkage in the presence of association: 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 24, 2020. ; https://doi.org/10.1101/614958doi: bioRxiv preprint 

https://doi.org/10.1101/614958


21 

 
 

the sib transmission/disequilibrium test. Am J Hum Genet 62: 450-458. 

28. Freidlin B, Zheng G, Li Z, Gastwirth JL (2002): Trend tests for case-control studies of 

genetic markers: power, sample size and robustness. Hum Hered 53: 146-152. 

29. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. (2007): 

PLINK: a tool set for whole-genome association and population-based linkage analyses. 

Am J Hum Genet 81: 559-575. 

30. Wang K, Li M, Hakonarson H (2010): ANNOVAR: functional annotation of genetic 

variants from high-throughput sequencing data. Nucleic Acids Res 38: e164. 

31. Price AL, Zaitlen NA, Reich D, Patterson N (2010): New approaches to population 

stratification in genome-wide association studies. Nat Rev Genet 11: 459-463. 

32. Zeng P, Zhao Y, Qian C, Zhang L, Zhang R, Gou J, et al. (2015): Statistical analysis for 

genome-wide association study. J Biomed Res 29: 285-297. 

33. Wang Y, Ding X, Tan Z, Ning C, Xing K, Yang T, et al. (2017): Genome-wide association 

study of piglet uniformity and farrowing interval. Front Genet 8: 194. 

34. Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, Duncan L, et al. (2018): 

Analysis of shared heritability in common disorders of the brain. Science 360: eaap8757. 

35. Orru S, Papoulidis I, Siomou E, Papadimitriou DT, Sotiriou S, Nikolaidis P, et al. (2019): 

Autism spectrum disorder, anxiety and severe depression in a male patient with deletion 

and duplication in the 21q22.3 region: a case report. Biomed Rep 10: 354-358. 

36. Sragovich S, Merenlender-Wagner A, Gozes I (2017): ADNP plays a key role in 

autophagy: from autism to schizophrenia and Alzheimer's disease. Bioessays 39: 

1700054. 

37. Oxelgren UW, Myrelid A, Anneren G, Ekstam B, Goransson C, Holmbom A, et al. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 24, 2020. ; https://doi.org/10.1101/614958doi: bioRxiv preprint 

https://doi.org/10.1101/614958


22 

 
 

(2017): Prevalence of autism and attention-deficit-hyperactivity disorder in down 

syndrome: a population-based study. Dev Med Child Neurol 59: 276-283. 

38. Redies C, Hertel N, Hubner CA (2012): Cadherins and neuropsychiatric disorders. Brain 

Res 1470: 130-144. 

39. Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, et al. 

(2017): Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol 

134: 537-566. 

40. Atsem S, Reichenbach J, Potabattula R, Dittrich M, Nava C, Depienne C, et al. (2016): 

Paternal age effects on sperm FOXK1 and KCNA7 methylation and transmission into the 

next generation. Hum Mol Genet 25: 4996-5005. 

41. Barnby G, Abbott A, Sykes N, Morris A, Weeks DE, Mott R, et al. (2005): 

Candidate-gene screening and association analysis at the autism-susceptibility locus on 

chromosome 16p: evidence of association at GRIN2A and ABAT. Am J Hum Genet 76: 

950-966. 

42. Minhas HM, Pescosolido MF, Schwede M, Piasecka J, Gaitanis J, Tantravahi U, et al. 

(2013): An unbalanced translocation involving loss of 10q26.2 and gain of 11q25 in a 

pedigree with autism spectrum disorder and cerebellar juvenile pilocytic astrocytoma. Am 

J Med Genet A 161a: 787-791. 

43. Abou-Donia MB, Suliman HB, Siniscalco D, Antonucci N, ElKafrawy P (2019): De novo 

blood biomarkers in autism: autoantibodies against neuronal and glial proteins. Behav Sci 

(Basel) 9: E47. 

44. Lo Vasco VR (2011): Role of phosphoinositide-specific phospholipase C η2 in isolated 

and syndromic mental retardation. Eur Neurol 65: 264-269. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 24, 2020. ; https://doi.org/10.1101/614958doi: bioRxiv preprint 

https://doi.org/10.1101/614958


23 

 
 

45. Potkin SG, Turner JA, Fallon JA, Lakatos A, Keator DB, Guffanti G, et al. (2009): Gene 

discovery through imaging genetics: identification of two novel genes associated with 

schizophrenia. Mol Psychiatry 14: 416-428. 

46. Konopaske GT, Balu DT, Presti KT, Chan G, Benes FM, Coyle JT (2018): Dysbindin-1 

contributes to prefrontal cortical dendritic arbor pathology in schizophrenia. Schizophr 

Res 201: 270-277. 

47. Openshaw RL, Kwon J, McColl A, Penninger JM, Cavanagh J, Pratt JA, et al. (2019): 

JNK signalling mediates aspects of maternal immune activation: importance of maternal 

genotype in relation to schizophrenia risk. J Neuroinflammation 16: 18. 

48. Ikeda M, Tomita Y, Mouri A, Koga M, Okochi T, Yoshimura R, et al. (2010): 

Identification of novel candidate genes for treatment response to risperidone and 

susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse 

expression, and genetic case-control association approaches. Biol Psychiatry 67: 263-269. 

49. Teng X, Aouacheria A, Lionnard L, Metz KA, Soane L, Kamiya A, et al. (2019): KCTD: 

a new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS 

Neurosci Therapeutics 25: 887-902. 

50. Lin CH, Huang MW, Lin CH, Huang CH, Lane HY (2019): Altered mRNA expressions 

for N-methyl-D-aspartate receptor-related genes in WBC of patients with major 

depressive disorder. J Affect Disord 245: 1119-1125. 

51. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. (2019): Genetic 

meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates 

Abeta, tau, immunity and lipid processing. Nat Genet 51: 414-430. 

52. Cimino PJ, Sokal I, Leverenz J, Fukui Y, Montine TJ (2009): DOCK2 is a microglial 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 24, 2020. ; https://doi.org/10.1101/614958doi: bioRxiv preprint 

https://doi.org/10.1101/614958


24 

 
 

specific regulator of central nervous system innate immunity found in normal and 

Alzheimer's disease brain. Am J Pathol 175: 1622-1630. 

53. Sepulveda-Diaz JE, Naini SMA, Huynh MB, Ouidja MO, Yanicostas C, Chantepie S, et 

al. (2015): HS3ST2 expression is critical for the abnormal phosphorylation of tau in 

Alzheimer's disease-related tau pathology. Brain 138: 1339-1354. 

54. Ghosh D, Levault KR, Brewer GJ (2014): Relative importance of redox buffers GSH and 

NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons. 

Aging Cell 13: 631-640. 

55. Zong Y, Yu P, Cheng H, Wang H, Wang X, Liang C, et al. (2015): miR-29c regulates 

NAV3 protein expression in a transgenic mouse model of Alzheimer's disease. Brain Res 

1624: 95-102. 

56. Lu J, McCarter M, Lian G, Esposito G, Capoccia E, Delli-Bovi LC, et al. (2016): Global 

hypermethylation in fetal cortex of down syndrome due to DNMT3L overexpression. 

Hum Mol Genet 25: 1714-1727. 

57. Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis T, Babor M, 

et al. (2014): A highly conserved program of neuronal microexons is misregulated in 

autistic brains. Cell 159: 1511-1523. 

58. Quesnel-Vallieres M, Dargaei Z, Irimia M, Gonatopoulos-Pournatzis T, Ip JY, Wu M, et 

al. (2016): Misregulation of an activity-dependent splicing network as a common 

mechanism underlying autism spectrum disorders. Mol Cell 64: 1023-1034. 

59. DeMichele-Sweet MAA, Weamer EA, Klei L, Vrana DT, Hollingshead DJ, Seltman HJ, 

et al. (2018): Genetic risk for schizophrenia and psychosis in Alzheimer disease. Mol 

Psychiatry 23: 963-972. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 24, 2020. ; https://doi.org/10.1101/614958doi: bioRxiv preprint 

https://doi.org/10.1101/614958


25 

 
 

60. Nam JM (1987): Simple approximation for calculating sample sizes for detecting linear 

trend in proportions. Biometrics 43: 701-705. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 24, 2020. ; https://doi.org/10.1101/614958doi: bioRxiv preprint 

https://doi.org/10.1101/614958


26 

 
 

Figure/Table legends 

Figure 1. Details of the cluster-based GWAS in the present discovery stage in the Simons 

Simplex Collection dataset. 

In the present study, a GWAS using each subgroup of the probands vs the unaffected brothers as 

controls without the brothers of the members of the subgroup was designated a “cluster-based 

GWAS”. This panel shows the detailed methods of the cluster-based GWAS in the discovery 

stage. 

Figure 2. Manhattan plots (a) and corresponding quantile-quantile plots (b) in GWAS for 

all male probands vs their unaffected brothers using the sib transmission/disequilibrium 

test. 

We conducted a GWAS in the Simons Simplex Collection dataset of 597 male probands and 370 

unaffected brothers genotyped by the Illumina Human Omni2.5 array using the sib 

transmission/disequilibrium test (sib-TDT). We observed no significant associations in this 

GWAS with the genome-wide threshold of P < 5.0 × 10−8. 

Figure 3. Manhattan plots (a) and corresponding quantile-quantile plots (b) for 

cluster-based GWASs with a cluster number of 15. 

We performed cluster analysis using k-means with a cluster number of 15 and conducted 

cluster-based GWAS. Among 15 clusters, significant associations were observed in 14 clusters. 

In total, we observed 65 chromosomal loci, labeled in the figure, that satisfied the threshold of P 

< 5.0 × 10−8. The red lines indicate the threshold for genome-wide significance (P < 5.0 × 10−8). 

Table 1. Number of genome-wide significant loci and λ values according to the number of 

clusters using the k-means algorithm and the Omni2.5 dataset with MAF <0.01 deleted. 

Table 2. Characteristics of each of 15 k-means clusters in the Omni2.5 dataset. 
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Table 3. Association table of the cluster-based GWAS with 15 k-means clusters in the Omni2.5 

dataset. 

Table 4. Replication results for 65 statistically significant chromosomal loci in the discovery 

studies by an independent dataset of 1Mv3. 
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Tables 

Table 1. Number of genome-wide significant loci and λ values according to the number of clusters using the k-means algorithm and 

the Omni2.5 dataset with MAF <0.01 deleted. 

No. of Clusters 1 2 3 4 5 10 15 20 

Number of genome-wide 
significant loci 

0 0 2 5 1 26 65 211 

Mean λ value (min-max) 1.032 
1.057 

(1.052-1.0
62) 

1.036 
(1.027-1.0

45) 

1.035 
(1.029-1.0

41) 

1.021 
(1.012-1.0

33) 

1.024 
(1.000-1.0

42) 

1.038 
(1.017-1.0

91) 

1.053 
(1.015-1.1

07) 
λ values were calculated from the sibling-based transmission disequilibrium test in the number of clusters 1 or the Cochran-Armitage 

trend test in the number of clusters from 2 to 20.
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Table 2. Characteristics of each of 15 k-means clusters in the Omni2.5 dataset. 

Cluster 
No. 

n Verbal score from ADI-R Nonverbal score from ADI-R Restricted and repetitive 
patterns of behavior score 

from ADI-R 

Social score from ADI-R Vitamin B6 
treatment 

(%) 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(p
25

-p
7

5)
 

M
in

 

M
ax

 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(p
25

-p
7

5)
 

M
in

 

M
ax

 

M
ea

n 
(S

D
) 

M
ed
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n 

(p
25

-p
7

5)
 

M
in

 

M
ax

 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(p
25

-p
7

5)
 

M
in

 

M
ax

 

 

All 597 
7.7 

(2.1) 
8.0 

(6.0-9.0) 
0 12 

8.9 
(3.3) 

9.0 
(6.0-12.0) 

0 14 
6.8 

(2.5) 
7.0 

(5.0-8.0) 
1 12 

19.8 
(5.3) 

20.0 
(16.0-24.0) 

8 30 59.6 

                   

1 33 
7.4 

(2.2) 

7.0 
(6.0-10.

0) 
3 11 

4.4 
(1.6) 

4.0 (3.0-6.0) 1 7 
8.5 

(1.6) 
8.0 

(7.0-10.0) 
6 12 

14.0 
(1.5) 

14.0 
(13.0-15.0) 

11 17 60.6 

2 49 
8.9 

(1.3) 

9.0 
(8.0-10.

0) 
6 12 

12.3 
(1.5) 

12.0 
(11.0-14.0) 

9 14 
6.2 

(1.3) 
6.0 

(6.0-7.0) 
3 8 

27.1 
(1.3) 

27.0 
(26.0-28.0) 

24 30 79.6 

3 45 
6.0 

(1.9) 
6.0 

(5.0-7.0) 
2 10 

8.8 
(1.5) 

9.0 
(8.0-10.0) 

6 12 
5.0 

(1.5) 
5.0 

(4.0-6.0) 
2 7 

16.8 
(1.1) 

17.0 
(16.0-18.0) 

15 19 64.4 

4 59 
9.0 

(1.5) 

9.0 
(8.0-10.

0) 
6 12 

8.1 
(1.5) 

8.0 (7.0-9.0) 4 10 
8.8 

(1.9) 
8.0 

(8.0-10.0) 
5 12 

23.8 
(1.4) 

24.0 
(23.0-25.0) 

21 27 57.6 

5 28 
7.3 

(1.1) 
7.0 

(6.5-8.0) 
5 9 

9.1 
(1.7) 

9.0 
(8.0-10.0) 

7 13 
6.1 

(2.3) 
6.0 

(5.0-7.0) 
1 12 

12.7 
(1.7) 

13.0 
(12.0-14.0) 

9 15 60.7 

6 29 
7.7 

(1.9) 
8.0 

(7.0-9.0) 
2 12 

4.6 
(1.8) 

5.0 (4.0-6.0) 0 8 
4.0 

(1.1) 
4.0 

(3.0-5.0) 
2 6 

15.8 
(1.4) 

16.0 
(15.0-17.0) 

14 19 44.8 

7 37 
6.5 

(1.8) 
6.0 

(5.0-8.0) 
3 11 

12.5 
(1.3) 

12.0 
(12.0-14.0) 

10 14 
5.6 

(1.4) 
6.0 

(5.0-7.0) 
3 8 

19.4 
(1.8) 

20.0 
(18.0-21.0) 

15 22 56.8 

8 23 
8.3 

(1.6) 

8.0 
(7.0-10.

0) 
5 11 

4.2 
(2.1) 

4.0 (3.0-6.0) 0 8 
5.9 

(1.9) 
6.0 

(4.0-8.0) 
3 10 

9.7 
(1.1) 

10.0 
(9.0-11.0) 

8 12 60.9 

9 46 
9.0 

(1.3) 

9.0 
(8.0-10.

0) 
5 12 

12.4 
(1.3) 

13.0 
(11.0-13.0) 

10 14 
9.2 

(1.8) 
9.0 

(8.0-10.0) 
6 12 

22.7 
(1.4) 

22.5 
(22.0-24.0) 

20 25 69.6 

10 43 
6.6 

(1.4) 
7.0 

(6.0-7.0) 
4 9 

11.7 
(1.5) 

12.0 
(10.0-13.0) 

9 14 
5.0 

(1.5) 
5.0 

(4.0-6.0) 
2 8 

24.1 
(1.3) 

24.0 
(23.0-25.0) 

22 26 55.8 

11 34 
4.4 

(1.6) 
5.0 

(3.0-6.0) 
0 7 

4.9 
(1.8) 

5.0 (4.0-6.0) 1 9 
4.1 

(1.7) 
4.0 

(3.0-5.0) 
1 9 

10.9 
(1.9) 

10.5 
(9.0-13.0) 

8 14 55.9 

not certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as
this version posted M

arch 24, 2020. 
; 

https://doi.org/10.1101/614958
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/614958


30 

 
 

12 38 
8.8 

(1.6) 

9.0 
(8.0-10.

0) 
5 12 

9.7 
(1.5) 

9.0 
(8.0-11.0) 

8 13 
9.2 

(1.3) 
9.0 

(8.0-10.0) 
7 12 

18.1 
(1.3) 

18.0 
(17.0-19.0) 

15 20 65.8 

13 52 
7.1 

(2.0) 
7.0 

(5.5-8.5) 
3 12 

7.4 
(1.5) 

7.0 (6.0-9.0) 4 10 
4.6 

(1.5) 
4.5 

(3.5-6.0) 
1 7 

22.0 
(1.7) 

22.0 
(21.0-23.0) 

19 27 44.2 

14 46 
7.9 

(1.5) 
8.0 

(7.0-9.0) 
4 11 

6.2 
(1.6) 

6.0 (5.0-7.0) 1 9 
8.4 

(1.7) 
8.0 

(7.0-10.0) 
5 12 

19.4 
(1.4) 

19.0 
(18.0-20.0) 

17 22 58.7 

15 35 
9.5 

(1.4) 

9.0 
(8.0-11.

0) 
7 12 

12.7 
(1.4) 

13.0 
(12.0-14.0) 

9 14 
9.6 

(1.1) 
10.0 

(9.0-10.0) 
8 12 

27.5 
(1.5) 

27.0 
(26.0-29.0) 

25 30 54.3 

ADI-R: Autism Diagnostic Interview-Revised. 
SD: standard deviation. 
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Table 3. Association table of the cluster-based GWAS with 15 k-means clusters in the Omni2.5 dataset. 

Cluster 
No. 

ID Chr hg19 Minor/ 
major 

MAF 
(%) 

OR 95% CI P GENESYMBOL Function Power 

1 rs111629286 11 130,152,136 A/G 1.80 13.42 4.38-41.17 1.36 × 10-8 ZBTB44 Intronic 0.997 

1 rs115140946 6 37,891,923 C/A 1.03 21.07 4.79-92.77 2.87 × 10-8 ZFAND3 Intronic 0.878 

1 rs9462391 6 38,123,030 A/G 1.03 21.07 4.79-92.77 2.87 × 10-8 ZFAND3 Downstream 0.878 

1 rs10217283 9 101,423,675 A/G 1.42 15.51 4.45-54.12 2.95 × 10-8 GABBR2 Intronic 0.976 

1 rs114109395 6 38,005,546 A/G 1.03 21.01 4.77-92.51 3.02 × 10-8 ZFAND3 Intronic 0.877 

2 rs115621412 9 74,366,033 C/A 7.89 4.42 2.48-7.87 8.13 × 10-9 CEMIP2 Intronic 1.000 

3 rs77507687 2 26,939,229 G/A 2.00 12.43 4.37-35.36 6.10 × 10-9 KCNK3 Intronic 1.000 

3 rs76880969 1 227,711,506 G/A 1.00 27.15 5.30-139.20 8.20 × 10-9 
CDC42BPA, 

ZNF678 
Intergenic 0.865 

3 rs115483919 2 125,010,267 A/G 1.00 27.15 5.30-139.20 8.20 × 10-9 CNTNAP5 Intronic 0.865 

5 rs16965293 16 9,551,490 A/G 2.31 14.04 5.00-39.45 3.83 × 10-10 
LINC01195, 

GRIN2A 
Intergenic 1.000 

5 rs77489014 9 106,962,281 A/G 1.41 19.47 5.51-68.82 6.69 × 10-10 
SMC2, 

LOC105376194 
Intergenic 0.991 

5 rs117473168 9 106,848,270 A/G 1.55 16.90 5.02-56.93 2.64 × 10-9 SMC2 ncRNA exonic 0.991 

5 rs7199670 16 22,875,238 A/G 
11.2

8 
5.28 2.76-10.10 4.98 × 10-9 HS3ST2 Intronic 1.000 

5 rs73142209 12 77,859,299 G/A 1.54 16.18 4.82-54.31 5.33 × 10-9 E2F7, NAV3 Intergenic 0.989 

5 rs118167078 15 65,723,796 A/G 1.54 16.18 4.82-54.31 5.33 × 10-9 IGDCC4, DPP8 Intergenic 0.989 

5 rs11919513 3 4,841,384 G/A 3.22 10.18 3.99-26.03 8.92 × 10-9 ITPR1 Intronic 1.000 

5 rs13332627 16 22,874,928 G/A 9.23 6.10 2.96-12.57 1.22 × 10-8 HS3ST2 Intronic 1.000 

5 rs111920363 7 143,656,906 A/G 1.15 19.46 4.89-77.39 1.29 × 10-8 OR2F1 Upstream 0.933 

5 rs9939816 16 22,876,408 A/C 9.25 6.08 2.95-12.53 1.30 × 10-8 HS3ST2 Intronic 1.000 

5 rs76096239 14 97,193,704 A/G 1.67 13.79 4.27-44.54 3.25 × 10-8 
PAPOLA, 

LINC02299 
Intergenic 0.986 

5 rs1054028 16 22,927,214 G/A 
14.3

6 
5.02 2.62-9.61 3.32 × 10-8 HS3ST2 UTR3 1.000 

5 rs78486970 7 106,127,612 G/A 6.87 5.46 2.67-11.18 3.68 × 10-8 
NAMPT, 

CCDC71L 
Intergenic 1.000 
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6 rs148617803 1 76,136,228 G/A 1.32 22.57 5.95-85.64 2.77 × 10-10 
SLC44A5, 
ACADM 

Intergenic 0.988 

6 rs55985845 10 25,163,664 T/A 2.51 11.71 4.26-32.20 7.18 × 10-9 PRTFDC1 Intronic 1.000 

6 rs73094424 12 39,840,397 A/G 2.11 12.09 4.12-35.52 2.70 × 10-8 KIF21A, ABCD2 Intergenic 0.998 

6 rs58845693 3 122,804,247 G/A 1.18 18.07 4.55-71.72 4.24 × 10-8 PDIA5 Intronic 0.915 

6 rs11709496 3 122,809,400 G/A 1.18 18.07 4.55-71.72 4.24 × 10-8 PDIA5 Intronic 0.915 

6 rs199531954 12 95,064,359 C/A 1.19 17.92 4.52-71.10 4.92 × 10-8 
TMCC3, 
MIR492 

Intergenic 0.913 

7 rs79033134 17 76,473,288 A/G 1.53 16.29 4.87-54.44 4.24 × 10-9 DNAH17 Intronic 0.995 

7 rs57127555 17 76,475,811 C/A 1.54 16.24 4.86-54.28 4.49 × 10-9 DNAH17 Intronic 0.995 

7 rs75382702 11 81,149,755 A/G 1.28 16.94 4.54-63.23 3.18 × 10-8 
LINC02720, 
MIR4300HG 

Intergenic 0.961 

8 rs73149247 3 100,864,047 G/A 2.21 11.41 3.88-33.54 5.80 × 10-11 ABI3BP, IMPG2 Intergenic 1.000 

8 rs12418400 11 131,263,123 G/A 1.56 20.88 6.09-71.57 6.68 × 10-11 NTM Intronic 0.996 

8 rs78323783 10 45,084,432 A/G 1.17 24.79 6.13-100.30 2.28 × 10-10 
CXCL12, 
TMEM72 

Intergenic 0.997 

8 rs72991663 6 130,143,713 A/G 2.85 13.30 4.84-36.53 5.51 × 10-10 
ARHGAP18, 
TMEM244 

Intergenic 1.000 

8 rs74922057 21 41,595,011 A/G 1.31 19.67 5.22-74.14 3.13 × 10-9 DSCAM Intronic 0.962 

8 rs115035406 21 41,580,474 G/A 1.42 16.53 4.61-59.31 1.97 × 10-8 DSCAM Intronic 0.957 

8 rs114994877 4 136,731,494 A/G 1.42 16.53 4.61-59.31 1.97 × 10-8 
LINC02485, 
LINC00613 

Intergenic 0.957 

8 rs117008682 9 103,245,053 G/A 1.43 16.48 4.59-59.15 2.08 × 10-8 MSANTD3 Intronic 0.957 

8 rs117772706 9 81,338,445 G/A 1.43 16.44 4.58-58.98 2.19 × 10-8 
PSAT1, 

LOC101927450 
Intergenic 0.957 

9 rs4885429 13 77,400,673 G/A 2.14 13.69 4.91-38.16 4.67 × 10-10 
LMO7DN, 
KCTD12 

Intergenic 1.000 

9 rs45618836 7 73,480,258 G/A 2.26 11.94 4.43-32.18 2.30 × 10-9 ELN Intronic 1.000 

9 rs7299395 12 41,714,602 A/G 3.27 8.52 3.65-19.89 1.15 × 10-8 PDZRN4 Intronic 1.000 

9 rs55772967 7 73,448,499 G/A 2.89 8.91 3.66-21.66 2.09 × 10-8 ELN Intronic 1.000 

10 rs72799348 2 22,637,443 A/G 2.31 12.84 4.74-34.77 6.57 × 10-10 
LINC01822, 
LINC01884 

Intergenic 1.000 

10 rs76159464 5 169,446,509 A/G 1.02 28.05 5.47-144.00 5.03 × 10-9 DOCK2 Intronic 0.877 
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10 rs12483301 21 28,070,591 G/A 1.92 11.89 3.94-35.92 6.74 × 10-9 
CYYR1, 

ADAMTS1 
Intergenic 1.000 

10 rs72883714 18 23,987,552 A/G 2.17 11.25 4.08-31.06 1.59 × 10-8 
TAF4B, 

LINC01543 
Intergenic 1.000 

10 rs1876769 2 22,678,191 A/G 2.17 11.25 4.08-31.06 1.59 × 10-8 
LINC01822, 
LINC01884 

Intergenic 1.000 

10 rs17043765 2 22,656,804 A/G 2.17 11.25 4.08-31.06 1.59 × 10-8 
LINC01822, 
LINC01884 

Intergenic 1.000 

11 rs74645195 4 48,330,367 G/A 2.71 10.26 3.95-26.66 1.34 × 10-8 TEC, SLAIN2 Intergenic 1.000 

11 rs78513244 1 2,360,342 A/G 3.25 9.33 3.79-22.98 1.35 × 10-8 PEX10, PLCH2 Intergenic 1.000 

11 rs10027938 4 90,242,059 A/G 
16.9

3 
4.48 2.49-8.05 2.29 × 10-8 GPRIN3, SNCA Intergenic 1.000 

12 rs117647850 8 79,156,756 A/G 3.08 10.88 4.44-26.68 5.10 × 10-11 
LOC102724874, 

PKIA 
Intergenic 1.000 

12 rs4131532 1 3,540,256 A/G 1.54 15.63 4.68-52.14 8.61 × 10-9 
MEGF6, 
TPRG1L 

Intergenic 0.994 

12 rs77964987 4 183,685,432 G/A 4.77 7.06 3.21-15.53 4.97 × 10-8 TENM3 Intronic 1.000 

13 rs117954350 7 4,440,757 A/G 1.02 52.73 6.34-438.60 4.00 × 10-10 SDK1, FOXK1 Intergenic 0.635 

13 rs11064685 12 119,590,881 G/A 6.14 5.15 2.66-9.97 4.46 × 10-8 SRRM4 Intronic 1.000 

14 rs77983358 12 82,393,237 G/A 1.52 21.71 5.50-85.76 1.29 × 10-10 
LINC02426, 

CCDC59 
Intergenic 0.999 

14 rs7118821 11 96,876,267 C/A 1.01 26.18 5.11-134.00 1.50 × 10-8 LINC02737 Intergenic 0.847 

14 rs7122015 11 96,950,548 G/A 1.01 26.18 5.11-134.00 1.50 × 10-8 
LINC02737, 

CNTN5 
Intergenic 0.847 

14 rs7106102 11 96,885,969 A/G 1.01 26.10 5.10-133.70 1.58 × 10-8 LINC02737 Intergenic 0.845 

14 rs7189512 16 66,324,048 A/G 3.28 7.26 3.13-16.88 4.62 × 10-8 
LINC00922, 

CDH5 
Intergenic 1.000 

15 rs77311527 2 5,516,750 G/A 2.45 11.87 4.44-31.79 2.19 × 10-9 
LINC01249, 
LINC01248 

Intergenic 1.000 

15 rs276833 2 114,769,078 A/G 1.29 18.00 4.81-67.43 1.25 × 10-8 
LINC01191, 

DPP10 
Intergenic 0.970 

OR: Odds ratio. 
CI: Confidence interval. 
Powers were calculated using the method based on the results in Nam’s study (60). 
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Table 4. Results of replication studies in the 1Mv3 dataset for statistically significant chromosomal loci in the discovery studies. 

Cluster 
No. 

ID Chr hg19 Minor/ 
major 

MAF 
(%) 

OR 95% CI P GENESYMBOL Function 

5 rs13332627 16 22,874,928 G/A 10.0 0.50 0.18-1.45 0.195 HS3ST2 intronic 

5 rs7199670 16 22,875,238 A/G 12.2 0.51 0.20-1.33 0.1629 HS3ST2 intronic 

5 rs1054028 16 22,927,214 G/A 15.0 0.51 0.22-1.21 0.121 HS3ST2 UTR3 

10 rs1876769 2 22,678,191 A/G 1.4 NA - 0.1822 LINC01822, 
LINC01884 

intergenic 

13 rs11064685 12 119,590,881 G/A 8.2 1.89 1.06-3.37 0.02858 SRRM4 intronic 

14 rs7189512 16 66,324,048 A/G 3.5 2.16 0.83-5.67 0.1085 LINC00922, 
CDH5 

intergenic 

15 rs276833 2 114,769,078 A/G 1.3 0.71 0.09-5.75 0.75 LINC01191, 
DPP10 

intergenic 

OR: Odds ratio. 
CI: Confidence interval. 
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Figure 1. Details of the cluster-based GWAS in the present discovery stage in the Simons 
Simplex Collection dataset.
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Figure 2. Manhattan plots (a) and corresponding quantile-quantile plots (b) in GWAS for all male 
probands vs their unaffected brothers using the sib transmission/disequilibrium test.
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