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1 Quantitative genetic recursion in space

Let S species be distributed across L habitat patches, with possible migration in between. Each
species i is characterized by its density Nk

i and trait distribution pk
i (z) in patch k. Here z measures a

unidimensional quantitative trait of interest; Nk
i pk

i (z)dz is then the density of species i’s individuals
in patch k whose phenotype values fall between z and z+dz. By definition,∫

pk
i (z)dz = 1 (S1)

at any moment of time. The mean trait of species i in patch k is

µ
k
i =

∫
zpk

i (z)dz. (S2)

Our starting point is the framework of quantitative genetic recursion (Lande 1976, Slatkin 1980,
Taper and Case 1985, 1992, Barabás and D’Andrea 2016) in the weak selection limit (Bürger
2011). We extend this approach by adding migration. The basic equation giving the change in the
density distribution of species i in patch k reads

Ñk
i p̃k

i (z) =W k
i (z)N

k
i pk

i (z)+
L

∑
l=1

Mkl
i Nl

i pl
i(z)−

L

∑
l=1

Mlk
i Nk

i pk
i (z), (S3)

where the tilde denotes values after selection and migration, but before reproduction. The first
term on the right hand side describes selection via the fitness function W k

i (z). The second term
is immigration from all other patches (therefore Mkl

i is the dispersal rate from patch l to patch
k, with Mkk

i = 0 for all i and k). The final term is the loss of species i’s trait z in patch k due to
emigration from the focal patch.

For the underlying genetics, we assume a large number of loci each contributing a very small
additive effect to the trait (Barton et al. 2017, Turelli 2017). In this infinitesimal model, all trait
distributions pk

i (z) are normal with a variance σ2
i that does not change in response to selection:

pk
i (z) =

1
σi
√

2π
exp
(
−(z−µk

i )
2

2σ2
i

)
. (S4)

The change in mean trait from one generation to the next is given by the breeder’s equation (e.g.,
Falconer 1981):

µ̂
k
i −µ

k
i = h2

i (µ̃
k
i −µ

k
i ), (S5)
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where the hat denotes values in the next generation, and µ̃k
i denotes the trait mean after selection

and migration, but before reproduction. After reproduction, N̂k
i = Ñk

i , and p̂k
i is given by Eq. S4

with µ̂k
i calculated from the breeder’s equation (Barabás and D’Andrea 2016).

In the weak selection limit, the fitness W k
i (z) of species i’s phenotype z in patch k can be

written
W k

i (z) = 1+ srk
i (z), (S6)

where s is a small parameter, and rk
i (z) is the per capita growth rate of species i’s phenotype z in

patch k, defined by ecological interactions. The migration rates are similarly written as

Mkl
i = smkl

i . (S7)

To obtain the dynamics of the densities, we integrate Eq. S3 across z:

Ñk
i

∫
p̃k

i dz = Nk
i

∫
W k

i (z)pk
i (z)dz+

L

∑
l=1

Mkl
i Nl

i

∫
pl

i(z)dz−
L

∑
l=1

Mlk
i Nk

i

∫
pk

i (z)dz. (S8)

Using Eq. S1 and Ñk
i = N̂k

i :

N̂k
i = Nk

i

∫
W k

i (z)pk
i (z)dz+

L

∑
l=1

Mkl
i Nl

i −
L

∑
l=1

Mlk
i Nk

i . (S9)

In the weak selection limit (Eqs. S6 and S7),

N̂k
i = Nk

i

∫ [
1+ srk

i (z)
]

pk
i (z)dz+ s

L

∑
l=1

mkl
i Nl

i − s
L

∑
l=1

mlk
i Nk

i , (S10)

which, using Eq. S1, is written as

N̂k
i = Nk

i + sNk
i

∫
rk

i (z)pk
i (z)dz+ s

L

∑
l=1

mkl
i Nl

i − s
L

∑
l=1

mlk
i Nk

i . (S11)

Subtracting Nk
i and dividing by s leads to

N̂k
i −Nk

i
s

= Nk
i

∫
rk

i (z)pk
i (z)dz+

L

∑
l=1

mkl
i Nl

i −
L

∑
l=1

mlk
i Nk

i . (S12)

With appropriate scaling (Barabás and D’Andrea 2016), this can be written in differential equation
form when s is sufficiently small:

dNk
i

dt
= Nk

i

∫
rk

i (z)pk
i (z)dz+

L

∑
l=1

mkl
i Nl

i −
L

∑
l=1

mlk
i Nk

i . (S13)

To obtain the equation for the change in trait means, we write µ̃k
i by rearranging Eq. S3:

p̃k
i =

W k
i (z)N

k
i pk

i (z)+
L

∑
l=1

Mkl
i Nl

i pl
i(z)−

L

∑
l=1

Mlk
i Nk

i pk
i (z)

N̂k
i

. (S14)

We use Eq. S9 to expand the denominator:

p̃k
i =

W k
i (z)N

k
i pk

i (z)+
L

∑
l=1

Mkl
i Nl

i pl
i(z)−

L

∑
l=1

Mlk
i Nk

i pk
i (z)

Nk
i

∫
W k

i (z)pk
i (z)dz+

L

∑
l=1

Mkl
i Nl

i −
L

∑
l=1

Mlk
i Nk

i

. (S15)
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We multiply both sides by z and integrate. Using Eq. S2, we get

µ̃
k
i =

Nk
i

∫
zW k

i (z)pk
i (z)dz+

L

∑
l=1

Mkl
i Nl

i µ
l
i −

L

∑
l=1

Mlk
i Nk

i µ
k
i

Nk
i

∫
W k

i (z)pk
i (z)dz+

L

∑
l=1

Mkl
i Nl

i −
L

∑
l=1

Mlk
i Nk

i

. (S16)

In the weak selection limit (Eqs. S6 and S7), this reads

µ̃
k
i =

Nk
i

∫
z(1+ srk

i (z))pk
i (z)dz+ s

L

∑
l=1

mkl
i Nl

i µ
l
i − s

L

∑
l=1

mlk
i Nk

i µ
k
i

Nk
i

∫
(1+ srk

i (z))pk
i (z)dz+ s

L

∑
l=1

mkl
i Nl

i − s
L

∑
l=1

mlk
i Nk

i

. (S17)

Using Eqs. S1 and S2, we get

µ̃
k
i =

Nk
i µ

k
i + sNk

i

∫
zrk

i (z)pk
i (z)dz+ s

L

∑
l=1

mkl
i Nl

i µ
l
i − s

L

∑
l=1

mlk
i Nk

i µ
k
i

Nk
i + sNk

i

∫
rk

i (z)pk
i (z)dz+ s

L

∑
l=1

mkl
i Nl

i − s
L

∑
l=1

mlk
i Nk

i

. (S18)

Simplifying by Nk
i and factoring out s from both the numerator and denominator:

µ̃
k
i =

µ
k
i + s

[∫
zrk

i (z)pk
i (z)dz+

L

∑
l=1

mkl
i

Nl
i

Nk
i

µ
l
i −

L

∑
l=1

mlk
i µ

k
i

]

1+ s

[∫
rk

i (z)pk
i (z)dz+

L

∑
l=1

mkl
i

Nl
i

Nk
i
−

L

∑
l=1

mlk
i

] . (S19)

Taylor expanding around s = 0 to first order, we get

µ̃
k
i = µ

k
i + s

[∫
zrk

i (z)pk
i (z)dz+

L

∑
l=1

mkl
i

Nl
i

Nk
i

µ
l
i −

L

∑
l=1

mlk
i µ

k
i

−µ
k
i

(∫
rk

i (z)pk
i (z)dz+

L

∑
l=1

mkl
i

Nl
i

Nk
i
−

L

∑
l=1

mlk
i

)]
+O(s2),

(S20)

where O(s2) means terms of order s2 or higher. Simplification yields

µ̃
k
i = µ

k
i + s

[∫
(z−µ

k
i )r

k
i (z)pk

i (z)dz+
L

∑
l=1

mkl
i

Nl
i

Nk
i
(µ l

i −µ
k
i )

]
+O(s2). (S21)

Substituting this expression into the breeder’s equation (Eq. S5):

µ̂
k
i −µ

k
i = h2

i s

[∫
(z−µ

k
i )r

k
i (z)pk

i (z)dz+
L

∑
l=1

mkl
i

Nl
i

Nk
i
(µ l

i −µ
k
i )

]
. (S22)

After dividing both sides by s and performing the s→ 0 limit with appropriate scaling (Barabás
and D’Andrea 2016), we get the differential equation approximation

dµk
i

dt
= h2

i

[∫
(z−µ

k
i )r

k
i (z)pk

i (z)dz+
L

∑
l=1

mkl
i

Nl
i

Nk
i
(µ l

i −µ
k
i )

]
. (S23)
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2 Per capita growth rates and species-level dynamics

We model a trophic community in space, with L distinct habitat patches. Each patch experiences
an average temperature, which is increasing through time due to climate change. The evolvable
trait z is identified with temperature tolerance: an individual with trait z achieves maximal intrinsic
growth in a habitat with temperature z. Local population dynamics, excluding migration, are
governed by four processes: temperature-dependent intrinsic growth, intra- and interspecific
competition, growth due to consumption, and loss due to being consumed. The per capita growth
rate of of species i’s phenotype z in patch k is written

rk
i (z) = rk

0,i(z)−
S

∑
j=1

Nk
j

∫
ak

i j(z,z
′)pk

j(z
′)dz′+

S

∑
j=1

εiFk
i j−

S

∑
j=1

Nk
j F

k
ji/Nk

i , (S24)

where, in patch k, rk
0,i(z) is the intrinsic growth rate of species i’s phenotype z, ak

i j(z,z
′) are

competition coefficients between species i’s phenotype z and species j’s phenotype z′, εi is
species i’s resource conversion efficiency, and Fk

i j is the feeding rate of species i on j. It has the
form

Fk
i j =

qiWi jωi jNk
j

1+qiHi ∑
S
s=1WisωisNk

s
, (S25)

where qi is species i’s attack rate, Wi j is the adjacency matrix of the feeding network (Wi j = 1 if i
eats j and 0 otherwise), ωi j is the relative consumption rate of i on j (we assume an equal split
across resources, so that ωi j = [number of resources]−1 for all consumers), and Hi is species i’s
handling time.

Substituting the growth rate in Eq. S24 into Eqs. S13 and S23 yields

dNk
i

dt
= Nk

i

∫
rk

0,i(z)pk
i (z)dz−Nk

i

∫ S

∑
j=1

Nk
j

[∫
ak

i j(z,z
′)pk

j(z
′)dz′

]
pk

i (z)dz

+Nk
i

∫ [ S

∑
j=1

εiFk
i j−

S

∑
j=1

Nk
j F

k
ji/Nk

i

]
pk

i (z)dz+
L

∑
l=1

mkl
i Nl

i −
L

∑
l=1

mlk
i Nk

i

(S26)

for the population densities, and

dµk
i

dt
= h2

i

∫
(z−µ

k
i )r

k
0,i(z)pk

i (z)dz−h2
i

∫
(z−µ

k
i )

S

∑
j=1

Nk
j

[∫
ak

i j(z,z
′)pk

j(z
′)dz′

]
pk

i (z)dz

+h2
i

∫ [ S

∑
j=1

εiFk
i j−

S

∑
j=1

Nk
j F

k
ji/Nk

i

]
(z−µ

k
i )pk

i (z)dz+h2
i

L

∑
l=1

mkl
i

Nl
i

Nk
i
(µ l

i −µ
k
i )

(S27)

for the trait means. Rearranging, we get

dNk
i

dt
= Nk

i

∫
rk

0,i(z)pk
i (z)dz−Nk

i

S

∑
j=1

Nk
j

∫∫
pk

i (z)a
k
i j(z,z

′)pk
j(z
′)dz′dz (S28)

+Nk
i

[
S

∑
j=1

εiFk
i j−

S

∑
j=1

Nk
j F

k
ji/Nk

i

]∫
pk

i (z)dz+
L

∑
l=1

mkl
i Nl

i −
L

∑
l=1

mlk
i Nk

i ,

dµk
i

dt
= h2

i

∫
(z−µ

k
i )r

k
0,i(z)pk

i (z)dz−h2
i

S

∑
j=1

Nk
j

∫∫
(z−µ

k
i )pk

i (z)a
k
i j(z,z

′)pk
j(z
′)dz′dz (S29)

+h2
i

[
S

∑
j=1

εiFk
i j−

S

∑
j=1

Nk
j F

k
ji/Nk

i

]∫
(z−µ

k
i )pk

i (z)dz+h2
i

L

∑
l=1

mkl
i

Nl
i

Nk
i
(µ l

i −µ
k
i ).
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By Eq. S1, the integral in the third term of Eq. S28 is simply 1. In turn, the integral in the third
term of Eq. S29 is zero, because the integrand is a product of an odd and an even function in
z−µk

i . This leads to

dNk
i

dt
= Nk

i

∫
rk

0,i(z)pk
i (z)dz−Nk

i

S

∑
j=1

Nk
j

∫∫
pk

i (z)a
k
i j(z,z

′)pk
j(z
′)dz′dz (S30)

+
S

∑
j=1

εiNk
i Fk

i j−
S

∑
j=1

Nk
j F

k
ji +

L

∑
l=1

mkl
i Nl

i −
L

∑
l=1

mlk
i Nk

i ,

dµk
i

dt
= h2

i

∫
(z−µ

k
i )r

k
0,i(z)pk

i (z)dz−h2
i

S

∑
j=1

Nk
j

∫∫
(z−µ

k
i )pk

i (z)a
k
i j(z,z

′)pk
j(z
′)dz′dz (S31)

+h2
i

L

∑
l=1

mkl
i

Nl
i

Nk
i
(µ l

i −µ
k
i ).

Introducing the definitions

bk
i =

∫
rk

0,i(z)pk
i (z)dz, (S32)

α
k
i j =

∫∫
pk

i (z)a
k
i j(z,z

′)pk
j(z
′)dz′dz, (S33)

gk
i =

∫
(z−µ

k
i )r

k
0,i(z)pk

i (z)dz, (S34)

β
k
i j =

∫∫
(z−µ

k
i )pk

i (z)a
k
i j(z,z

′)pk
j(z
′)dz′dz, (S35)

Eqs. S30-S31 read

dNk
i

dt
= Nk

i bk
i −Nk

i

S

∑
j=1

α
k
i jN

k
j +

S

∑
j=1

εiNk
i Fk

i j−
S

∑
j=1

Nk
j F

k
ji +

L

∑
l=1

mkl
i Nl

i −Nk
i

L

∑
l=1

mlk
i , (S36)

dµk
i

dt
= h2

i gk
i −h2

i

S

∑
j=1

β
k
i jN

k
j +h2

i

L

∑
l=1

mkl
i

Nl
i

Nk
i
(µ l

i −µ
k
i ), (S37)

with Fk
i j given by Eq. S25.

3 Model parameterization

Here we present the detailed derivation and parameterization of each model component. Numeri-
cal values of the model’s parameters, along with their units and short descriptions, are collected
in Tables S1-S2.

3.1 Temperature-dependent intrinsic growth rates

Following Amarasekare and Johnson (2017), we model the temperature-dependence of rk
0,i(z)

using the Gaussian form

rk
0,i(z) = Ak

i exp
(
−(T k− z)2

2(wk
i )

2

)
−κi, (S38)

where κi is a mortality rate for species i, Ak
i −κi is the maximum intrinsic growth that can be

achieved for species i in patch k, T k is the temperature in patch k, and wk
i is the species- and

patch-specific width of the growth curve.
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The wk
i are not constant, but coevolve with species’ mean temperature optima µk

i . Within
reasonable limits (such that the tolerance widths remain positive), this can be modeled using the
following linear relationship:

wk
i = bw−awµ

k
i , (S39)

where aw and bw are positive constant parameters. This creates a trend of increasingly broader
curves for lower temperature optima, corresponding to the observed correlation between tolerance
width and latitude (Addo-Bediako et al. 2000, Sunday et al. 2011). For determining Ak

i , we use
the observation that there is a tradeoff between the width and maximum height of temperature
optima. This phenomenon is brought about by higher annual temperature variability at higher
latitudes: since reaction norms are nonlinear functions of temperature, the optimal response to
the mean temperature is not the same as the mean optimal response, due to Jensen’s inequality
(Amarasekare and Johnson 2017). This also means that the distance between experienced and
optimal temperatures is larger at higher latitudes, where climate tends to be more variable
(Deutsch et al. 2008). However, our model does not take annual temperature fluctuations into
account, which means that the observed optimum shift cannot evolve as in Amarasekare and
Johnson (2017). Instead, we imposed this tradeoff by assigning a smaller Ak

i to wider temperature
adaptations at low µk

i values (Eq. S39), mimicking the fact that populations at higher latitudes are
adapted to more variable environments and thus also living at temperatures further away from
those that would yield maximum growth in a stable environment. The tradeoff is implemented as

Ak
i =

ρi

wk
i
=

ρi

bw−awµk
i
, (S40)

where ρi is a parameter modulating the shape of the tradeoff. Substituting the parameter specifi-
cations of Eqs. S39-S40 into Eq. S38 gives

rk
0,i(z) =

(
ρi

bw−awµk
i

)
exp
(
− (T k− z)2

2(bw−awµk
i )

2

)
−κi. (S41)

This form of the tradeoff, and its particular parameterization (Table S1), were chosen so the
resulting growth curves would qualitatively mimick those found empirically (e.g., Deutsch et al.
2008). Figure S1 shows what the growth rates of Eq. S41 look like, in six species equally spaced
along a temperature gradient, both for consumers and resources.

To obtain the species-level parameters bk
i and gk

i from this growth rate, we substitute Eqs. S4
and S41 into Eqs. S32 and S34:

bk
i =

∫ [(
ρi

bw−awµk
i

)
exp
(
− (T k− z)2

2(bw−awµk
i )

2

)
−κi

]exp
(
− (z−µk

i )
2

2σ2
i

)
σi
√

2π
dz, (S42)

gk
i =

∫
(z−µ

k
i )

[(
ρi

bw−awµk
i

)
exp
(
− (T k− z)2

2(bw−awµk
i )

2

)
−κi

]exp
(
− (z−µk

i )
2

2σ2
i

)
σi
√

2π
dz. (S43)

The integrals can be evaluated directly, leading to the final forms

bk
i =

(
ρi

bw−awµk
i

)
bw−awµk

i√
(bw−awµk

i )
2 +σ2

i

exp
(
− (T k−µk

i )
2

2[(bw−awµk
i )

2 +σ2
i ]

)
−κi, (S44)

gk
i =

(
ρi

bw−awµk
i

)
σ2

i (bw−awµk
i )(T

k−µk
i )

[(bw−awµk
i )

2 +σ2
i ]

3/2
exp
(
− (T k−µk

i )
2

2[(bw−awµk
i )

2 +σ2
i ]

)
. (S45)
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Figure S1: Tradeoff between the height and breadth of temperature optima, for phenotypes of six consumer
(left) and six resource species (right). Colors indicate species, with cooler shades standing for more cold-
adapted ones. The dashed line indicates zero growth; therefore the rk

0,i of consumer species is always a
mortality rate, which must be compensated by consumption. For resources, rk

0,i is positive unless the local
temperature is too far from the optimum for that species. In this figure, κi = 0.1 for all species, ρi = 0.1 for
all consumers, and ρi = 0.1 for all resources. In our simulations, to make sure that the model’s predicted
community patterns are not an artifact of the above precise tradeoff shapes, the ρi were randomized in a
±10% range of these values (Table S1).

3.2 Competition coefficients

We only model competition between resource species. Consumers also compete but only indi-
rectly, via shared resources. This means that the competition kernel ak

i j(z,z
′) is zero unless both

i and j refer to resource species. When they do, we use two different kernel forms. One only
depends on species identity, and is independent of trait or patch value:

ak
i j(z,z

′) = ai j. (S46)

Applying Eqs. S33 and S35 to obtain αi j and βi j, we get

α
k
i j = ai j

∫∫
pk

i (z)pk
j(z
′)dz′dz = ai j, (S47)

β
k
i j = ai j

∫∫
(z−µ

k
i )pk

i (z)pk
j(z
′)dz′dz = 0. (S48)

In the first equation, the integrals evaluate to 1 because of Eq. S4, while in the second equation,
integration with respect to z involves the product of an odd and an even function in z−µk

i and is
therefore zero. The constant ai j values are sampled randomly (Table S1), in a way that ensures
intraspecific competition being always stronger than interspecific competition.

The second form of the competition kernel we use depends on the difference between
phenotypic values:

ak
i j(z,z

′) = exp
(
−(z− z′)2

η2

)
, (S49)

where η is the competition width, determining how distant two phenotypes must be for com-
petition to be significantly reduced between them. Here αk

i j and β k
i j can be calculated by direct
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integration using Eqs. S33 and S35:

α
k
i j =

η√
2σ2

i +2σ2
j +η2

exp

(
−

(µk
i −µk

j )
2

2σ2
i +2σ2

j +η2

)
, (S50)

β
k
i j =−

2ησ2
i (µ

k
i −µk

j )

(2σ2
i +2σ2

j +η2)3/2 exp

(
−

(µk
i −µk

j )
2

2σ2
i +2σ2

j +η2

)
. (S51)

This form of the competition kernel facilitates trait divergence even within a single patch, since
it may be profitable for a species to specialize on a suboptimal temperature to thus weaken
interspecific competition and coexist locally. Biologically, this mechanism is explained by
having microhabitats within each patch, with higher and lower local temperatures than the patch
average. A species with a higher or lower temperature optimum than the average can exploit
these microhabitats better than the locally dominant species, and therefore persist in the patch
as a whole—though it will not be able to achieve as much growth due to the relatively limited
availability of such microhabitats.

3.3 Feeding network

We model two strict trophic levels, with S resource and S consumer species. The bipartite network
of feeding connections Wi j (with Wi j = 1 if i eats j and 0 otherwise) is generated as follows.
First, both resources and consumers are labeled consecutively, based on their initial temperature
adaptations: resource 1 / consumer 1 are the most cold-adapted, and resource S / consumer S
the most warm-adapted. Next, we always put a feeding link between consumer i and resource i.
Finally, each consumer is randomly linked to S/2−1 other resources (rounded if necessary). For
S even, this will lead to the feeding network having a connectance of 1/2.

3.4 Genetic and environmental variances

Genetic variances VG,i are randomly drawn for each species, while the environmental variances
VE,i are fixed (Table S2). We assume that there is no epistatic or dominance variance, which
means that the total phenotypic variance, σ2

i , is the sum of the additive genetic and environmental
variances: σ2

i =VG,i +VE,i. The heritability of species i’s trait value is, by definition, the ratio of
genetic to total phenotypic variance (e.g., Falconer 1981), so we have

h2
i =

VG,i

VG,i +VE,i
=

VG,i

σ2
i
. (S52)

Our model has no demographic stochasticity. This means we are assuming that even “low”
population densities are sufficiently high to neglect genetic and ecological drift. This, however, can
introduce problems with artifactual evolutionary rescue, where an unrealistically tiny population
evolves to the point where it can finally grow, thus surviving and establishing itself even though it
was bound to go extinct. To control for this artifact, we introduced a reduction in species’ genetic
variances whenever their local population densities dropped below the threshold Nc. Below this
threshold, genetic variances were multiplied by a factor Q(Nk

i /Nc), where

Q(x) =


0 if x < 0,
10x3−15x4 +6x5 if 0≤ x≤ 1,
1 if x > 1.

(S53)

This is a smoothed step function: it is 0 for x < 0, increases monotonically to one at x = 1, and
stays equal to 1 for x > 1 (Figure S2). It is constructed to be twice continuously differentiable for
all x.
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Figure S2: The smooth step function Q(x), defined by Eq. S53. It is constructed to be piecewise
polynomial and twice continuously differentiable everywhere.

This means that heritabilities were also modified below Nc, being instead given by the
patch-dependent expression

h2
i =

Q(Nk
i /Nc)VG,i

Q(Nk
i /Nc)VG,i +VE,i

. (S54)

3.5 Spatial structure and dispersal rates

We discretize latitudinal position into L equidistant patches: patch 1 is at the pole, patch L at the
equator, with the rest linearly spaced in between. Migration happens between adjacent patches
with a species-specific rate di:

mkl
i =

{
di if k = l±1,
0 otherwise.

(k, l = 1, . . . ,L) (S55)

To the approximation that the two hemispheres of Earth are symmetric with respect to their
temperature profiles, the pole-to-equator spatial profile could be repeated from equator to the
other pole again (in reverse), and then wrapped around the whole planet. Due to this symmetry
and periodicity, the range going from pole to equator already contains all information, and is the
only part that needs to be modeled, provided one implements appropriate boundary conditions
to account for the periodicity. Specifically, for patches 1 and L, the following replacements are
made compared to Eqs. S36-S37:

dN1
i

dt
→ dN1

i

dt
+m1,2

i N2
i −m2,1

i N1
i , (S56)

dNL
i

dt
→ dNL

i

dt
+mL,L−1

i NL−1
i −mL−1,L

i NL
i , (S57)

dµ1
i

dt
→ dµ1

i

dt
+h2

i m1,2
i

N2
i

N1
i
(µ2

i −µ
1
i ), (S58)

dµL
i

dt
→ dµL

i

dt
+h2

i mL,L−1
i

NL−1
i

NL
i

(µL−1
i −µ

L
i ). (S59)
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3.6 Climate model

Let x denote latitudinal position, measured as the latitudinal distance from the north pole. The
temperature at position x and time t is given by T (x, t). The local temperature T k in patch k is the
one at the latitude corresponding to patch k. The components of the climate change model are as
follows:

1. Temperature is initially constant in each patch, for a burn-in period of t0 years. The initial
average temperature T0(x) is Tmin at the pole, Tmax at the equator (Table S1), and linearly
extrapolated in between:

T0(x) = (Tmax−Tmin)
x
X
+Tmin, (S60)

where X is the distance from pole to equator, measured in the same units as x.

2. Climate change starts after the burn-in period. In each patch, the qualitative shape of the
relative temperature rise is given by the smoothed step function Q((t− t0)/tE) (Eq. S53),
where t0 is the moment of the onset of climate change, and tE is the end of it.

3. Climate change stops after tE = 300 years.

4. The extent of the temperature increase depends on latitude. This latitudinal trend is
predicted with high confidence for the northern hemisphere for the next century, and is
observed in all of IPCC’s emission scenarios (IPCC 2013, chapter 12). We assume that the
latitude-dependence of the final temperature increase (at tE) is linear:

CE(x) = (Cmin−Cmax)
x
X
+Cmax, (S61)

where Cmax is the maximum temperature increase (at the pole) and Cmin is the minimum
increase (at the equator). The values of Cmax and Cmin (Table S1) are based on region-
specific predictions of increase in temperature by 2100, in combination with estimates
giving approximate increase by 2300, for the IPCC intermediate emission scenario (IPCC
2013, chapter 12).

Considering all the above, the time-dependence of the temperature profile T (x, t) is written
compactly as

T (x, t) = T0(x)+CE(x)Q
(

t− t0
tE

)
. (S62)

3.7 Initial conditions

Both for resource species 1,2, . . . ,S and for consumer species 1,2, . . . ,S, the initial temperature
adaptations µk

i (0) are determined by the initial temperature profile such that species 1 is adapted
to the polar temperatures, species S to equatorial temperatures, and all other species are linearly
spaced in between:

µ
k
i (0) = T0(i/S) = (Tmax−Tmin)

i
S
+Tmin (S63)

at all spatial locations where the species is initially present. Initial population densities are
centered at the location to which the species is best adapted, and are normally distributed around
this point in space:

Nk
i (0) = exp

(
−(µk

i (0)−T0(k/L))2

2×22

)
. (S64)
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Figure S3: Initial density distribution of ten consumer (left) and ten resource species (right) along the
latitudinal gradient (ordinate). The abscissa shows the population density at the corresponding latitude.
Colors denote species, with cooler shades standing for more cold-adapted species.

4 Community response capacity

Let there be S species distributed across L patches, evolving according to our model. We denote
the relative density of species i in patch k at time t by nk

i (t):

nk
i (t) =

Nk
i (t)

∑
S
j=1 ∑

L
l=1 Nl

j(t)
. (S65)

We then define the density-weighted trait lag, A k(t), as

A k(t) =
1
S

S

∑
i=1

nk
i (t)
[
µ

k
i (t)−T k(t)

]2
, (S66)

where T k(t) is the local temperature in patch k at time t. This quantity measures the extent to
which species match their environment, with more common species contributing more to the
overall lag. A k(t) may be further averaged across patches and time, yielding

A =
1
L

L

∑
k=1

1
tE

t0+tE

∑
t=t0

A k(t). (S67)

The time averaging moves from the onset to the end of climate change, i.e., between years
t0 = 1000 and t0 + tE = 1300 (Table S1). In turn, we define the density-weighted dispersion of
mean trait values, V k(t), as

V k(t) =
1
S

S

∑
i=1

nk
i (t)
[
µ

k
i (t)− µ̄

k(t)
]2
, (S68)

where

µ̄
k(t) =

1
S

S

∑
i=1

nk
i (t)µ

k
i (t) (S69)
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is the weighted average of species’ mean temperature optima in patch k. The more different
species are in their trait means (with relatively more common species getting more weight for
being different), the larger this value becomes. Again, we can average this quantity across time
and patches to obtain

V =
1
L

L

∑
k=1

1
tE

t0+tE

∑
t=t0

V k(t). (S70)

In Figure 6 of the main text, A is plotted against V to reveal that the more dispersed species’
mean temperature optima are, the smaller the overall trait lag in a community. Communities
with more varied mean temperature optima thus tend to be better adapted to local conditions.
It also reveals that certain model types (in particular, models without temperature-dependent
competition) consistently produce larger mean trait dispersion V than others. Moreover, this
relationship is independent of species’ average dispersal abilities and genetic variances: when
varying these parameters in a much wider range than in the main text (Figure S4), the same
regression line is retained. A similar linear relationship as the main text’s Figure 6 holds for the
consumer species as well (Figure S5), though with a different slope and intercept.
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Figure S4: As Figure 6 in the main text, but for a much wider range of dispersal abilities and genetic
variances. Even so, the regression line (slope −0.015, intercept 0.0026, p < 2.210−16) is the same as
before, indicating that these two parameters leave the relationship unaffected.
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Figure S5: As Figure 6 in the main text, except for consumer species.

5 Additional results

5.1 Community turnover

Species turnover in time is measured by the Jaccard distance. Let S (t) denote the set of species
present at time t, and |S (t)| the number of elements in the set. The Jaccard distance J(t0, t)
between the community state at some reference time t0 and a later time t reads

J(t0, t) = 1− |S (t0)∩S (t)|
|S (t0)∪S (t)|

, (S71)

where ∩ is the intersection and ∪ the union of two sets. This formula is agnostic about the spatial
extent of a community: it can be applied to each patch separately, or the community as a whole.
An in-between approach is to obtain regional turnover by applying Eq. S71 to the top third of
all L patches (the polar region), the middle third (temperate region), and bottom third (tropical
region). Figure S6 shows how regional species compositions change in time, with the community
state at the start of climate change playing the role of the reference community at t0.

5.2 Summary plots for consumers

Figures S7-S9 are like Figures 3-5 in the main text, except they show the distribution ranges,
local diversity, and global diversity information for the consumer instead of the resource species.
Figure S10 is the analogue of Figure S6 for consumers.

5.3 Results with 30 species per trophic level

Figures 3-6 in the main text assume 50 species per trophic level. This number is sufficient for all
relevant community patterns to stabilize, such that adding more species has no more substantial
effect. To show this, we display species ranges, local richness, and global richness for S = 30
species per trophic level (Figures S11-S20). The qualitative patterns are identical to those in
Figures 3-6 of the main text, and Figures S6-S10.
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Figure S6: Jaccard distance between the regional community composition of resource species at the
start of climate change and subsequent times, in steps of 100 years (points; dashed lines connect them
for better visibility). A value of 0% means that the same set of species is present as at the start, while
100% indicates a complete turnover in regional species composition. The Jaccard distance is averaged
over patches (merged into regions, indicated by color) and replicates. Columns show different ecological
models, rows various parameter combinations of average dispersal ability and available genetic variance.
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Figure S7: As Figure 3 of the main text, but for consumer species (species 51 to 100).
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Figure S8: As Figure 4 of the main text, but for consumer species (species 51 to 100).
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Figure S9: As Figure 5 of the main text, but for consumer species (species 51 to 100).
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Figure S10: As Figure S6, but for consumer species (species 51 to 100).
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Figure S11: As Figure 3 of the main text, but with S = 30 resource species.
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Figure S12: As Figure 4 of the main text, but with S = 30 resource species.
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Figure S13: As Figure 5 of the main text, but with S = 30 resource species.
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Figure S14: As Figure S6, but with S = 30 resource species.
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Figure S15: As Figure S7, but with S = 30 consumer species (species 31 to 60).
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Figure S16: As Figure S8, but with S = 30 consumer species (species 31 to 60).
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Figure S17: As Figure S9, but with S = 30 consumer species (species 31 to 60).
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Figure S18: As Figure S10, but with S = 30 consumer species (species 31 to 60).
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Figure S19: As Figure 6 in the main text, but with S = 30 resource species.
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Figure S20: As Figure S5, but with S = 30 consumer species (species 31 to 60).
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6 Parameter values

parameter value units comment
S 50 / 50 no. of species (resource / consumer)
L 50 no. of patches along latitudinal gradient
X 107 m distance from pole to equator
ρi [0.9, 1.1] / [0.09, 0.11] ◦C yr−1 tradeoff parameter (resources / consumers)
bw 4.0 ◦C tolerance width’s trait-dependence intercept
aw 0.1 tolerance width’s trait-dependence slope
κi 0.1 yr−1 intrinsic mortality
η 1 ◦C competition width
εi 0.05 consumer conversion efficiency
qi [1, 10] g−1yr−1 attack rate
Hi [0.5, 1] yr handling time
Wi j 1 if i eats j; else 0 adjacency matrix of feeding network
ωi j [# of i’s resources]−1 relative consumption rate of i on j
V 10−1 or 10−3 ◦C2 mean genetic variance
d 100 or 0.01 m yr−1 mean annual dispersal distance
aii [0.1, 0.3] g−1yr−1 intraspecific comp. coeffs. (resources only)
ai j, j 6=i [0.075, 0.225] g−1yr−1 interspecific comp. coeffs. (i, j resources)
Nc 10−5 threshold density for heritability reduction
Tmin −10 ◦C initial mean temperature at pole
Tmax 25 ◦C initial mean temperature at equator
Cmin 1.26 ◦C projected temperature increase at pole
Cmax 9.66 ◦C projected temperature increase at equator
t0 1000 yr time at which climate change starts
tE 300 yr end of climate change (after t0)

Table S1: Parameter values. Unit abbreviations: g (grams), m (meters), ◦C (Celsius degrees), yr (years).
When intervals are shown, values are uniformly drawn for each species.

parameter value units comment
VG,i [0.5V , 1.5V ] ◦C2 genetic variance
VE,i V ◦C2 environmental variance
σ2

i VG,i +VE,i
◦C2 total phenotypic variance

h2
i VG,i/σ2

i heritability
di [0.1d, 10d] m yr−1 annual dispersal distance

mkl
i

{
di if k = l±1
0 otherwise

m yr−1 dispersal matrix (for k, l in 1,2, . . . ,L)

Table S2: Derived parameters, using the values in Table S1. Notation and unit abbreviations are as in
Table S1.
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