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ABSTRACT

Motivation: Read alignment is a time-consuming step in genome

sequence analysis. In the read alignment software BWA-MEM and

the recently published faster version BWA-MEM2, the seeding step

is a major bottleneck, for instance, contributing 38% to the overall

execution time in BWA-MEM2 when aligning single-end whole human

genome reads from the Platinum Genomes dataset. This is because

both BWA-MEM and BWA-MEM2 use a compressed index structure

called the FMD-Index, which results in high memory bandwidth

requirements for seeding, primarily due to its character-by-character

processing of reads.

Results: We propose a memory bandwidth-aware data structure for

maximal-exact-match seeding called Enumerated Radix Tree (ERT).

ERT trades off memory capacity to improve seeding performance

(∼60 GB index for human genome). Together with optimizations to

the seeding algorithm and mate-rescue step, ERT when integrated

into BWA-MEM2 speeds up overall read alignment by 1.28× and

provides up to 2.1× higher seeding performance while guaranteeing

identical output to the original software. Furthermore, we prototype an

FPGA implementation of ERT on Amazon EC2 F1 cloud and observe

1.6× higher seeding throughput over a 48-thread optimized CPU-

ERT implementation.

Availability and implementation: https://github.com/arun-sub/bwa-

mem2

Contact: arunsub@umich.edu, reetudas@umich.edu

1 INTRODUCTION

Read alignment is one of the major compute bottlenecks in

secondary analysis. Every read needs to be aligned to a position in

the reference genome. The seed-and-extend heuristic (Baeza-Yates

and Perleberg, 1996) is commonly used for read alignment. Seeding

finds a set of candidate locations (hits) in the reference genome

where a read can potentially align. Hits for a read are determined

by finding exact matches for its substrings (seeds) in the reference.

The seed extension phase then uses approximate string matching to

select the hit with the best score as the read’s alignment position.

The seeding step is a major bottleneck in read alignment software

such as BWA-MEM. For instance, seeding contributes ∼38% to

the overall run time of BWA-MEM2 (Vasimuddin et al., 2019).

In addition to read alignment, seeding is also an important kernel

in several other applications: metagenomics classification (e.g.,

Centrifuge (Kim et al., 2016)), de-novo assembly (Simpson and

Durbin, 2012)) and read error correction (Greenstein et al., 2015).

Therefore, there is a need for fast and efficient solutions for seeding.

The primary performance bottleneck in seeding is memory

bandwidth resulting from irregular memory accesses to the FMD-

index. The highly compressed FMD-index in BWA-MEM (4.3 GB

for human genome) trades off high memory bandwidth for small

memory space. However, memory bandwidth is a precious resource

in modern processors that has not scaled proportionately with core

counts (Wulf and McKee, 1995). We find that on real whole human

genome reads, ∼40% CPU cycles are spent waiting for data from

memory elements such as on-chip caches and DRAM. Furthermore,

irregular memory accesses in seeding cannot take full advantage of

the memory system which has been optimized for regular accesses

with small stride (i.e., accesses with high spatial locality). As a

result, seeding only utilizes 11.7% of peak DRAM bandwidth in

a 48-thread multicore system.

In contrast, we propose a data structure for seeding that makes

the opposite trade-off: it trades off increased memory space for

reducing bandwidth required, while still fitting within a modern

server’s main memory (64 GB) as shown in Figure 1. This design

tradeoff is similar in spirit to that made in BWA-MEM2 (which

uses a lower compression factor for the FMD-index, resulting

in a 42 GB index for the human genome), but our solution

further improves bandwidth efficiency by virtue of supporting multi-

character lookup and exploiting reuse opportunities by redesigning

the seeding algorithm.
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Fig. 1. Trade-off between index size and data required for seeding.

We refer to our bandwidth-efficient data structure as Enumerated

Radix Trees (ERT). Like FMD-index, ERT enables variable length

exact match search functionality. But, unlike FMD-index, it avoids

iterative lookup for every base-pair on a large structure which

can result in poor performance. It achieves this by coalescing all

substrings in a reference genome that start with the same k-mer

together (where k is less than the minimum length for a seed), and

representing them using a variant of a radix tree. As we discuss

later, ERT allows multiple consecutive base-pairs to be matched

with one lookup, and exhibits better spatial locality than the FMD-

index. ERT also helps reduce computation when substrings within

a read that need to be matched with the reference overlap using a

prefix-encoded radix tree. ERT increases data efficiency of seeding

(data fetched per read) by 4.3× as shown in Figure 1 and improves

overall seeding performance of BWA-MEM2 by 1.6–2.1×.
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2 BACKGROUND AND MOTIVATION

2.0.1 Seeding Algorithm in BWA-MEM

The seeding algorithm in BWA-MEM is based on identifying

substrings that have super-maximal exact matches (SMEMs) with

the reference genome (Li, 2013) as shown in (Figure 2(a)). A

maximal exact match (MEM) is an exact match that cannot be

extended in either direction in the read. An SMEM is a maximal

length match (MEM) that is not fully contained in any other MEM.

Figure 2 (b) shows the steps involved in determining SMEMs for a

sample read and reference pair.

To identify SMEMs and their locations in the reference genome,

both BWA-MEM and BWA-MEM2 use a compressed data structure

called the FMD-index (Ferragina and Manzini, 2000; Li, 2012)

which is built using both strands of DNA (∼6 billion characters

of the human genome). The FMD-index consists of: (1) the suffix

array (SA), which contains the locations of lexicographically sorted

suffixes of the reference genome R, (2) the Burrows Wheeler

Transform (BWT), computed as the last column of the cyclically

sorted suffixes of the reference, (3) the count table (C) which stores

the number of characters in R lexicographically smaller than a given

character c and (4) the occurrence table (Occ) which stores the

number of occurrences of a character up to a certain index in the

suffix array. Using the FMD-index, SMEMs are identified in two

steps:

(1) Forward search: For a given query position in the read (e.g.,

pivot x0 in Figure 2), subsequent base pairs to its right are looked

up one at a time in the FMD-index to find the longest exact match in

the forward direction. The position of mismatch becomes the start of

the next pivot and the process repeats. During forward search from

a pivot, all the positions in the read where there is a change in the

set of candidate reference locations (hits) are marked (left extension

points (LEP) in Figure 2). Only these positions are used as the

starting query positions to identify potentially longer exact-matches

extending in the backward direction. Other positions are guaranteed

to produce MEMs that are contained within those identified from

LEP.

(2) Backward search: For each query position identified in the

previous step (LEP), subsequent bases to the left of the pivot are

looked up one at a time to find the longest exact match in the

backward direction. After this process, SMEMs are identified by

discarding MEMs fully contained in other longer matches. The

locations of these SMEMs in the reference genome (hits) are then

determined by a suffix array lookup (can take multiple occurrence

table lookups in BWA-MEM, since the suffix array is sampled)

and passed on to the seed-extension stage. SMEMs obtained during

seeding are assumed to be part of the final alignment.

2.0.2 FMD-Index Seeding Bottlenecks

The FMD-index allows the lookup of query Q of length N

in reference R using approximately O(N) memory operations.

Detailed descriptions of the FMD-index can be found in (Ferragina

and Manzini, 2000; Li, 2012). Like BWA-MEM, BWA-MEM2 also

uses the FMD-index for seeding, but uses a lower compression

factor in its implementation to reduce memory bandwidth

requirements. In particular, the occurrence table used for performing

range queries on the FMD-index is decompressed by 4× and the

suffix array to identify locations of substrings in the reference

Fig. 2. (a) Super-Maximal Exact Matches example. (b) Forward and

backward search to identify super-maximal exact matches (SMEMs).

genome is fully decompressed. These changes increase the FMD-

index size to 42 GB (12 GB occurrence table + 30 GB suffix array)

(Vasimuddin et al., 2019) compared to 4.3 GB in BWA-MEM.

Starting from a single character in the read, the FMD-index enables

forward and backward MEM searches to determine the number of

hits of progressively longer substrings using at most 2 extra memory

lookups per character.

Software implementations of the FMD-index (e.g., BWA-MEM)

have attempted to improve the spatial locality of FMD-index

lookups in two ways: First, occurrence table entries are typically

co-located with portions of the BWT in tightly packed cache-line

aligned (i.e., 64 B) data structures to reduce accesses to main

memory (can take 2–50× longer than a cache access). Second,

backward search passes for substrings sharing the same prefix (e.g.,

TCAGTC and TCA in Figure 2) are performed in lock-step leading

to access of FMD-index data belonging to the same or nearby cache

lines (Li, 2013; Xin et al., 2015). However, the initial few memory

lookups touch different parts of a ∼42 GB data structure and rarely

exhibit a regular, predictable memory access pattern. This reduces

the effectiveness of multi-level caching in modern processors and

imposes high memory bandwidth requirement.

3 METHODS

3.1 Enumerated Radix Tree Index Design

In this section, we present Enumerated Radix Trees (ERT), which

is built from the ground up to overcome the low data efficiency of

FMD-index based seeding. Like the FMD-index, to support both

forward and backward searches, ERT is built for the concatenated

reference: consisting of both the forward and reverse complemented

strands of DNA.

3.1.1 K-mer Index

FMD-index stores a compressed representation of the set of all

suffixes that exist in the reference genome in lexicographical order.

We now consider a substring of length k in the read (referred to as a

k-mer). Due to natural genome variation and machine read error, not

all k-mers will exist in the reference and, hence, in the FMD-index.

Therefore, when looking up a k-mer in the FMD-index, we must
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Fig. 3. Enumerated radix tree (ERT) example. ERT supports multi-character lookup using a multi-level index table and radix tree. Each index table entry

contains a Type field, k-1 bit LEP field (Section 2) and a pointer field that indicates the address of the root node of a radix tree (not shown). Type can be

any of the following: (1) EMPTY: k-mer is absent in the reference. (2) LEAF: k-mer is unique (i.e., has the same suffix at all occurrences in the reference). (3)

k-mer exists in the reference and has a pointer to the root of the radix tree. (4) k-mer has very high number of unique suffix strings (T > 256) in the reference.

The index table entry for this k-mer points to a 2nd-level index table to succinctly represent these suffix strings. ERT represents a singleton path using a

variable-size internal node (UNIFORM) supporting multi-character lookup (5). If a singleton path ends in a leaf, it is truncated at its start with a LEAF node

that points to the reference genome (path compression, 6). ERT also includes EMPTY nodes (ending with $) to indicate absence of prefixes in the reference

and DIVERGE nodes which have more than one valid child branch paths for the prefix.

start with a 1-mer and grow the string, character by character, for

as long as it exists in the FMD-index, or till we reach the desired

k-mer length. This iterative, character-by-character access to the

FMD-index substantially increases the required number of DRAM

accesses, creating a memory bottleneck. This is further aggravated

by the fact that accesses to the index rarely follow lexicographic

order, making it difficult to exploit locality over such a large window

(i.e., set of all suffixes of the k-mer).

To overcome these two limitations, we instead enumerate all

possible k-mers (whether they exist in the reference or not) and

store them in an index table. Prior work (Xin et al., 2015) also

made a similar observation to increase locality in the first few steps

of FM-index search. For each k-mer (an index entry), we then

store all its suffixes in the reference. Since all possible k-mers are

represented in the index, k characters from the read can be looked

up in a single memory access, significantly reducing the number of

DRAM accesses. Furthermore, subsequent accesses to the suffixes

of the k-mer have much improved spatial locality, since they are co-

located together. To capture intermediate results from each of the

k single character lookups, we leverage memoization, wherein we

precompute and store the results of looking up every possible k-

character permutation in a k-mer index table (LEP in Figure 2 b.).

Figure 3 shows an example index table enumerating all 6-character

substrings.

To choose k, we observe that BWA-MEM only reports SMEMs

greater than a certain minimum length (e.g., 19). We choose k=15 to

keep the size of index table tractable (O(4k)), i.e, 1 G entries when

k = 15. Later, in section 3.5.1 we discuss a solution to effectively

increase k by selectively using a multi-level index.

3.1.2 Customized Radix Tree

The next question is how to store the suffixes of a k-mer in an index

entry, so that we can support MEM searches for strings longer than

k. One option is to augment the index table with an FMD-index, and

iteratively grow the k-mer prefix. However, even within the subset

of all suffixes sharing the same k-mer prefix, FMD-index lookups

have poor locality. Also, they still operate with a single character at

a time.

To overcome this problem, we observe that a radix tree can

naturally support multi-character lookups. This is because in a radix

tree, we can merge all singleton paths into a single node, thereby

addressing a multiple character lookup with a single memory access.

Figure 3 shows a radix tree for one k-mer in the index table (note

radix is 4 for the genome alphabet). The proposed ERT merges

singleton paths (GC in Figure 3) using variable-size internal nodes

that store the full singleton path string (designated as UNIFORM).

A singleton path is encountered when all paths in the tree from a

certain node onward share a common string.

Early Path Compression: To further improve the space-

efficiency of the ERT, we observe that a k-mer frequently becomes

unique in the reference genome as it increases in length. This

means that, past a certain length, a prefix is followed by a single,

unique suffix string in the reference genome. This would introduce

a UNIFORM node in the ERT with a singleton string of characters

(up to the length of the read). To avoid storing this long string, we

instead replace it with a pointer to the occurrence of this string

in the reference genome. In Figure 3 we show how in the ERT,

these nodes are marked as leaf nodes, containing a single pointer.

Leaf nodes encountered during a MEM search are decompressed,

by fetching the full reference string corresponding to the reference

pointer stored at the leaf node. Note that the pointer in the leaf

node is required regardless of this compression technique since it

is necessary to indicate the location of the traversed k-mer in the

reference genome. Hence, it does not present any storage overhead.

Instead, this optimization results in ∼2× space savings and was
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critical for being able to store the full human genome in under 64GB

of storage, which is a common configuration for servers.

3.2 Index Construction and Operation

The ERT k-mer index table and corresponding radix trees are

built by first enumerating all possible k-mers and then querying the

FMD-index to grow the trees according to all existing sequences in

the reference. Each k-mer and ERT path corresponds to a unique

sequence in the reference. The locations of these sequences are

stored as pointers at the leaves of the tree, as noted above. Note

that if a particular k-mer does not exist (referred to as EMPTY

in Figure 3), we do not store a pointer to an ERT tree. In our

implementation, for the human genome, 38.8% of the index entries

are empty when k = 15. For an empty entry, we still compute its

LEPs and store it in the index table to indicate at which positions

along this k-mer a backward traversal must be initiated. ERT

construction is multi-threaded and takes < 1 hr wall-clock time,

∼32 GB peak memory for the human genome on a 48-thread CPU

(m5d.12xlarge).

Once constructed, we can use the ERT to search for MEMs

according to the SMEM seeding algorithm (Section 2). For a given

k-mer scanned from a read, based on the starting position of the

MEM, we do the following: (1) The index table is looked up using

the k-mer with a single DRAM access. If an entry in the index

table exists, the root of the k-mer tree is also fetched with a

second memory access. (2) The branches in the k-mer tree are

then traversed according to the remaining base pairs in the read until

a leaf node is encountered or a dead end is reached (i.e. no further

characters in the read match with strings existing in the reference).

(3) If a leaf node is reached, the reference sequence corresponding

to that leaf is fetched with a DRAM access to determine the final

characters matching with the read. (4) If we reach a dead end in

the tree, we have found the end of the MEM. At this point all

locations where this MEM exists in the reference (i.e., all leaf

nodes in the downstream sub-tree) are gathered using a depth-first

traversal, referred to as leaf gathering. (5) Each time the path in

the ERT traverses a node with divergence, an LEP is marked since

the divergence indicates that the number of hits is divided across

the divergent paths from that node and is decreasing. (6) If the

forward search reaches a dead end (or the end of the read), a

backward traversal is instigated for each LEP position identified.

The backward traversal operates in the same way as the forward

traversal and uses the same ERT data structure but instead operates

on the reverse complemented read. Note that base-pairs A and T and

base-pairs C and G are complements of each other.

3.3 Data Structure Optimization: Prefix-Merged Radix

Tree

The goal of prefix-merged radix trees is to re-use work across MEM

searches from consecutive positions in the read.

Opportunity: In the seeding computation, the time spent doing

backward MEM searches is ∼2× that of forward search, making

it important to optimize this step. On average, we find that there are

∼10 backward searches for each forward search from a pivot. Also,

it is common to observe backward searches from adjacent query

positions in the read (consecutive bits of LEP are ’1’). Normally,

these lead to multiple independent index table lookups and tree

traversals as shown in Figure 4.

Fig. 4. Merging radix-trees by adding prefix data at the leaf nodes allows

ERT to leverage prefix information to perform multiple MEM searches in a

single tree traversal.

Insight: In the unoptimized ERT, there exists a radix tree for

each k-mer that occurs in the reference, including adjacent, sliding

window k-mers (e.g., ATG and TGC). We recognize that radix

trees for adjacent k-mers contain redundant information and that

the information contained in one of the trees can be reconstructed

from the adjacent k-mer’s tree by storing prefix information at

each of its nodes. In the example shown in Figure 4, a string

ATGC, which is normally found by accessing the ATG tree can be

instead reconstructed from the TGC tree by indicating the presence

or absence of prefix character A in each of the nodes of TGC’s tree.

The key observation is that with such a prefix-merged radix

tree, multiple backward searches (TGCxyz and ATGCxyz) can

be performed in a single index table lookup and tree traversal

by checking for prefix character matches at each visited node. In

Figure 4, when we reach the leaf node represented by string TGCA,

we can also match character A from the read as prefix, resulting

in the MEM represented as ATGCA. This reduces two backward

extensions into one.

Design: Augmenting each of the nodes with prefix information in

order to merge k-mer trees takes up significant space and offsets

the benefit from merging trees. Therefore, in our prefix optimized

ERT, only leaf nodes are augmented with prefix characters (2

bits per prefix character) found at the corresponding reference

positions (Figure 4). Storing prefix information at the leaf nodes is

sufficient as prefix information at each of the internal nodes can be

reconstructed by visiting all of the leaf nodes in its corresponding

sub-tree. If any of the leaf nodes of an internal node’s sub-tree

contains the desired prefix character, then the internal node also

contains the prefix character. While storing prefix information at

internal nodes does have the benefit of terminating some backward

searches early in case of prefix mismatch, we found that the space

overhead outweighed the performance benefits.

Another design choice to be made for prefix-merged ERT is the

choice of prefix length. We observe that each backward search on

average matches ∼1 prefix character at the leaf nodes, resulting in

50% fewer backward searches. As a result ERT supports 1-character

prefix at leaf nodes. Although the above discusses the benefits of

prefix-merged radix trees in the context of backward searches, it

must be noted that forward MEM searches can also benefit from

this optimization when initiated from adjacent positions in the read.

3.4 Algorithm Optimization: Pruning Wasteful

Backward Searches with Zigzag Seeding

After performing forward search from the pivot (Figure 5 1 ), we

obtain the LEP vector 2 to guide backward search 3 . Typically

backward search is performed starting from each query position in
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Fig. 5. (a) Original seeding algorithm that performs multiple backward

search passes sequentially leading to redundant backward extensions.

(b) Redesigned seeding algorithm that interleaves backward and forward

searches to skip redundant backward extensions.

the read where the set of candidate hits changes (as given by set

bits in the LEP vector). In the original seeding algorithm, backward

search proceeds in the right-to-left order for each bit set in the LEP

vector, starting from the longest match (rightmost ‘1’ bit in LEP)

and ending at the shortest match (leftmost ‘1’ bit in LEP). However,

as can be seen in Figure 5 (a), many of these backward extensions

end in MEMs that are fully contained in previously identified

SMEMs. These MEMs are discarded by the seeding algorithm.

Performing backward extensions for LEP positions that do not

lead to SMEMs is wasteful. Ideally, we would like to perform only

those backward extensions that lead to non-overlapping MEMs.

To achieve this, we redesign the seeding algorithm to alternate

between forward and backward search in a zigzag fashion as shown

in Figure 5 (b). Instead of starting backward search at the rightmost

set LEP position, we start backward search at the pivot and extend

leftward until no longer match can be found. We later extend the

same match beyond the pivot in the forward direction until no longer

match can be found. Backward searches from LEP positions in the

read that lie within the forward match can safely be skipped since

they are guaranteed to produce shorter fully-overlapping matches.

The interleaved backward-forward search is repeated from the next

set LEP position beyond the forward match as shown in Figure 5

(b).

3.5 Space Reduction

3.5.1 Multi-Level Index

Opportunity: Enumerating all k-character prefixes in the index

table can have prohibitive space overheads for large k. For example,

19-mer table has 419 entries, resulting in 2 TB of space, assuming 8

bytes per entry. However, the human genome is not a random string

of characters from the genome alphabet. The repetitive nature of the

human genome makes the distribution of hits (or leaf nodes in the

radix tree) for different k-mers heavily skewed.

Insight: We leverage the skewed distribution of k-mers in the

human genome to design a multi-level index table. For a given

number of hits X, Figure 6 shows the number of k-mers in the

human genome that have hits > X. It can be seen that very few k-

mers (∼ 0.01%) have greater than 1000 hits. However, these k-mers

have dense radix trees, which can be compactly represented using

an index table as shown in Figure 6.

Design: Instead of enumerating all k-character prefixes for large k,

we decompose the index table into two levels (Figure 6), wherein

the first level enumerates all k-mers and the subsequent level

enumerates all x-character suffixes for a subset of k-mers (such

that k + x = min. SMEM length). The multi-level index table

Fig. 6. Figure showing skewed hit distribution for k-mers. The few k-mers

with a large number of hits (dense trees) are represented with an index table.

further extends the benefit of multi-character lookup. Another way

to visualize the multi-level index is as a high fan-out tree, with the

root being the k-mer and the children being all x-character suffixes

for the k-mer. While choosing a larger x helps reduce tree traversal

time, for the human genome we were able to accommodate up to

x = 4 (fan-out = 256) for a subset of 15-mer dense trees without

increasing space overheads (only 0.35 % of all 15-mers > 100 leaf

nodes). Compared to x = 1, x = 4 improves CPU performance by

10%. Since most trees are shallow (83% of leaf nodes have depths

<= 8), we did not explore more than two-levels or high fan-out for

internal nodes of ERT.

3.5.2 Variable-Size Radix-Tree Nodes:

Radix-tree nodes also contribute significantly to the size of the ERT

index. Each radix tree node in ERT is variable-size consisting of

the following: (1) 2-bit type (i.e., EMPTY, LEAF, UNIFORM and

DIVERGE) for each of its children nodes, (2) n-bit pointers to

children nodes, (3) m-character string to represent singleton paths

and (4) log2|2R|-bit pointers to the reference genome (length = |R|)
in case of LEAF nodes. Since few k-mers have large trees, there

exists opportunity to reduce the bit-width of pointers to children

nodes for many k-mers. We choose between 16, 24 or 32-bit pointers

for each k-mer during index construction based on the size of its

tree. For the human genome, >99% k-mers use 16-bit pointers.

3.6 Improving Seeding Locality with K-mer Reuse:

Given the highly repetitive nature of the human genome and high

coverage of sequenced reads needed to overcome sequencing errors

(each position in the reference genome can be covered by 30-50

reads on average), few unique k-mers tend to appear frequently in a

batch of reads. As a result, there exists opportunity to save memory

bandwidth by preventing multiple radix tree fetches for the same k-

mer. Unfortunately several radix trees need to be accessed to find

seeds for a read, and their aggregate size exceeds that of on-chip

caches. As a result, in the baseline, a radix tree usually gets evicted

before it can be reused by the same k-mer appearing in a different

read. To mitigate this problem, we first perform forward search for

a batch of reads, identify all the unique k-mers that are to be used

in backward search, fetch each radix tree once for each unique k-

mer and perform all backward searches involving that k-mer’s tree

before moving to the next k-mer. We refer to this technique as k-mer

reuse. Supplementary Material includes more details on k-mer reuse

hardware implementation and methods to further improve spatial

locality of seeding.
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Fig. 7. Accelerator architecture. Each Tree Walker (TW) is responsible for scanning a read, walking ERT Trees, and computing candidate SMEMs. Each

Tree Walker can switch between multiple contexts to help hide memory latency. The Data Fetcher (DF) is responsible for serving ERT and reference fetch

requests to DRAM. The Control Processor (CP) coordinates read fetch, and k-mer reuse phases. The K-mer reuse table stores the results of the K-mer sorter

such that after forward extension, identical k-mers used in backward extension are stored together.

3.7 FPGA Prototype

While seeding is inherently a memory-bound algorithm, CPU

implementations can only issue limited number of parallel memory

requests and hence cannot saturate memory bandwidth (only

uses 11.5% of peak bandwidth). Current GPUs are not well-

suited because of significant memory divergence during tree

traversal (Wang et al., 2019). To make better use of available

memory bandwidth, we design a custom seeding accelerator and

prototype it on an FPGA.

The seeding accelerator architecture is shown in Figure 7. It is

composed of multiple parallel seeding machines connected to the

available DRAM channels using a crossbar network. Each seeding

machine is composed of a control processor that issues commands

to three types of processing elements. Each processing element

performs a sub-task associated with SMEM identification (i.e. index

table lookups, walking ERTs, and DFS leaf gathering). When a

processing element issues a memory request to the Data Fetcher–a

rudimentary address generation unit and memory controller– and a

memory stall occurs, the processing element immediately switches

to a new context. This context switching greatly increases compute

density of each seeding machine and is essential to an FPGA

implementation with limited logic and routing resources.

We prototyped and verified our seeding accelerator on Amazon’s

EC2 F1 FPGA cloud environment. We chose the f1.4xlarge

instance with 2 FPGAs and equivalent bandwidth as the CPU

configuration (68 GB/s peak bandwidth per FPGA). Each FPGA

in the F1 instance is a Xilinx XCVU9P with 2,586K logic cells,

36.1 Mbits of Block RAM and 270 Mbits of UltraRAM. System

configuration and synthesis results are shown in Table 1.

4 RESULTS

We used BWA-MEM v0.7.17 (Li, 2013) and BWA-MEM2 (Vasimuddin

et al., 2019) v2.0.pre2 as baselines for comparison. We

replace FMD-index seeding in BWA-MEM2 with ERT-based

seeding. We also redesign the mate-rescue step in BWA-

MEM2 to reduce time spent in sorting. Human whole-genome

paired-end short reads (read-lengths 100–151 bp) from Illumina

Platinum Genomes (Eberle et al., 2017), Illumina Public Data

downloaded from BaseSpaceHub (Project HiSeq 2000 Tumor

Component Configuration LUT (%) BRAM (%) URAM (%)

Index FU 1 x 8 0.32 0 0

Walker FU 3 x 8 13.76 0 0

Leaf Gathering FU 2 x 8 3.36 0 0

Command Queues 0.72 KB x 8 1.92 6.08 0

Context Memories 17.6 KB x 8 0 15.04 3.28

Control Processors 1 x 8 0.56 0 0

Data Fetcher 1 x 8 3.68 0 0

SMEM Result Buffer 2.3 KB x 8 0 0 13.28

MISC. 1.12 0 0

Seeding Machines Total 1 x 8 24.72 21.12 16.64

K-mer Sorter — 1.95 0.3 26.77

K-mer Reuse Cache 4.01 MB 10.04 5 18.33

Seeding Accelerator Total 1 37.22 26.41 61.77

Table 1. FPGA Configuration and Synthesis Results per Xilinx Virtex

Ultrascale+ (VU9P) FPGA.

Normal WGS – HCC1187BL, HCC2218BL. Project Polaris 1

Diversity Cohort – HG03521, HG01624, HG00613) and 1000

Genomes Project Phase 3 (ERR3239) are aligned against the

Homo sapiens assembly38 reference. We used m5d.12xlarge

(48-thread, 192 GB RAM) instance for Illumina Platinum

Genomes as some of those (e.g., ERR194146) required ∼135

GB peak memory with ERT. For the other datasets, we use

the m5d.8xlarge (32-thread, 128 GB RAM) instance. Our

FPGA prototype implementation uses the f1.4xlarge instance

as described in Section 3.7. For the software version of ERT, we

omitted the k-mer reuse optimization because it requires a software

managed cache which slows down the CPU implementation. We

verified that ERT produces identical output as BWA-MEM for all

the datasets evaluated.

4.1 Overall Read Alignment Performance

Table 2 shows the overall wall-clock time for the different datasets.

It includes both index loading and read alignment time. On average,

ERT improves read alignment performance of BWA-MEM by

2.59× and BWA-MEM2 by 1.28×. ERT provides greater benefits

when seeding time is dominant as can be seen for the HCC1187BL,

HCC2218BL datasets.

4.2 Seeding Performance

Figure 8 compares the performance of BWA-MEM, BWA-MEM2,

CPU-ERT and FPGA-ERT for only the seeding step of read
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Table 2. Wall-Clock Time for Overall Alignment

Dataset BWA-MEM (s) BWA-MEM2 (s) ERT (s)

m5d.12xlarge

ERR194146 15087 8956 7411

ERR194147 14915 8945 7436

ERR194158 17112 9587 7827

ERR194159 13048 7649 6376

ERR194160 14377 8112 6659

ERR194161 15080 8687 6912

m5d.8xlarge

HCC1187BL L001 6391 3301 2317

HCC1187BL L002 6027 3126 2192

HCC1187BL L003 6150 3165 2221

HCC1187BL L004 5966 3098 2173

HCC2218BL L006 6140 3188 2218

HCC2218BL L007 6160 3191 2216

HCC2218BL L008 5830 3025 2110

HG03521 22866 9941 8011

HG01624 21716 9729 7880

HG00613 21324 9489 7622

ERR3239276 17161 7806 6339

ERR3239277 15293 6790 5576

ERR3239278 14599 6550 5322

ERR3239279 17670 7899 6373

ERR3239280 16986 7609 6161

ERR3239281 14639 6540 5254

ERR3239282 16375 7323 5838

ERR3239283 14901 6680 5422

ERR3239284 15494 7001 5654

BWA-MEM2 and ERT were run in AVX-512 mode. Command line options used:

-K 100000000 -Y -t 32,48. ERT index location specified with -Z.

alignment. For this evaluation we use single-ended reads from

the ERR194147 dataset of Illumina Platinum Genomes. CPU

and FPGA evaluations were performed on the m5d.12xlarge

and f1.4xlarge instance respectively. It can be seen that

CPU-ERT provides 2.1× higher seeding throughput than BWA-

MEM2. FPGA-ERT can further improve the throughput of our CPU

implementation by 1.6×.
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Fig. 8. Seeding performance in Million reads/s.

4.3 Memory Access Breakdown

Figure 9 shows the breakdown of memory requests across different

steps in ERT-based seeding for a set of 1 million reads sampled

from ERR194147. By eliminating most of the redundant backward

searches using a zigzag seeding approach (Section 3.4), we find that

only 18% of the memory requests are to the index table. Nearly half

of the memory requests in ERT seeding are due to tree traversal.

Also only 5% of the requests are due to additional fetching of

reference sequence needed to decompress leaf nodes, indicating that

this step is not a performance bottleneck.

Fig. 9. Distribution of memory requests across different steps of ERT-

seeding

5 DISCUSSION

Support for different read lengths: Like BWA-MEM and BWA-

MEM2, ERT can also support different read lengths in the input

dataset as long as the index has been built considering the maximum

length of the read that can appear in the dataset. Maximum read

length is used as a parameter to decide the maximum depth of

the radix trees in ERT. For the human genome, we observe that

the increase in the index size is small (1.3 GB) when maximum

read length is changed to 251 from 151, with negligible impact on

performance. This is because most leaf nodes appear close to the

root. We therefore recommend that the maximum read length be set

conservatively when building the ERT index.

Equivalent output with BWA-MEM: Although ERT can be used

standalone as an alternative for FMD-index, we chose to design

ERT within the framework of existing aligners like BWA-MEM and

BWA-MEM2 and take care to ensure the same output is produced.

This was done with the goal of easing adoption and reducing

validation effort.

Index loading time: While index loading time was not significant

using local and remote solid-state drives (SSD), the large index

size of ERT like BWA-MEM2 can impact loading times in highly-

loaded networked file systems with remote hard-disk drives. Our

preliminary experiments suggest that gzip compression (∼19%

reduction in ERT size) and parallel decompression can help alleviate

some of the I/O costs of index loading. We leave this exploration to

future work.

6 RELATED WORK

CPU and GPU-based Seeding: FMD-index based seeding (Li,

2012; Ferragina and Manzini, 2000) involves many irregular

memory accesses and has been found to be bottlenecked by LLC

and TLB misses on CPUs (Chacón et al., 2013; Zhang et al.,

2013). Prior work has explored reordering memory accesses (Zhang

et al., 2013) and performing n-character lookup on an n-step

FMD-index (Chacón et al., 2013) to improve the locality and

data requirements of FMD-index based seeding. However, these

implementations focus on exact-match search and do not natively
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support SMEM computation. There have also been efforts to

improve the locality of the location operation using the FM-

index (Cheng et al., 2018) although these have not yet been

integrated into read alignment software. Similar to ERT, recently

released BWA-MEM2 (Vasimuddin et al., 2019) also trades-off

memory space for memory bandwidth, but by departing from the

FMD-index and proposing a bandwidth-friendly data structure we

further improve bandwidth efficiency while producing identical

seeds. Data-parallel architectures such as GPUs have also been

leveraged to accelerate FMD-index search (Chacón et al., 2015)

by virtue of their high memory bandwidth and memory level

parallelism. However, ERT traversal is inherently not data-parallel

and traversal patterns need to be optimized to reduce memory

divergence in GPU’s SIMD units. We leave this exploration to future

work.

While this work focuses on FMD-index based seeding, there

exists a rich body of work that uses hash-tables for seeding (Ahmadi

et al., 2011; Kiełbasa et al., 2011; Xin et al., 2015) and have

optimized its cache behavior (Hach et al., 2010, 2014). Hash-based

seeding coupled with filtration algorithms work well in mappers that

produce large number of seeds for seed-extension.

Seeding Accelerators: Seeding accelerators based on the FMD-

index use custom bit-wise operations to traverse the index and

improve memory parallelism (Wang et al., 2018; Chang et al.,

2016; Cong et al., 2018). However, since these implementations do

not aim to reduce data requirements, they are limited by memory

bandwidth. ERT takes a different approach by redesigning the

seeding algorithm to reduce data requirements for seeding and

unlocks significant potential for hardware acceleration.

Radix Tree Applications: Suffix trees have been used to perform

whole genome alignments in bioinformatics tools such as MUMmer

v1.0 (Delcher et al., 1999). However, because of their huge

space requirements they have been less explored for performing

read alignment against large genomes such as the human genome.

Radix trees have been used to accelerate read mapping in a prior

work (Tran and Chen, 2015), but to keep space requirements

for the human genome tractable, they truncate the tree when a

certain hit threshold is reached (F = 300). ERT overcomes this

space limitation by eliminating long singleton-path tails in the tree

and instead includes a pointer to the same string in the reference

genome. This space-efficiency enables it to fit within the memory

capacity on commodity servers (64 GB). Further when compared to

conventional radix trees, ERT is highly customized for MEM-based

seeding, optimized for spatial/temporal locality and can serve as a

drop-in alternative for FMD-index seeding in read aligners such as

BWA-MEM.

7 CONCLUSION

Seeding is an important time-consuming step in read alignment.

Because of its small memory footprint, FMD-index is widely

used for seeding in read alignment software such as BWA-

MEM. However, FMD-index-based seeding is limited by memory

bandwidth, primarily due to its character-by-character processing

of reads. This paper demonstrates a hardware-software co-design

approach that can be used to accelerate seeding by optimizing for

memory bandwidth, rather than memory capacity. In particular:

1) we show that data-efficiency can be improved, at the cost

of memory footprint by our technique for performing multi-

character lookup and redesigning the seeding algorithm. 2) we show

how to exploit spatial and temporal data reuse across operations

through prefix-merging and k-mer reuse. We also highlight how

data-efficiency improvements in seeding can expose significant

acceleration potential by designing an FPGA prototype based on

ERT. In summary, ERT improves read alignment throughput of

BWA-MEM2 by 1.28×, while guaranteeing identical output to the

original software.
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Fig. 10. Phase 1) All unique k-mers required for backward extension are tracked during forward extension. Phase 2) k-mer information is sorted so all

backward extension information for a single k-mer are in sequence. Phase 3) Backward extensions begin. The ERT for each k-mer only needs to be fetched

once from DRAM, reducing bandwidth requirements.

8 SUPPLEMENTARY MATERIAL

8.1 Improving Temporal Locality of Seeding with

K-mer Reuse

Figure 10 describes the steps to be performed to leverage k-mer

reuse. While processing the forward extensions for a batch of N

reads, we store each backward extension that must be computed

in a k-mer metadata table implemented on-chip. Each backward

extension entry is composed of: (1) k-mer starting from the

backward extension point in the read, (2) the read ID in the batch,

and (3) start position of backward extension in the read. Once

all forward extensions have been completed for a batch of reads,

we sort all entries in the on-chip memory, grouping each required

backward extension by k-mer. We then proceed one k-mer at a

time and compute all backward extensions associated with a k-mer

sequentially. The first time a k-mer is encountered, we perform one

index table lookup, as well as fetch of portion of the k-mer’s tree

into an on-chip cache. Subsequent backward extensions then consult

this cache during tree walking, skipping two otherwise mandatory

DRAM accesses. If a backward extension needs data that does

not exist in the tree cache, we fetch it from memory on-demand

and store it in case future backward extensions require this data.

K-mer reuse strictly decreases the number of radix trees fetched

from DRAM–and reduces total bandwidth requirement–but adds

the computational overhead of sorting the backward extensions by

k-mer.

!"#$%&'()(&

*(+,-)

Fig. 11. Cache-friendly tiled data-layout for ERT.

8.2 Improving Spatial Locality of Seeding

Similar to (Kim et al., 2010; Chilimbi et al., 1999), we adopt a tiled

layout for the nodes of the radix tree to improve spatial locality of

accesses (Figure 11). In this layout, subtrees of nodes that are likely

to be accessed at the same time are clustered together into a single

cache block- or a DRAM page-sized tile. Compared to breadth-first

or depth-first layout of nodes, the tiled layout guarantees at least

log4(n + 1) nodes accesses per tile, where n is the number of

nodes in the tile. With this optimization, ERT traverses ∼3 nodes on

average per 64 B, utilizing 50% of the data it fetches from memory.
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