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Abstract 
Motivation: De novo variant (DNV) calling typically relies on heuristic filters intrinsic to specific 
platforms and variant calling algorithms. FreeBayes and neural network approaches have 
overcome this limitation for variant calling, and we implemented a similar approach for DNV 
identification. 
Results: We developed a DNV calling framework that uses Genome Analysis Toolkit (GATK), 
FreeBayes and a neural network trained on Integrative Genomics Viewer pile-up plots (IGV-
bot). We identified DNVs in 2,390 WGS trios and benchmarked results against heuristics based 
on GATK parameters. Results were validated in silico and with Sanger sequencing, with the 
latter showing true positive rates of 98.4% and 97.3% for SNVs and indels, respectively. Taken 
together we describe a scalable framework for DNV identification based on both FreeBayes and 
neural network methods. 
Availability: Source code and documentation are available at https://github.com/ShenLab/igv-
classifier and https://github.com/frichter/dnv_pipeline under the MIT license. 
Contact: ys2411@cumc.columbia.edu  
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Introduction 
De novo genetic variations (DNVs) are highly relevant to human disease pathogenesis 

and can be identified by comparing DNA sequences between affected individuals and their 
parents. One standard method to identify DNVs is by filtering Genome Analysis Toolkit (GATK)1 
variant calls to select sites with heterozygous child and homozygous parental genotypes. This 
filtering emphasizes sensitivity, so it is typically followed by a step that maximizes specificity: 
manual inspection of DNA pileup plots in Integrative Genomics Viewer (IGV) which is laborious 
for large variant sets.2 Sequence context variables identified with IGV can be abstracted to 
automated pipelines, but existing algorithms were optimized for exome sequencing.3,4 

Determining the sequence context most salient to DNV identification is a challenge. This 
challenge has been addressed in non-DNV filtering with Bayesian and neural network machine 
learning approaches. Bayesian approaches to variant calling include those employed by GATK 
and FreeBayes (FB).1,5 FB differs from GATK by utilizing the literal reads mapped to a region 
rather than the alignment of reads, minimizing false insertion/deletion (indel) variant calls.  

An orthogonal approach to variant identification utilizes neural networks.6–8 A neural 
network is a machine learning framework that captures complex feature dependencies for 
prediction and inference. Previous variant callers used curated features or images of DNA pile-
up plots as inputs for neural network variant callers.  

Overall, neural network methods and FreeBayes have been shown to account for 
sequence context across diverse platforms while maintaining higher variant calling accuracies 
than heuristic approaches, but these have not been reprised as a general framework for DNV 
identification. We improved on DNV identification by GATK from WGS data by using the 
intersection of calls with FreeBayes and a machine learning approach, termed IGV-bot. IGV-bot 
applies neural network learning to child/parent DNA pile-up plots from IGV. We demonstrate 
scalability by identifying high-quality candidate DNVs in 2,390 trios across four cohorts. 
 
Methods 
Candidate Variant Identification 

We first identified potential DNVs by selecting GATK VQSR PASS variants (i.e., variants 
classified as true with an adaptive error model based on known true sites and artifacts) that 
were present in probands and absent from both parents. For the initial cohort (PCGC1, N=349 
trios), GATK candidate variants were sub-divided into four evidence tiers using heuristics, 
allowing for benchmarking and sanity checks. Tier 1 variant heuristic filters were: (1) rare (AF ≤ 
10-4 across all samples in 1000 Genomes, gnomAD exomes and gnomAD genomes); (2) 10-65 
reads total, 7 alternate allele reads, and a 30-70% alternate allele ratio in the proband; (3) a 
minimum depth of 10 reads total and alternate allele ratio (AAR) < 5% in parents; (4) minimum 
genotype (GT) quality score of 60 in probands and 30 in parents; and (5) AC=1 across cohort. 
Tier 2 variants were broadened to those with minimum GT score 20, 20-80% AAR in the 
proband and maximum 10% AAR in parents. Tier 3 variants were extended to have at least 7 
total reads, and a minimum alternative allele read count of 5 in the proband. In addition to these 
three tiers of evidence, separate heuristics were applied to optimize sensitivity for identifying 
candidate DNVs, labeled as "Alternative Tier". The Alternative Tier parameters were GATK 
PASS, heterozygous ratio (AB) set to 0.2-0.8 in the proband, homozygous ratio (AB) less than 
0.01 in both parents, depth (DP) 7-120, Joint Genotyping allele count (AC) = 1 across all trios, 
Genotype Quality (GQ) > 60 (proband), GQ > 30 (parents), Alternate Allele Depth (AAD) > 7 in 
the proband, and AAD < 3 in each parent. For the remaining three cohorts (NPCGC2=413, 
NSSC1=518, NSSC2=1,110) we employed the most lenient filters. 
 
FreeBayes Variant Calling in Candidate Variant Regions 

Four hundred base pair regions centered on GATK candidate DNVs were submitted to 
FreeBayes for variant identification. DNVs jointly identified by GATK and FreeBayes were 
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further filtered to remove variants that occurred in repetitive or low complexity regions. DNVs 
were filtered out if they occurred in repetitive sequences (homopolymers of at least 5 bases; 3 
repeats of a dinucleotide or trinucleotide sequence), with simple repeat or low complexity 
regions as annotated by RepeatMasker, or that had close proximity to indel variants in the same 
individual (within 5 bps or overlapping). In silico visualization of 988 candidate DNVs was used 
to assess the efficacy of FreeBayes and sequence filters on false positive DNV calling rates. 
 
Convolutional neural network (CNN) data pre-processing, architecture, and model training 

Putative DNVs were plotted with IGV, which served as inputs for IGV-bot. These red-
green-blue pileup images of candidate variants capture and spatially organize reference and 
alternate allele reads. The images are used to classify variants as true or false as well as the 
type of variant (SNV, insertion, deletion, or complex). They are organized as child, mother, and 
father from top to bottom, and show the DNV locus plus 20 flanking base pairs both upstream 
and downstream (Figures 1 and 2). The images were further pre-processed by removing 
borders and metadata and keeping four flanking bases for every locus (two upstream, two 
downstream). 

Following image generation, a training set was generated through manual 
curation/classification into one of six groups: fail (n=3,892), SNV (n=6,031), insertion (2,494), 
deletion (n=4,731), complex (n=802), uncertain (n=171), or inherited (n=916). These images 
were converted to a NumPy array and normalized to [0,1] by dividing this array by 255. 
After DNV pre-processing, the CNN architecture was specified. The CNN architecture was a 
standard architecture for the MNIST dataset, reprised here to categorize IGV plots into one of 
six classes of variants specified above. The CNN comprised 6 hidden layers, each with 32 
convolutional filters, a kernel size of 3, a maximum pooling area size of 2, and a rectified linear 
unit activation function. Pooling was done after the 2nd, 4th, and 6th layers, with a 0.25 dropout 
applied after each pooling to minimize overfitting. The final model compilation consisted of 
flattening to a 1-dimensional array, a 0.5 dropout, and a final soft-max activation function to 
determine the probability of every class. The MNIST results were used to initialize weights for 
every node.Having generated a model architecture, the model was trained independently five 
times (see Figures 1, 2 for example training data). The final model was the training attempt with 
the lowest cross-validation cost function value. Every attempt consisted of training the model 
using two epochs and an 80:20 cross-validation split. 
 
Results 

Among 349 trios, GATK identified 44,558 candidate DNVs among the 4 tiers (Table 1). 
This represented 128 DNVs/trio, including 91 single nucleotide variants (SNVs) and 37 
insertion/deletions (indels). FreeBayes calling of candidate DNVs within the 400 bp region 
flanking GATK candidate DNVs followed by short repetitive element filtering kept 61% of 
variants (79% of SNVs and 16% of indels), resulting in 78 DNVs/trio. IGV-bot filtering kept 88% 
of the post-FreeBayes variants (89% SNVs, 77% indels). Consistent with both the FreeBayes 
and IGV-bot procedures capturing high quality DNVs, 82% of DNVs with the highest tier of 
evidence (i.e., GATK Tier 1) were kept, compared to only 2% for the lowest tier. The majority of 
candidate DNVs removed with FreeBayes and IGV-bot were indels, in contrast to the relatively 
modest changes in number of SNVs, as evidenced with both the DNVs/trio and total number of 
DNVs. In total, 53% of GATK DNVs were retained. These results were consistent in three other 
cohorts (N=2041 trios), with 56% of GATK DNVs retained after applying both FreeBayes and 
IGV-bot. 

In silico confirmation of the GATK, FreeBayes (GATK-FB), and IGV-bot (GATK-FB-NN) 
candidate DNVs was used to assess the relative specificity of the pipelines. Visualization of 505 
candidate DNVs that were jointly called by GATK and FreeBayes (GATK-FB) confirmed 
presence of the de novo variant in 502 cases (99.8%) (Table 2). IGV visualization of 483 
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variants unique to the GATK candidate de novo variant set did not confirm de novo variants in 
462 (95.7%), supporting the efficacy of the joint calling approach. Of the 21 GATK candidate 
DNVs that were not identified by FreeBayes but did confirm by IGV, 6 were not called by 
FreeBayes, 6 were in simple repeat regions, 5 were in regions of low complexity, and 2 each 
had a nearby indel or were low quality. Visualization of subsets of the 483 variants removed by 
specific filters agreed with 96/97 removed due to overlapping indels (98.7%), 11/21 removed 
due to nearby indel (53%), 13/16 removed due to dinucleotide repeat sequences, and 10/16 
removed due to homopolymer sequences (62.5%). IGV-bot was trained on DNVs from PCGC1, 
so independent in silico confirmation was performed using 580 DNVs from PCGC2. Most 
variants true based on GATK-FB were kept with IGV-bot (95.4%). Among variants IGV-bot kept, 
90% were true with in silico confirmation. In contrast, in silico confirmation agreed with 61% of 
variants removed by IGV-bot. These results are consistent with a high specificity (86%) and 
medium sensitivity (70%) on the already high-quality candidate DNVs identified with GATK and 
FreeBayes.  

PCR validation was performed for 399 candidate DNVs (Table 3); Sanger sequencing 
was successful for 390. The true positive rate was lowest for GATK (95.4%), intermediate for 
GATK-FB (96.9%) and highest for GATK-FB-NN (98.1%). Notably, the improvement in true 
positive rate was primarily driven by improvements in indel calling, which increased from 87.5% 
to 97.3%, while staying similar for SNVs, with all methods having true positive rates of 98-99%. 
 
Conclusion 

Here we present a framework for DNV identification from WGS data using FreeBayes 
followed by a convolutional neural network. The results compared well with gold-standards of in 
silico filtering and PCR, comparing favorably to filtering using heuristics alone. Since these 
methods do not rely on parameters intrinsic to Illumina, they can be rapidly generalized to other 
sequencing platforms. 
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Supplemental Figure 1. False variant. Example IGV pile-up of a false variant used to train the 
neural network, IGV-bot.  
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Supplemental Figure 2. True SNV. Example IGV pile-up plot of a true single nucleotide variant 
used to train the neural network. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.994160doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.994160
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. DNV totals. 
 

  
GATK dnvs GATK-FB dnvs GATK-FB-NN 

  
Total SNV Indel Total SNV Indel Total SNV Indel 

PCGC1 (N=349) 
Evidence Tier 

Tier 1 26034 22333 3701 23199 21467 1732 21406 19942 1464 

Tier 2 7918 3809 4109 2640 2403 237 1714 1592 122 

Tier 3 5224 1163 4061 302 263 39 96 92 4 

Alt. Tier 5772 4622 1150 1089 973 116 613 562 51 

Total 44948 31927 13021 27230 25106 2124 23829 22188 1641 
PCGC1 
DNVs/trio 

Mean 128.8 91.5 37.3 78.2 72.1 6.1 68.5 63.8 4.7 

Max 258 164 170 133 125 17 119 114 14 

Min 73 45 12 36 33 0 28 27 0 

PCGC2 (N=413) Total 73193 38672 34521 35530 32619 2911 33902 31302 2600 

SSC1 (N=518) Total 79380 54581 24799 42696 39401 3295 36011 33627 2384 

SSC2 (N=1110) Total 122764 96906 25858 86617 81418 5199 84027 79176 4851 
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Table 2. Validation in silico. 
 

FreeBayes results for variants kept with GATK 

In Silico Visualization Result 
FB 

Keep 
All FB 

removed 

True DNV 502 21 

False DNV 3 462 

Total 505 483 

Proportion of variants kept with GATK 0.606 0.394 
 
 

Subsets of FB remove variants 
  In Silico Visualization 

Result 
Overlapping Indel 

Filter 
Nearby Indel 

Filter Homopolymer 
Dinucleotide 

Repeat 

True DNV 1 10 6 3 

False DNV 96 11 10 13 

Total 97 21 16 16 
 
 

IGV-bot results for variants kept with GATK and FreeBayes 

In Silico Visualization Result 
IGV-bot 

keep 
IGV-bot 
remove 

True DNV 264 112 

False DNV 28 176 

Total 292 288 

Proportion of variants kept with GATK/FB  0.954 0.046 
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Table 3. PCR validation results. 
 

  Total SNV Indel 

Sanger results Submitted 399 289 110 

 
Sanger sequencing not successful 
(no primer or PCR did not work) 9 3 6 

GATK results GATK De Novo 390 286 104 

 Sanger De Novo 372 281 91 

 True Positive rate (%) 95.4 98.3 87.5 

GATK-FB GATK-FB De Novo 354 265 89 

 Sanger De Novo 343 261 82 

 True Positive rate (%) 96.9 98.5 92.1 

GATK-FB-NN GATK-FB-NN De Novo 318 244 74 

 Sanger De Novo 312 240 72 

 True Positive rate (%) 98.1 98.4 97.3 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.994160doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.994160
http://creativecommons.org/licenses/by-nc-nd/4.0/

