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1 Updated graphical model for Triqler
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zg: group quantity
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tgrn: is identification correct?
kgrn: feature match error prob.
hgrn: is feature match correct?
mgrn: is feature missing?
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µ∗, σ∗, αs, βs: hyperparameters

Figure S1: Updated probabilistic graphical model for Triqler with kgrn and hgrn nodes for
feature-feature match PEPs. The protein has N peptides, G treatment groups and Rg repli-
cates per treatment group. Gray nodes denote observed variables, whereas white nodes denote latent
variables. A concrete example is presented in section 1.1.

For the new indicator variable hgrn we define:

hgrn =

{
0, if feature match is correct

1, if feature match is incorrect

The term p(fgrn | qgrn, tgrn,mgrn) is now replaced by p(fgrn | qgrn, tgrn,mgrn, hgrn), which is defined
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by:

p(fgrn = NaN | mgrn = 0, tgrn = 0) = 0

p(fgrn = NaN | qgrn = a,mgrn = 1, tgrn = 0, hgrn = 0) = 1

p(fgrn = NaN | hgrn = 1) = p(fgrn = NaN | tgrn = 1, hgrn = 0) = sigm(w;µm, σm)

p(fgrn = x | mgrn = 1, tgrn = 0) = 0

p(fgrn = x | qgrn = a,mgrn = 0, tgrn = 0, hgrn = 0) = hypsec(a− x;µd, σd)

p(fgrn = x | hgrn = 1) = p(fgrn = x | tgrn = 1, hgrn = 0) = (1− sigm(w;µm, σm)) · hypsec(w − x;µd, σd)

with w =
(∏

W fg′r′n
)1/|W |

and W = {(g′, r′) | (g′, r′) 6= (g, r), fg′r′n 6= NaN}, the geometric mean of
all non-missing other features from the same feature group.

For the term p(hgrn | kgrn) we simply have

p(hgrn = 1 | kgrn) = kgrn

p(hgrn = 0 | kgrn) = 1− kgrn

1.1 Example

As an example, let us consider one of the UPS proteins, P08263ups|GSTA1 HUMAN UPS, from the
UPS-Yeast mix dataset. This protein has 4 peptide identifications and, ideally, we want to show that
this protein is present in different concentrations in each of the 3 groups, where the UPS proteins were
spiked in at 5, 10 and 25 fmol.

For each combination of sample and peptide, we have 3 pieces of information: the feature intensity
(XIC, fgrn), the posterior probability of the MS2 cluster identification to be incorrect (Pid, cgrn) and
the posterior probability of the MS1 feature to be incorrectly matched to one of the MS1 features with
an MS2 cluster identification (Pmatch, kgrn):

group 25 fmol (g = 1)
P08263ups|GSTA1 HUMAN UPS C-25fmol-R1 (r = 1) C-25fmol-R2 (r = 2) C-25fmol-R3 (r = 3)

XIC Pid Pmatch XIC Pid Pm XIC Pid Pm

f11n c11n k11n f12n c12n k12n f13n c13n k13n

ISNLPTVK (n = 1) 61.9 0.004 0.027 73.0 0.003 0 NaN 0.004 0.066
YFPAFEK (n = 2) 103.5 0.02 0 92.2 0.02 0 95.1 0.02 0
KFLQPGSPRKPPMDEK (n = 3) 0.12 0.93 0.04 0.20 0.93 0.02 0.24 0.93 0.07
FLQPGSPR (n = 4) 66.3 0.028 0 55.4 0.028 0 84.3 0.028 0

group 10 fmol (g = 2)
P08263ups|GSTA1 HUMAN UPS D-10fmol-R1 (r = 1) D-10fmol-R2 (r = 2) D-10fmol-R3 (r = 3)

XIC Pid Pmatch XIC Pid Pm XIC Pid Pm

f21n c21n k21n f22n c22n k22n f23n c23n k23n

ISNLPTVK (n = 1) 7.56 0.004 0.049 20.6 0.004 0 18.0 0.004 0.054
YFPAFEK (n = 2) NaN 0.02 0.017 22.0 0.02 0.012 26.6 0.02 0
KFLQPGSPRKPPMDEK (n = 3) 0.23 0.93 0.020 0.13 0.93 0.033 0.11 0.93 0.015
FLQPGSPR (n = 4) 16.7 0.028 0.15 15.0 0.028 0.12 19.53 0.028 0.20

group 5 fmol (g = 3)
P08263ups|GSTA1 HUMAN UPS E-5fmol-R1 (r = 1) E-5fmol-R2 (r = 2) E-5fmol-R3 (r = 3)

XIC Pid Pmatch XIC Pid Pm XIC Pid Pm

f31n c31n k31n f32n c32n k32n f33n c33n k33n

ISNLPTVK (n = 1) 6.96 0.004 0.066 7.27 0.004 0 2.38 0.004 0.009
YFPAFEK (n = 2) 4.81 0.02 0.017 1.83 0.02 0.010 8.68 0.02 0.007
KFLQPGSPRKPPMDEK (n = 3) 0.14 0.93 0 0.39 0.93 0 0.13 0.93 0.009
FLQPGSPR (n = 4) 10.9 0.028 0.09 5.36 0.028 0.077 10.9 0.028 0.055
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We can plot the posterior distributions on several levels for this particular protein using some extra
functionality of the Triqler python package:

python -m triqler.distribution.plot_posteriors --protein_id P08263ups

--fold_change_eval 0.8 --decoy_pattern decoy_ --max_plot_fold_change 4.0

--spike_in_concentrations 25,10,5

UPS_Yeast_mix.quant_rows.tide_concat_peptides.tsv

On protein level (Figure S2), we can see the influence of the missing values in C-25fmol-R3 (first pane,
red series) and D-10fmol-R1 (second pane, blue series). These missing values shift some of the prob-
ability to lower relative protein quant levels, but due to the strong evidence from the other peptides,
this shift is only modest. Also, note that these posteriors are not necessarily normal distributions.
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Figure S2: Posterior distributions for protein abundances as calculated by Triqler. We
plot the probabilities as a function of the log10 relative protein abundance for each of the 9 samples,
grouped by spike-in concentration. We can see some clear contributions of the individual peptides,
such as missing values (Group 10, blue series) and disagreement between different peptides (Group 5,
green series).

On experimental group level (Figure S3), we can still see traces of the contributions of the individual
proteins, especially in the different widths of the group distributions. However, due to the averaging
over the three replicates, we end up with distributions that are very close to normal distributions.

On fold change level (Figure S4, note that the abundance scale changed from log10 to log2 compared
to the treatment group posterior plots), the width of the distributions for 25 vs 10 is noticably smaller
than for the other two comparisons, which can be attributed to the larger uncertainty in abundance
for the 5 fmol protein and group distributions.

Some other notable features of the graphical model:

• For the samples that have an MS2 spectrum in the MS2 spectrum cluster that identified the
peptide in question, the feature match error probability Pm is 0, e.g. k121. This neglects
the possibility that the MS2 spectrum was erroneously assigned to the MS1 feature group or
that the MS2 spectrum was erroneously assigned to the MS2 spectrum cluster. We assume
these probabilities to be small, but incorporating these in an extension of the model might be
addressed in future work.
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Figure S3: Posterior distributions for experimental group mean abundances as calculated
by Triqler. We plot the probabilities as a function of the log10 experimental group mean abundance
for each of the 3 spike-in concentrations. Group 10 clearly has a narrower distribution, owing to the
better agreement between peptides and replicates. For illustration puposes, we have included least
square fittings of normal distributions to the calulated posterior distributions.
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Figure S4: Posterior distributions for fold changes between experimental groups as calcu-
lated by Triqler (green) and a naive quantification method (blue). We plot the probabilities
as a function of the log2 fold change between experimental groups. The naive quantification method
summed up the 3 most intense peptides and imputed missing values by the row mean. We plot the
naive quantification method’s results as normal distributions using the mean and standard error of
the mean. Triqler manages to produce posterior distributions that are closer to the true ratios.
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• Conversely, a non-zero Pm value, e.g. k111, means that the sample in question did not have
an MS2 spectrum that could be associated to the peptide but did have an MS1 feature that
could be matched to one of the MS1 features in another sample in the minimum spanning tree
alignment.

• Usually, only one MS2 spectrum cluster will yield a confident peptide identification for an MS1
feature group. In this example, we can see this for YFPAFEK, KFLQPGSPRKPPMDEK and
FLQPGSPR, where the identification probability is the same across all samples. In the case of
ISNLPTVK, there were 2 MS2 spectrum clusters with the same peptide identification, one with
Pid = 0.003 and one with Pid = 0.004. This happens if the MS2 spectra are not sufficiently
similar for MaRaCluster to cluster them together, for example due to chimericity.

• The MS2 spectrum cluster for KFLQPGSPRKPPMDEK does not have a reliable peptide identifi-
cation (Pid = 0.93), and therefore its contribution to the protein quantification will be penalized.

• Both f131 and f212 are missing values. Combined with the high XIC of f111 and f121, the model
will, for example, infer that f131 is missing completely at random.

• The feature match probability k234 for the MS1 feature with XIC 19.53 is rather high. This will
penalize the contribution of f234, but as it actually agrees with the other confidently identified
peptides its contribution is still important to .
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2 Identification statistics
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Figure S5: Using a cascaded search with an open modification search as second search
increases the number of identifications on all levels on three engineered datasets. The
analyzed methods were Quandenser+Triqler when using the search engine Tide (blue), MODa (red),
and a cascade search of first Tide and subsequently MODa (yellow); Tide and Triqler without MaR-
aCluster and the matches-between-runs (MBR) feature (green) and MaxQuant with MBR followed
by statistical analysis with Perseus (orange). A comparison of the number of feature groups with
a peptide identification, unique peptides and proteins at 1% identification FDR shows the superior
performance of using a cascaded search which includes an open modification search through MODa.
It should be noted that MaxQuant requires at least two unique peptides for protein identification and
therefore the difference in the number of identifications on protein level cannot directly be compared.
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Figure S6: Using a cascaded search with an open modification search as second search
increases the number of identifications on feature group and peptide levels for three clin-
ical datasets. The analyzed methods were Quandenser+Triqler when using the search engine Tide
(blue), MODa (red), and a cascade search of first Tide and subsequently MODa (yellow); Tide and
Triqler without MaRaCluster and the matches-between-runs (MBR) feature (green) and MaxQuant
with MBR followed by statistical analysis with Perseus (orange). A comparison of the number of
feature groups with a peptide identification, unique peptides and proteins at 1% identification FDR
shows the superior performance of using a cascaded search which includes an open modification search
through MODa. It should be noted that MaxQuant requires at least two unique peptides for protein
identification and therefore the difference in the number of identifications on protein level cannot
directly be compared.
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Feature Groups BoxCar
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Figure S7: Using a cascaded search with an open modification search as second search
increases the number of identifications on all levels for both the Shotgun and BoxCar
runs from the BoxCar manuscript. The analyzed methods were Quandenser+Triqler when using
the search engine Tide (blue), MODa (red), and a cascade search of first Tide and subsequently
MODa (yellow); Tide and Triqler without MaRaCluster and the matches-between-runs (MBR) fea-
ture (green) and MaxQuant with MBR followed by statistical analysis with Perseus (orange). A
comparison of the number of feature groups with a peptide identification, unique peptides and proteins
at 1% identification FDR shows the superior performance of using a cascaded search which includes an
open modification search through MODa. It should be noted that we used the MaxQuant output files
from the original BoxCar manuscript, in which the database contained all proteoforms in Swiss-Prot
and TrEMBL, whereas we only searched against the proteins in Swiss-Prot. Therefore, the difference
in the number of identifications between MaxQuant and Quandenser+Triqler cannot directly be com-
pared. Also, since the BoxCar approach only samples very few MS2 spectra, peptide identifications
need to be inferred using MBR with respect to the Shotgun runs. This explains the poor behavior of
Tide without Quandenser/MBR on the BoxCar runs and its decent behavior on the Shotgun runs.
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3 Differential expression statistics
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UPS-yeast

UPS1 spike-in concentration [fmol] 25 vs 10 25 vs 5 10 vs 5
Method tp fp tp fp tp fp
Quandenser+Tide+Triqler 43 1 45 1 35 0
MaxQuant MBR+Perseus
- S0 = 0.0 37 42 35 124 24 7
- S0 = 0.3 39 9 42 15 36 1
- S0 = 0.7 34 9 40 6 24 1
- S0 = 1.0 28 2 41 5 1 0
MaxQuant MBR+EBRCT 43 1 40 9 0 0

Shalit hela-ecoli

E. coli spike-in concentration [ng] 3 vs 7.5 3 vs 10 3 vs 15 7.5 vs 10 7.5 vs 15 10 vs 15
Method tp fp tp fp tp fp tp fp tp fp tp fp
Quandenser+Tide+Triqler 190 7 198 4 229 0 0 0 194 3 138 0
MaxQuant MBR+Perseus
- S0 = 0.0 75 5 96 38 129 246 0 1 100 27 41 2
- S0 = 0.3 126 7 134 6 137 9 0 0 128 4 125 7
- S0 = 0.7 117 7 134 4 137 7 0 0 125 6 4 0
- S0 = 1.0 114 7 133 4 137 6 0 0 69 5 2 0
MaxQuant MBR+EBRCT 119 12 124 13 130 20 1 1 91 2 28 1

human-yeast

yeast spike-in protein concentration [%] 10 vs 5 10 vs 3.3 5 vs 3.3
Method tp fp tp fp tp fp
Quandenser+Triqler
- Tide 366 24 419 24 198 0
- MODa 223 11 296 15 77 0
- Tide + MODa cascade 334 13 382 20 154 0
Tide+Triqler (without Quandenser/MBR) 188 3 211 11 99 0
MaxQuant MBR+Perseus
- S0 = 0.0 226 36 266 32 133 22
- S0 = 0.3 322 34 361 27 72 5
- S0 = 0.7 289 27 358 25 1 0
- S0 = 1.0 188 18 356 21 1 0
- original study 296 ? 287 ? 107 ?
MaxQuant MBR+EBRCT 372 41 388 101 28 9

BoxCar hela-ecoli

E. coli spike-in ratio [1 : x] BoxCar 2 vs 12 Shotgun 2 vs 12
1-sided test 2-sided test 1-sided test 2-sided test

Method tp fp tp fp tp fp tp fp
Quandenser+Triqler
- Tide 977 7 977 32 964 10 964 218
- MODa 946 18 946 36 950 17 950 216
- Tide + MODa cascade 961 6 961 27 959 6 959 207
Tide+Triqler (without Quandenser/MBR)* 140 4 140 11 743 11 743 59
MaxQuant MBR+Perseus**
- Student t-test S0 = 0.0 965 16 971 3486 716 21 723 2228
- Welch t-test S0 = 0.3 972 19 975 2452 723 19 723 716

* BoxCar samples very few MS2 spectra; peptide identities are typically inferred with MBR to Shotgun runs,
explaining the low sensitivity of the BoxCar runs without any form of MBR

** We used the MaxQuant output files from the original study where the data was searched against
Swiss-Prot+TrEMBL, whereas we searched only against Swiss-Prot

Table S1: The table lists the number of true and false positive significantly differentially expressed
proteins at a 5% reported FDR threshold for (1) Quandenser+Triqler, (2) for different values of S0
for Welch’s t-test in Perseus and (3) for the EBRCT method. Some results for Quandenser+Triqler
and MaxQuant+EBRCT are left out here as they are listed in the main manuscript.
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4 Posterior distributions for fold changes

We plotted the posterior distributions of fold changes as calculated by Triqler for the UPS-Yeast
set (Figure S8) and the Human+Yeast and HeLa+Ecoli sets (Figure S9). We compared these to
the results of MaxQuant+Perseus, where we instead of the posterior distribution plot the confidence
interval using the mean and standard error of the mean.

Triqler achieves posterior estimates that approximate the true ratios quite well for a large proportion
of the spiked-in proteins. Note that proteins with low FDR (towards the top of each panel) show
fold changes very close to the expected value, but proteins with higher FDR (towards the bottom of
each panel) show fold changes close to 0. The reason for the shift is that the proteins with higher
FDR either have 1) peptides with high FDR, which have a harder time to overrule the prior, or 2)
incorrect peptides that actually belong to the background. This is exactly the way that you would
like a method to behave. You do not want to report inaccurately identified proteins as differentially
abundant, i.e. having a fold change far from 0.

MaxQuant+Perseus achieves good quantitative accuracy and narrow confidence regions for highly
confident proteins. However, we also see that many proteins for MaxQuant+Perseus have either large
variance estimates, which often prevents t-tests from calling significance, or are not quantified because
they had fewer than 2 peptides below 1% FDR.
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Figure S8: The posterior distributions for the fold change of the spiked-in UPS proteins
follow the true spike-in ratios well. We compare the uncertainty of the fold change estimations
of MaxQuant+Perseus (blue) and Quandenser+Triqler (green). Each row represents a UPS protein
sorted from top to bottom by protein FDR, where the colored portions represent the 90% and the white
portions the 10% confidence/credible intervals for the 25 vs 10 fmol (a) and 10 vs 5 fmol comparisons
(b). The quantitative accuracy of Quandenser+Triqler can be further improved by using the peak
apex intensity, instead of the peak summed intensity, at the cost of reduced sensitivity (c), (d).
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Human + Yeast
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Figure S9: Quandenser+Triqler provides stable estimates of the fold changes for both the
human-yeast (a, b)and HeLa+Ecoli proteome mixture sets (c, d, e). We compare the uncer-
tainty of the fold change estimations of MaxQuant+Perseus (blue) and Quandenser+Triqler (green).
Each row represents a, respectively, yeast or e. coli protein sorted from top to bottom by protein FDR,
where the colored portions represent the 90% and the white portions the 10% confidence/credible in-
tervals.
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5 Decoy features

We define an incorrect feature-feature match as a match where the two connected MS1 features do not
originate from the same analyte. In a similar fashion to database searching, we model the incorrect
matches by so-called decoy matches. Instead of reversing an amino acid sequence, we now ensure that
the matched feature for a particular query feature is incorrect by searching in an m/z region offset by a
fixed value of 5*1.000508 Th. The idea behind this offset is that the density, w.r.t. precursor m/z and
retention time, of MS1 features is approximately the same in this offset region. This thus simulates
the situation where a particular query feature is matched to a feature in the non-offset region if the
truly matching feature is either not present, or if another incorrect feature is closer, by some weighting
of the numeric features, such as precursor m/z and retention time difference.

To check the assumption that matches to decoy features mimic matches to incorrect features, we can
plot the distribution of the numeric features and check if the distributions between target and decoy
matches overlap in the region where we expect very few correct matches (Supplementary Figure S10).
In our case, we see a good overlap between targets and decoys for large retention time and precursor
m/z differences. For the precursor m/z differences, we observe a strange behavior in the [(−)10, (−)50]
ppm range, where there is a depletion of target features, which leads to conservative estimates of the
FDR. We hypothesize this to be be due to peaks being aggregated within this window by the feature
finding algorithm, Dinosaur.
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Figure S10: Decoy MS1 features provide a good proxy for incorrect target MS1 features.
(a) Histogram of the precursor m/z difference in parts-per-million (ppm) for all matches in a single
pair-wise alignment in the Hela-Ecoli mixture set. We see a clear enrichment of target MS1 features
close to zero and good overlap between target and decoy feature matches far from zero. (b) same
as (a), but zoomed in to 10000 counts. (c) same as (a), but for aligned retention time differences in
minutes. Again, we see enrichment close to zero. (d) same as (c) but zoomed in to 10000 counts.
Again, overlap of target and decoy feature matches for large retention time differences can be observed.
(e) same as (b), but for Dinosaur in targeted mode. Again, we see good overlap from around 50 ppm.
(f) same as (b), but using a decoy precursor m/z offset of 5.025 instead of 5 · 1.000508, mimicking
the offset used in DeMix-Q. The non-integer shift of the precursor mass causes a bias in the mass
difference distribution because peptide masses have to be additions of amino acids masses.
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6 Functional annotation analysis
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Figure S11: Benchmark of differentially expressed proteins and enriched functional anno-
tation terms. The analyzed methods were three quantification-first approaches, Quandenser+Triqler
when using the search engine Tide (blue), MODa (red), and a cascade search with first Tide and
subsequently MODa (yellow); and three identification-first approaches, Tide and Triqler without
clustering and the match-between-runs (MBR) feature (green), and MaxQuant with MBR followed
by statistical analysis with Perseus (orange) and EBRCT (light blue). Overall, we discovered
more differentially expressed proteins and enriched functional annotation terms with than without
Quandenser. Notably, we found enriched functional annotation terms for the Bracht set for which no
enrichments were previously found. The left plots show the number of differentially expressed proteins
at 3 differential abundance FDR thresholds. The plots on the right show the number of significant
functional annotation terms we discovered with DAVID using the sets obtained in the left plots. Note
that the FDR reported in the plots on the right refer to the differential abundance FDR and not the
functional annotation term FDR, which was kept fixed at 5%.

Table_S2_largest_clusters_UPS

Table S2: The table lists the largest unidentified spectrum clusters with their tentative peptide iden-
tifications in the UPS/Yeast dataser.

Table_S3_FG_with_UPS_pattern

Table S3: The table lists the feature groups with the smallest cosine distance to the UPS expression
pattern with their tentative peptide identifications.
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Table_S4_UPS_carbohydrate_frag

Table S4: The table lists the fragment ions of 5 consensus spectra that seem to come from carbohy-
drates instead of amino acid oligomers.

Table_S5_Latosinska_Tide_q5

Table S5: Significant enriched functional annotation terms for the Latosinska dataset at 5% differential
expression FDR for Tide.

Table_S6_Latosinska_Tide_q10

Table S6: Significant enriched functional annotation terms for the Latosinska dataset at 10% differ-
ential expression FDR for Tide.

Table_S7_Latosinska_Tide_q20

Table S7: Significant enriched functional annotation terms for the Latosinska dataset at 20% differ-
ential expression FDR for Tide.

Table_S8_Latosinska_MODa_q5

Table S8: Significant enriched functional annotation terms for the Latosinska dataset at 5% differential
expression FDR for MODa.

Table_S9_Latosinska_MODa_q10

Table S9: Significant enriched functional annotation terms for the Latosinska dataset at 10% differ-
ential expression FDR for MODa.

Table_S10_Latosinska_MODa_q20

Table S10: Significant enriched functional annotation terms for the Latosinska dataset at 20% differ-
ential expression FDR for MODa.

Table_S11_Latosinska_cascad_q5

Table S11: Significant enriched functional annotation terms for the Latosinska dataset at 5% differ-
ential expression FDR for a Tide followed by MODa cascade search.

Table_S12_Latosinska_cascad_q10

Table S12: Significant enriched functional annotation terms for the Latosinska dataset at 10% differ-
ential expression FDR for a Tide followed by MODa cascade search.

Table_S13_Latosinska_cascad_q20

Table S13: Significant enriched functional annotation terms for the Latosinska dataset at 20% differ-
ential expression FDR for a Tide followed by MODa cascade search.

Table_S14_Bracht_Tide_q5

Table S14: Significant enriched functional annotation terms for the Bracht dataset at 5% differential
expression FDR for Tide.

17



Table_S15_Bracht_Tide_q10

Table S15: Significant enriched functional annotation terms for the Bracht dataset at 10% differential
expression FDR for Tide.

Table_S16_Bracht_Tide_q20

Table S16: Significant enriched functional annotation terms for the Bracht dataset at 20% differential
expression FDR for Tide.

Table_S17_Bracht_MODa_q5

Table S17: Significant enriched functional annotation terms for the Bracht dataset at 5% differential
expression FDR for MODa.

Table_S18_Bracht_MODa_q10

Table S18: Significant enriched functional annotation terms for the Bracht dataset at 10% differential
expression FDR for MODa.

Table_S19_Bracht_MODa_q20

Table S19: Significant enriched functional annotation terms for the Bracht dataset at 20% differential
expression FDR for MODa.

Table_S20_Bracht_cascad_q5

Table S20: Significant enriched functional annotation terms for the Bracht dataset at 5% differential
expression FDR for a Tide followed by MODa cascade search.

Table_S21_Bracht_cascad_q10

Table S21: Significant enriched functional annotation terms for the Bracht dataset at 10% differential
expression FDR for a Tide followed by MODa cascade search.

Table_S22_Bracht_cascad_q20

Table S22: Significant enriched functional annotation terms for the Bracht dataset at 20% differential
expression FDR for a Tide followed by MODa cascade search.

Table_S23_Zhu_Tide_q5

Table S23: Significant enriched functional annotation terms for the Zhu dataset at 5% differential
expression FDR for Tide.

Table_S24_Zhu_Tide_q10

Table S24: Significant enriched functional annotation terms for the Zhu dataset at 10% differential
expression FDR for Tide.

Table_S25_Zhu_Tide_q20

Table S25: Significant enriched functional annotation terms for the Zhu dataset at 20% differential
expression FDR for Tide.
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Table_S26_Zhu_MODa_q5

Table S26: Significant enriched functional annotation terms for the Zhu dataset at 5% differential
expression FDR for MODa.

Table_S27_Zhu_MODa_q10

Table S27: Significant enriched functional annotation terms for the Zhu dataset at 10% differential
expression FDR for MODa.

Table_S28_Zhu_MODa_q20

Table S28: Significant enriched functional annotation terms for the Zhu dataset at 20% differential
expression FDR for MODa.

Table_S29_Zhu_cascad_q5

Table S29: Significant enriched functional annotation terms for the Zhu dataset at 5% differential
expression FDR for a Tide followed by MODa cascade search.

Table_S30_Zhu_cascad_q10

Table S30: Significant enriched functional annotation terms for the Zhu dataset at 10% differential
expression FDR for a Tide followed by MODa cascade search.

Table_S31_Zhu_cascad_q20

Table S31: Significant enriched functional annotation terms for the Zhu dataset at 20% differential
expression FDR for a Tide followed by MODa cascade search.

19



7 Missing value analysis
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Figure S12: MS1 clustering drastically reduces the number of missing values. For each of
the engineered datasets, we plot the number of feature groups with MS2 spectrum with M missing
values without clustering (left bars) and after MS1 clustering (right bars), annotated as “M (number
of feature groups)”. We see that even feature groups with an MS2 spectrum in only a single run (the
bottom bar on the left in each panel) can often be rescued by MS1 clustering, frequently even leading
to no missing values at all.
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human-yeast

Method 10 vs 5 10 vs 3.3 5 vs 3.3
tp fp tp fp tp fp

Quandenser+Tide+Triqler
- max-missing 8 434 43 511 54 296 2
- max-missing 7 418 34 490 46 276 2
- max-missing 6 401 32 465 40 251 1
- max-missing 5 381 27 441 32 227 0
- max-missing 4 366 24 419 24 198 0
- max-missing 3 343 19 395 14 177 0

Table S32: Quandenser+Triqler achieves reasonable FDR control for the human-yeast set
(11 runs in total), even with many allowed missing values. The table lists the number of
true and false positive significantly differentially expressed proteins at a 5% reported FDR threshold
for different numbers of missing values for the human-yeast set using the Quandenser+Tide+Triqler
pipeline. In the manuscript, max-missing 4 was used. As expected, sensitivity increases with more
allowed missing values. The empirical FDR increases with higher number of allowed missing values
as well and although it exceeds the reported 5% with more than 5 missing values, it stays below 10%
even when allowing up to 8 missing values.
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8 Analysis of increase in performance due to clustering

The inaccurately quantified peptides in Figure S13 could give rise to falsely quantified proteins, es-
pecially if their quantifications would be considered as reliable as peptides before MS1 matching. Of
the feature groups that were added by MS1 matching 4124/18458 = 22% had a |logFC| > 1.0, for
the feature groups before MS1 clustering, this rate was 2845/25681 = 11%. While the inaccurately
quantified clusters might seem plentiful, by using our probabilistic graphical model, their influence is
frequently down-weighted by considering matching probabilities and the agreement with other pep-
tides of the protein. We indeed see a rise on protein level for the number of false positives (which are
all human) from 3 to 14 after MS1 clustering for the 5vs10 comparison (Table S33), but the observed
differential expression FDR stays below the reported 5%, rising from 1.6% to 3.9%.
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Figure S13: MS1 clustering (blue) almost doubles the number of peptides quantified at 1%
FDR. Scatter plots with histogram projections of peptide fold changes against extracted ion current
(XIC) at 1% peptide-level identification FDR with at most 4 missing values for the human-yeast set.
Fold changes are taken from predictions of the 10 vs 5 comparison, fold changes outside of the plotted
range are set to the respective minimum or maximum fold change within the plotted range. We see a
separation of human (red) and yeast peptides (green) before applying any clustering, which follow the
spike-in ratios. We demonstrate that MS1 clustering more than doubles the number of yeast peptides
(a) and adds around 70% more peptides for human (b). These added peptides follow the expected
fold changes and show a clear enrichment for lower XIC values, contributing to lowering the limit of
detection (LOD).
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Figure S14: MS2 clustering (blue) only modestly increases the number of peptides quanti-
fied at 1% FDR. Scatter plots with histogram projections of peptide fold changes against extracted
ion current (XIC) at 1% peptide-level identification FDR with at most 4 missing values for the human-
yeast set. Fold changes are taken from predictions of the 10 vs 5 comparison, fold changes outside
of the plotted range are set to the respective minimum or maximum fold change within the plotted
range. We see that human (red) and yeast peptides (green), with MS1 clustering but without MS2
clustering, follow the spike-in ratios. MS2 clustering only adds 4% more yeast peptides (a) and 2%
more peptides for human (b). Since MS1 clustering already allows identity propagation between fea-
tures, the contribution of MS2 clustering is limited to reducing the number of hypotheses tested and
increasing signal on noisy MS2 spectra through the formation of consensus spectra.
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Figure S15: Peptide identification between 1% and 10% FDR (blue) could provide valuable
extra information that is typically discarded. Scatter plots with histogram projections of peptide
fold changes against extracted ion current (XIC) at 1% peptide-level identification FDR with at most
4 missing values for the human-yeast set. Fold changes are taken from predictions of the 10 vs 5
comparison, fold changes outside of the plotted range are set to the respective minimum or maximum
fold change within the plotted range. We see a separation of human (red) and yeast peptides (green),
with MS1 and MS2 clustering, which follow the spike-in ratios. We see that although many peptides
identified as coming from yeast between 1% and 10% FDR are most likely misidentified as they follow
the human spike-in ratio, a non-negligible amount of peptides do follow the correct spike-in ratio of
yeast as well (a). For the majority class of human, this looks better on first sight, but will probably
still contain many false positives (b). Even though the peptide identification between 1% and 10%
FDR should be handled with the greatest caution, they could help to confirm or oppose evidence
below the 1% FDR threshold.

25



0

2000

4000

6000

8000

10000

12000

co
un

t

0 2000
4000
6000
8000
10000
12000
14000

count

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

fold change

6

7

8

9

10

lo
g1

0(
X

IC
)

51453

4776

37428

FDR<10%, HUMAN
FDR<10%, YEAST
FDR>10%
spike-in ratio HUMAN
spike-in ratio YEAST

0

5000

10000

15000

20000

co
un

t

0 5000

10000

15000

20000

25000

count

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

fold change

6

7

8

9

10

lo
g1

0(
X

IC
)

51453

4776

118167

FDR<10%, HUMAN
FDR<10%, YEAST
w/o MS2 spectrum
spike-in ratio HUMAN
spike-in ratio YEAST

(a) (b)

Figure S16: MS1 feature groups without identification (left, blue) and without MS2 spec-
trum (right, blue) represent a sizeable part of the proteome that remains unknown.
Scatter plots with histogram projections of peptide fold changes against extracted ion current (XIC)
at 10% peptide-level identification FDR with at most 4 missing values for the human-yeast set. Fold
changes are taken from predictions of the 10 vs 5 comparison, fold changes outside of the plotted
range are set to the respective minimum or maximum fold change within the plotted range. We see a
separation of human (red) and yeast peptides (green), with MS1 and MS2 clustering, which follow the
spike-in ratios. MS1 feature groups without identification at 10% FDR still make up around 40% of
the data (a). MS1 feature groups without MS2 spectrum almost triples the data, which in the future
might be identifiable by, e.g. accurate mass and retention time predictions (b).
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UPS-yeast

Num feature groups 25 vs 10 25 vs 5 10 vs 5
Method UPS yeast tp fp tp fp tp fp
No clustering, Tide, FDR < 1% 230 9193 37 0 38 0 33 1
+ MS1 clustering (+139) 369 (+2956) 12149 44 2 46 2 39 0
+ MS2 clustering (+4) 373 (+322) 12471 43 2 45 2 38 0
+ 1% < FDR < 10% (+50) 423 (+3115) 15595 43 2 46 2 38 2
+ FDR > 10% (+34166) 50184 43 1 46 0 37 0
+ no MS2 spectrum (+70542) 120726 - - - - - -

human-yeast

Num feature groups 10 vs 5 10 vs 3.3 5 vs 3.3
Method yeast human tp fp tp fp tp fp
No clustering, Tide, FDR < 1% 1527 25681 182 3 205 1 85 0
+ MS1 clustering (+1876) 3403 (+18458) 44139 346 14 385 21 176 0
+ MS2 clustering (+131) 3534 (+1023) 45162 346 16 388 22 178 0
+ 1% < FDR < 10% (+1242) 4776 (+6291) 51453 366 24 419 24 198 0
+ FDR > 10% (+37428) 93657 366 24 419 24 198 0
+ no MS2 spectrum (+118167) 211824 - - - - - -

Shalit hela-ecoli

Num feature groups 3 vs 7.5 3 vs 10 3 vs 15 7.5 vs 10 7.5 vs 15 10 vs 15
Method E. coli HeLa tp fp tp fp tp fp tp fp tp fp tp fp
No clustering, Tide, FDR < 1% 269 5836 44 0 47 0 52 0 0 0 48 0 41 0
+ MS1 clustering (+796) 1065 (+7625) 13461 138 0 146 1 176 0 0 0 161 0 112 0
+ MS2 clustering (+35) 1100 (+613) 14074 142 0 150 1 183 0 0 0 167 0 116 0
+ 1% < FDR < 10% (+399) 1499 (+4551) 18625 159 2 167 2 206 0 0 0 185 1 137 0
+ FDR > 10% (+38232) 58356 190 7 198 4 229 0 0 0 194 3 138 0
+ no MS2 spectrum (+156684) 215040 - - - - - - - - - - - -

BoxCar hela-ecoli*

Num feature groups BoxCar 2 vs 12 Shotgun 2 vs 12
1-sided test 2-sided test 1-sided test 2-sided test

Method E. coli HeLa tp fp tp fp tp fp tp fp
No clustering, Tide, FDR < 1% 2626 17269 460 14 460 21 475 8 475 40
+ MS1 clustering (+6665) 9291 (+34324) 51593 999 14 999 54 977 3 977 176
+ MS2 clustering (+262) 9553 (+1543) 53136 1007 14 1007 53 982 3 982 186
+ 1% < FDR < 10% (+1486) 11039 (+10735) 63871 1027 18 1027 68 999 3 999 216
+ FDR > 10% (+62175) 137085 1029 18 1029 71 1002 4 1002 234
+ no MS2 spectrum (+229680) 366765 - - - - - - - -

* As the BoxCar runs rely on identification propagation from the Shotgun runs, no representative results could be
generated from the separate analyses, as was done in the rest of the manuscript. Therefore, results are shown for a

combined analysis of the 6 BoxCar with the 6 Shotgun runs with maximum allowed missing values, M = 6.

Table S33: MS1 clustering is the biggest contributor to the increased sensitivity of our
pipeline. By filtering the feature groups that are added by certain steps of our pipeline, we could
look at the contributions of these steps. MS1 clustering clearly shows the biggest contribution to
sensitivity, whereas contributions of MS2 clustering and including less confident peptides is rather
modest.
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9 Summary of datasets

M : max missing values
fceval: | log2 | fold change eval for Triqler
MS2 sp: number of MS2 spectra
SFP: number of spectrum-feature pairs, number of spectra that need to be searched by the search
engine
FG: feature groups
FG sp: number of feature groups with at least one MS2 consensus spectrum
cs sp.: number of consensus spectra
cs SFP: consensus spectrum-feature pairs, number of spectra that need to be searched
rd SFP: reduction in number of spectrum-feature pairs that need to be searched

Dataset PRIDE ID runs M fceval MS2 sp SFP FG FG sp cs sp cs SFP rd SFP
UPS-yeast PXD002370 9 3 0.8 535k 934k 121k 51k 61k 109k 88%
human-yeast PXD007683 11 4 0.5 807k 1.12M 212k 94k 116k 178k 84%
Shalit hela-ecoli PXD001385 12 3 0.5 340k 533k 215k 53k 67k 96k 82%
BoxCar hela-ecoli PXD006109 12 6 0.5 629k 1.02M 370k 124k 134k 218k 79%
Latosinska PXD002170 8 4 0.8 413k 991k 83k 47k 122k 183k 82%
Bracht PXD001474 27 7 0.5 1.01M 1.47M 69k 45k 106k 150k 90%
Zhu PXD006847 18 11 1.0 593k 1.02M 73k 52k 117k 187k 82%

Table S34: Summary of the datasets, including used parameters and reduction in searched
MS2 spectra.
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