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Abstract 

Cell lines are key tools for preclinical cancer research, but it remains unclear how well they represent 

patient tumor samples. Identifying cell line models that best represent the features of particular tumor 

samples, as well as tumor types that lack in vitro model representation, remain important challenges. 

Gene expression has been shown to provide rich information that can be used to identify tumor subtypes, 

as well as predict the genetic dependencies and chemical vulnerabilities of cell lines. However, direct 

comparisons of tumor and cell line transcriptional profiles are complicated by systematic differences, 

such as the presence of immune and stromal cells in tumor samples and differences in the cancer-type 

composition of cell line and tumor expression datasets. To address these challenges, we developed an 

unsupervised alignment method (Celligner) and applied it to integrate several large-scale cell line and 

tumor RNA-Seq datasets. While our method aligns the majority of cell lines with tumor samples of the 

same cancer type, it also reveals large differences in tumor/cell line similarity across disease types. 

Furthermore, Celligner identifies a distinct group of several hundred cell lines from diverse lineages that 

present a more mesenchymal and undifferentiated transcriptional state and which exhibit distinct chemical 

and genetic dependencies. This method could thus be used to guide the selection of cell lines that more 

closely resemble patient tumors and improve the clinical translation of insights gained from cell line 

models. 
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Introduction 

Tumor-derived cell line models have been a cornerstone of cancer research for decades. The 

genomic and molecular features of over a thousand cancer cell line models have now been deeply 

characterized 1, and recent efforts are systematically mapping their genetic 2–4 and chemical 5 

vulnerabilities. These datasets are thus providing new opportunities to identify potential therapeutic 

targets and connect these vulnerabilities with measurable biomarkers that can be used to develop 

precision cancer approaches 2,5.  

The clinical applicability of results derived from cancer cell lines remains an important question, 

however, due in large part to uncertainty as to how well they represent the biological characteristics and 

drug responses of patient tumors. Historically-derived cell line models likely represent an incomplete 

sampling of the spectrum of human cancers 6,7. Many existing models have been propagated for decades 

in vitro, with factors such as clonal selection, cell culture conditions, and ongoing genomic instability all 

potentially contributing to systematic differences between cell line models and tumors 7–9. Furthermore, 

many cell line models lack detailed clinical annotations. It is therefore critically important to better 

understand the systematic differences between cell lines and tumors to identify which tumor types have 

existing cell lines that sufficiently recapitulate their biology and which tumor types do not. Such 

systematic comparisons may ultimately also help reveal whether patient-derived xenografts, genetically 

engineered mouse models, or organoid cultures are more, less, or equivalently faithful to human tumors 

than historical cell lines.   

Large datasets such as The Cancer Genome Atlas (TCGA) 10 and the Cancer Cell Line 

Encyclopedia (CCLE) 1 include the multi-omic features of approximately 10,000 primary tumor biopsy 

samples and more than 1,000 cancer cell lines. While the TCGA focuses exclusively on primary tumora 

(as opposed to metastatic or drug-resistant tumors from which certain cell lines may have been derived) it 

nevertheless provides a powerful opportunity to begin to perform detailed comparisons of tumors and cell 
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lines systematically across many cancer types. By contrast, previous studies have largely focused on 

comparing tumors and cell lines within particular cancer types 11–14.  

In principle, a global alignment of the datasets would allow for the identification of the best cell 

line models for a given cancer type, without relying on annotated disease labels. Existing global analyses 

have largely compared samples based on their mutation and copy number profiles 15, which are 

complicated by several factors: a lack of paired normal samples for calling mutations in cell lines, 

systematic differences in the overall rates of copy number variation and mutations 13,16–19, as well as being 

limited to known cancer-related lesions.  

Comparisons based on information-rich gene expression profiles are a promising alternative 20, 

given their demonstrated utility for resolving clinically relevant tumor (sub)types 21–25, as well as 

predicting genetic 2 and chemical vulnerabilities of cancer cells 5,26. However, a key challenge is that gene 

expression measurements from bulk tumor biopsy samples are confounded by the presence of stromal and 

immune cell populations not found in cell lines, often comprising a substantial fraction of the cellular 

makeup of each sample 27,28. Existing approaches for removing the effects of contaminating cells 

generally require detailed prior knowledge of the expression profiles of each contaminating cell type 29, 

and would not account for other systematic differences between in vitro and tumor expression profiles. 

Furthermore, more general batch effect correction methods typically require either pre-existing subtype 

annotations, or assume the cell line and tumor datasets have the same subtype composition 30. 

To address these challenges, we developed Celligner, a method to perform an unsupervised 

global alignment of large-scale tumor and cell line gene expression datasets. Celligner leverages 

computational methods recently developed for batch correction of single-cell RNA-seq data and 

differential comparisons of high-dimensional data, in order to identify and remove the systematic 

differences between tumors and cell lines, allowing for direct comparisons of their transcriptional 

profiles. Notably, Celligner aligns pan-cancer gene expression datasets without the need for any 

additional information (such as tumor type labels, predefined contaminating cell signatures, or tumor 

purity estimates).  
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We applied our method to tumor data from TCGA, TARGET, and Treehouse 31 and cancer cell 

line data from CCLE and the Cancer Dependency Map 1. This comparison identified cell lines that match 

well to different tumor subtypes, as well as cancer cell lines that are transcriptionally distinct from their 

annotated primary cancer types. 

 

 Results 

Alignment of tumor and cell line transcriptional profiles 

To illustrate the analytical challenges involved with directly comparing cell line and tumor 

expression profiles, we first combined several large RNA-Seq gene expression datasets and performed a 

joint dimensionality reduction analysis. Specifically, we analyzed transcriptional data from 1,249 CCLE 

cell lines 1, 9,806 TCGA tumor samples, 784 pediatric tumor samples from TARGET, and 1,646 pediatric 

tumor samples from Treehouse 31. Although a consistent computational pipeline was used to process all 

datasets, this analysis revealed a clear separation of cell line and tumor samples (Fig. 1a), as expected. 

This separation was not addressed by applying simple normalization or batch correction methods such as 

ComBat 30,32 (Supplementary Fig. 1). This global separation of cell line and tumor samples precludes 

more detailed assessments of the similarity of samples of different types.  

Several features of the problem make alignment of cell line and tumor expression profiles 

challenging. First, the degree of tumor purity is highly variable across tumor samples 27,28, and the 

transcriptional effects of contaminating normal cells are not captured by a single signature shared across 

tumor samples and types 33. Secondly, differences in the disease (sub)type composition of the datasets can 

greatly confound attempts at globally aligning the distributions of tumor and cell line expression profiles. 

Finally, even without the confounding effects of normal-cell contamination, differences between in vivo 

and in vitro conditions, as well as technical artifacts, likely give rise to systematic differences in the 

cancer cells’ gene expression profiles 34. 
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Figure 1. Overview of the Celligner alignment method. a A 2D projection of combined, uncorrected 
cell line and tumor expression data using UMAP. b Method: Celligner takes cell line and tumor gene 
expression data as input, and first identifies and removes expression signatures with excess 'intra-cluster' 
variance in the tumor compared to cell line data using contrastive Principal Component Analysis (cPCA). 
Then Celligner identifies and aligns similar tumor-cell line pairs to produce corrected gene expression 
data, using mutual nearest neighbors (MNN) batch correction, which allows for improved comparison of 
tumors and cell lines. c cPC eigenvalues ordered by rank. d Correlation between the projection of tumor 
samples onto cPC2 and their estimated purity (using a consensus measurement of tumor purity). e The top 
five pathways from gene set enrichment analysis (GSEA) of cPC1. 

 
To address these challenges, we developed a multi-step alignment procedure (Fig. 1b; Methods). First, to 

identify gene expression signatures characterizing recurrent patterns of normal cell contamination in 

tumor samples, we used contrastive principal component analysis (cPCA), a generalization of PCA that 

uncovers patterns of correlated variation that are enriched in one dataset relative to another 35. 
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Importantly, to avoid biases resulting from the differential disease composition between the two datasets, 

we first performed an unsupervised clustering of each dataset (Supplementary Fig. 1; Methods; 

Supplementary Table 1), and used cPCA to contrast the intra-cluster covariance structure between the 

cell line and tumor data. This analysis identified several gene expression signatures with greatly elevated 

variance across the tumor samples compared to the cell lines (Fig. 1c). Gene set enrichment analysis 

(GSEA) 36 of these tumor-specific signatures revealed clear enrichment for immune pathways (Fig. 1e; 

Supplementary Fig. 2), suggesting that cPCA identifies the presence of different contaminating immune 

cell populations. Furthermore, expression of the second tumor-specific cPC was significantly correlated 

(R = -0.77, p-value < 2.2e-16) to independent estimates of tumor purity based on a consensus 

measurement of tumor purity 28, illustrating that this analysis is able to identify multiple independent 

signatures of contaminating cells (Fig. 1d). As the first stage of alignment, we thus removed the top four 

tumor-specific signatures from both datasets (Methods). 

While cPCA removes a dominant source of systematic tumor/cell line differences, on its own it 

does not fully ‘align’ the datasets (Supplementary Fig. 3) as it does not account for uniform differences 

between tumor and cell line profiles of a given disease (sub)type. As a second stage of the alignment, we 

utilized mutual nearest neighbors (MNN) batch effect correction algorithm to remove the remaining 

systematic differences between the datasets. MNN batch correction was developed to remove batch 

effects in single-cell RNA-Seq data. It functions by identifying pairs of samples between datasets where 

each sample is contained in each other's set of nearest neighbors in the other dataset, and leverages these 

MNN pairs to learn a flexible but robust nonlinear alignment of the datasets. Critically, MNN is robust to 

differences in subtype composition between the datasets, assuming only that the datasets contain a subset 

of corresponding samples 37.  

Application of MNN to the tumor and cell line expression profiles identified a set of ‘correction 

vectors’ (differences in expression profiles between matched tumor/cell line pairs), which on average 

showed increased expression of immune-related genes, and decreased expression of cell cycle genes, in 

tumors compared to MNN-matched cell lines (Supplementary Fig. 3). While these tumor/cell line 
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differences were largely consistent across samples, the correction vectors also showed patterns that varied 

across disease types (Supplementary Fig. 3), highlighting the importance of using a flexible nonlinear 

correction method such as MNN to remove such systematic differences. Notably, while MNN on its own 

provided a broadly similar alignment of the datasets (Supplementary Fig. 3), application of cPCA prior 

to MNN increased the number of MNN pairs identified, and helped mitigate bias towards matching cell 

lines with higher-purity tumor samples in MNN pairs (Supplementary Fig. 3).  

We applied this two-stage alignment method (which we refer to as Celligner) to produce an 

integrated dataset of cell line and tumor gene expression profiles that have been corrected for multiple 

sources of systematic dataset-specific differences. Indeed, creating a 2D Uniform Manifold 

Approximation and Projection (UMAP) 38 plot with the Celligner-aligned dataset revealed a map of 

cancer transcriptional profiles with cell line and tumor samples largely intermixed, while still preserving 

clear differences across known tumor types (Fig. 2). 

  

Alignment preserves meaningful subtype relationships 

To evaluate Celligner, we first tested whether it produced an alignment of known disease types 

and subtypes present in both the tumor and cell line data. As apparent in Figure 2, Celligner removes 

much of the systematic differences between tumor and cell line expression profiles, producing an 

integrated map of cancer expression space with clear clusters composed of both cell line and tumor 

samples. Even though Celligner is completely unsupervised (i.e. does not rely on any sample annotations 

such as disease type), the aligned tumor and cell line expression profiles largely clustered together by 

disease type. We quantified this by classifying the most similar tumor type for each cell line, based on its  
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Figure 2. Celligner alignment of tumor and cell line samples. UMAP 2D projection of Celligner- 
aligned tumor and cell line expression data colored by annotated cancer lineage. The alignment includes 
12,236 tumor samples and 1,249 cell lines, across 37 cancer types. 
 
nearest neighbors among the tumor samples. We found that, for disease types found in both datasets, 

these inferred tumor types matched the annotated cell line disease type 54% of the time (Fig. 3a; 

Methods), while in the uncorrected data the inferred tumor types matched the annotated cell line disease 

type 45% of the time (Supplementary Fig. 4). Celligner correction also increased the measured similarity 

of tumors and cell lines expression profiles of the same type (Fig. 3b; Supplementary Fig. 4). 

A key advantage of Celligner is that it does not assume that all cell line samples in a dataset are 

necessarily similar to any tumor samples, and vice versa. As a result, we can utilize the Celligner-aligned 

expression data to identify which cancer types show good agreement between cell lines and primary 

tumors, and which do not. Although a high proportion of cell lines clustered with tumors of the same 

cancer type, not all cell lines aligned well with tumor samples. For example, while many soft tissue, skin 

cancer, and breast cancer cell lines were similar to corresponding tumor samples, we found that central  
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Figure 3. Classification of cell lines by tumor type. a The proportion of cell lines that are classified as 
each tumor type using Celligner-aligned data. b Distribution of distances (using top 70 PCs) between cell 
lines and tumors of the same (sub)type after Celligner-alignment. 
 

nervous system (CNS) and thyroid cell lines consistently aligned poorly with tumor samples (Fig. 3a, b). 

This observation agrees with previous reports in the literature that in vitro media conditions can alter the 

phenotype of CNS cell lines and cause genomic changes that were not present in the original tumor 39,40. 

Nevertheless, these analyses illustrate that overall, Celligner tends to group cell lines and tumors 

of the same disease type. We next sought to determine whether the aligned data also reveal meaningful 

relationships between more granular subtypes. To this end we aggregated existing subtype annotations for 

cell line and tumor datasets (Supplementary Table 1) 1,10,41–43, and found that Celligner also tended to 

align tumor and cell line samples of the same subtype (Fig. 4a). For example, breast cancer tumors and 

cell lines clustered together by luminal and basal subtypes (Fig. 4b). Similarly, the leukemia samples 

formed clusters that correspond to existing annotations for acute myeloid leukemia (AML) and acute 

lymphoblastic leukemia (ALL), and the majority of leukemia cell lines aligned to tumors of the same 

subtype (Fig. 4c, d).  
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We also tested whether Celligner preserves and aligns biologically meaningful intra-cluster 

variability. For example, even though the melanoma tumors and cell lines mainly formed a single distinct 

cluster, variability within this cluster recapitulated recently-described melanoma differentiation states 41, 

and annotations of these melanoma subtypes were well-aligned between cell lines and tumors (Fig. 4e). 

Interestingly, the region of the melanoma cluster that consisted entirely of tumor samples primarily 

contained tumors of the transitory subtype that are from primary, rather than metastatic, samples. This 

result is consistent with the fact that many of the melanoma cell lines are annotated as being derived from 

metastatic samples 1. Together, these results highlight the ability of Celligner to reveal more detailed 

patterns of transcriptional similarity between cell lines and tumors, going beyond merely matching 

clusters. 

One potential concern with methods that seek to globally align tumor and cell line data is that 

they might obscure important underlying biological differences. A key feature of Celligner in this regard 

is that it allows for sub-populations that are only present in one dataset or the other. For example, both 

data sets contain renal cancer samples, but samples annotated as chromophobe renal cell carcinoma are 

only present in the tumor data. Accordingly, after the Celligner alignment, the cluster of chromophobe 

renal cell carcinoma tumor samples remained distinct and did not include any cell lines (Fig. 4f). 

Similarly, myeloma cancer samples are present in the cell line data, but not in the TCGA, TARGET or 

Treehouse tumor data. After Celligner correction, the myeloma cell lines clustered near the other 

hematopoietic samples, but did not clearly group with any tumor samples (Fig. 4d). These cases 

demonstrate that Celligner does not artificially force all samples to align with samples from the other 

dataset, allowing it to reveal subtypes that are absent or underrepresented in either dataset. 
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Figure 4. Subtype alignment. a UMAP 2D projection of the Celligner-alignment with breast, kidney, 
hematopoietic, and skin samples highlighted. b Luminal and basal breast cancer subtypes cluster together 
for cell lines and tumors. c Leukemia tumor and cell lines subtypes co-cluster in the aligned data. d 
Plasma cell (multiple myeloma) cell lines cluster near the hematopoietic samples, but distinct from the 
tumors. e Melanoma melanocytic, transitory, neural crest-like, and undifferentiated subtypes align 
between cell lines and tumors. f Kidney chromophobe tumor samples do not cluster with any cell lines. 
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Information transfer between cell line and tumor datasets 

By providing an unsupervised data integration procedure, Celligner enables joint analyses of the 

tumor and cell line datasets, providing greater power to detect transcriptionally distinct subpopulations. 

This is particularly true for the cell line data where there are ~10-fold fewer samples compared to the 

tumors. Indeed, clustering analysis of the Celligner-aligned integrated dataset revealed a larger number of 

more distinct clusters among the cell lines compared with the same analysis applied to the cell line dataset 

on its own (Supplementary Fig. 1). This difference was most evident for cancer types that had few 

representative cell lines. For example, in the current dataset, only one testicular cell line is present 

(SUSA), and when analyzing the cell line data on its own, this cell line clustered most closely with the 

soft tissue cancers (Supplementary Fig. 5). Joint analysis of the Celligner-aligned data, however, showed 

that this cell line clustered with a subset of the germ cell tumors (Supplementary Fig. 5), and in 

particular was nearest neighbors with the non-seminoma testicular cancer samples (Supplementary Fig. 

5). 

We next explored whether integrated analysis of the tumor and cell line data might also help 

resolve missing, or potentially incorrect (sub)type annotations. For example, four cell lines that are not 

annotated as melanoma samples nevertheless clustered with the melanoma samples (Supplementary Fig. 

5). One such cell line, COLO699, is annotated as derived from a metastatic lung cancer sample 1, raising 

the possibility that the current annotation accurately characterizes the biopsy site, but not the primary 

tissue. Previous reports in the literature have also identified that this cell line likely derives from a 

melanoma sample 11. 

We can also use the combined dataset to perform ‘label transfer’ of annotations from one dataset 

to another. For example, ALL subtype annotations (T-cell and B-cell) were available for the ALL cell 

lines, but only for some of the ALL tumor samples. The ALL cell lines formed two distinct clusters, 

which perfectly matched the labeled B-cell and T-cell subtype. The ALL tumors also largely clustered 

together with the ALL cell lines, with all of the annotated (B-cell) tumor samples clustering with the B-
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cell cell lines. The rest of the (un-annotated) tumor samples could easily be classified as either B-cell or 

T-cell ALL (with some putative AML samples as well) based on their cluster membership (Fig. 4c), 

which aligned well with clustering of the tumor samples based on expression of B-cell ALL and T-cell 

ALL marker genes (Supplementary Fig. 5) 44. These results further highlight the advantage of 

performing an unsupervised global alignment that does not rely on existing annotations. 

 

Discovery of a novel group of transcriptionally and functionally distinct cell 

lines 

Jointly analyzing the Celligner-aligned cell line and tumor data also revealed common structures 

across cell lines that were distinct from primary tumors. As described above (Fig. 3), cell line models of 

certain cancer types, such as thyroid and CNS, did not recapitulate the disease-specific transcriptional 

patterns exhibited by primary tumors of their respective cancer types. Closer inspection revealed that 252 

of the cell lines that did not group with tumor samples of the same disease type formed a separate cluster 

(Fig. 5a). While approximately 20% of the cell lines belonged to this cluster, less than 2% of the tumor 

samples (primarily soft tissue and bone tumors) belonged to this cluster (Supplementary Table 1). The 

cell lines in the cluster spun a wide range of different lineages (notably, 82% of all CNS, 91% of all 

thyroid lines, and 41% of all liver lines; Fig. 5b; Supplementary Table 1).  

Cell lines in this cluster lacked lineage-specific expression characteristics present in the primary 

tumor datasets analyzed herein, suggesting that they have entered a more undifferentiated state. Indeed, of 

the twelve skin samples in this cluster that were annotated by Tsoi et al., all three of the skin cell lines and 

seven of the nine skin tumors were annotated as being of an ‘undifferentiated’ subtype 41. The majority 

(11/12) of the thyroid cell lines, which have been observed to be more dedifferentiated than thyroid 

tumors 34,45,46, also belonged to this cluster. To further assess how distinct these cell line models are from 

their lineage-matched counterparts that co-clustered with tumors, we also looked at a set of lineage-

specific transcription factors. For example, SOX10 is selectively expressed in melanoma cells, and  
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Figure 5. Cluster of cell lines show EMT signature and integrin-related dependencies. a A cluster of 
undifferentiated cell lines within the global Celligner-alignment. b Composition of the cell lines within 
the cluster. c Skin cell lines within the cluster are not dependent on SOX10. d Liver cell lines within the 
cluster are less dependent on HNF4A. e Differential expression analysis shows an up-regulated 
mesenchymal profile and f enrichment of the EMT pathway for cell lines in the cluster. g Differential 
drug vulnerability analysis shows decreased sensitivity to EGFR inhibitors and increased sensitivity to 
tubulin polymerization inhibitors for cell lines in the cluster. h Differential dependency analysis show 
stronger integrin related dependencies for cell lines within the cluster. 
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SOX10 knockout by CRISPR is lethal selectively in melanoma cell lines 3. Consistent with the 

interpretation of this cell-line-specific cluster as representing a more de-differentiated state, melanoma 

lines within the cluster showed much weaker expression of, and dependency on, SOX10 (Fig. 5c) 41. 

Similarly, liver cancer cell lines within the ‘undifferentiated’ cluster showed lower expression of, and less 

dependency on, the hepatocyte transcription factor HNF4A (Fig. 5d).  

To further understand the biological features that distinguish this group of undifferentiated cell 

lines we performed genome-wide differential expression analysis, controlling for differences attributable 

to the annotated lineages. This analysis revealed a striking enrichment of epithelial-mesenchymal 

transformation (EMT)-related genes (Fig. 5e, f), reflecting a stronger mesenchymal expression pattern 

among these undifferentiated cell lines. The few tumor samples in this cluster were primarily from cancer 

types with mesenchymal cell lineages 47 and GSEA of genes differentially expressed by these samples 

showed elevated expression of the EMT pathway (normalized enrichment score = 3.33, adjusted p-value 

= 6.2e-05). 

We also tested whether the cell lines expressing this distinct mesenchymal/undifferentiated 

expression pattern exhibit a unique pattern of chemical and genetic vulnerabilities. For this, we used the 

Achilles dataset of genome-wide CRISPR knockout screens to interrogate gene essentiality across 689 

cell lines 48, as well as a recently-generated dataset of clinical compounds screened across 578 cell lines 5. 

Examination of differences in the drug sensitivities of these undifferentiated cell lines showed that they 

have increased sensitivity to tubulin polymerization inhibitors (Fig. 5g), as well as greater dependency on 

integrin genes, particularly ITGAV and  ITGB5 (Fig. 5h), consistent with their upregulation of EMT-

related genes 49,50. The undifferentiated cell lines were also more resistant than other cell lines to several 

compounds, most notably many EGFR inhibitors (Fig. 5g). This is also consistent with a marked decrease 

in EGFR dependency among the undifferentiated cell lines (Fig. 5h).  
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Discussion 

Cancer cell lines are crucial drivers of preclinical cancer research. Yet, our limited understanding 

of the similarities and differences between cell lines and patient tumors remains a key challenge for 

translating findings from cell lines to the clinic. To help address this, we developed a computational 

method, Celligner, which identifies and removes systematic differences between the RNA-Seq gene 

expression profiles of tumors and cell lines in an unsupervised manner, allowing for direct and detailed 

comparisons of the transcriptional states of cell lines and tumors.  

In our global analysis, we identified pronounced differences across cancer types in how well 

cancer cell lines reflected the transcriptional patterns of their primary tumor counterparts. While many 

disease types (such as lymphoma, Ewing sarcoma, and melanoma) were similar between cell lines and 

tumors, there were few thyroid and CNS cell lines whose gene expression profiles aligned with the 

corresponding primary tumor samples. Previous studies have identified that CNS cell lines grown in 

serum-containing media tend to lose their ability to differentiate, and have gene expression profiles that 

are unlike their primary tumors 40,51, while CNS cell lines grown in serum-free specialized media had 

gene expression profiles and genetic aberrations that better recapitulated their primary tumors 51.  

These differences pinpoint where new cell lines, organoid models 52, patient-derived xenografts 

and mouse models are most needed. They also reinforce the importance of efforts such as the Human 

Cancer Models Initiative (HCMI) that aim to address gaps in our current in vitro model representation. 

Future applications of the method to RNAseq datasets from these and other novel model formats should 

prove useful. 

We discovered a distinct set of cell lines, composed of a range of tissue types, which exhibited a 

transcriptional state that was largely dissimilar from those of the available primary tumor samples. These 

cell lines had undifferentiated characteristics, lacking activity of lineage-specific transcription factors (and 

associated genetic dependencies). They also showed clear upregulation of mesenchymal genes and 

downregulation of epithelial markers; all characteristics concordant with an EMT phenotype. 
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Consistently, this group of cell lines was most similar to tumors that arise from mesenchymal tissue, but 

generally clustered separately from the primary tumor samples. Interestingly, these undifferentiated cell 

lines also exhibited distinct genetic and chemical vulnerabilities, including increased dependency on 

integrin genes and sensitivity to tubulin inhibitors, as well as decreased sensitivity to EGFR inhibitors, all 

of which are consistent with an EMT state 53–55. This raises the possibility that these cell lines may reflect 

a biologically relevant tumor cell state that is not represented in the primary tumor datasets used here. 

Indeed, the EMT program has been most clearly identified in early metastatic samples 56, while the tumor 

data we used is largely from primary tumor samples 10. More research is needed to determine whether 

these cell lines could be good models for tumors that have undergone EMT, or if they reflect an artifact of 

cell culture conditions. As new large-scale datasets of metastatic and drug-resistant tumors emerge we can 

incorporate them into Celligner to better answer this question. 

A recent comparison of CCLE and TCGA expression data by Yu et al. used a combination of 

COMBAT correction and linear regression to remove expression patterns associated with tumor purity 20. 

They used their analysis to rank cell lines by tumor type and establish a panel of 110 cell lines across 22 

cancer types that they identified as good representatives of tumors. Our unsupervised approach identified 

similar differences between cell lines and tumors, such as immune signatures and cell cycle differences. 

Our analysis was also able to identify substantial disease-specific differences in how well cell line models 

reflected tumor transcriptional states 39,40, as well as revealing a large group of (to our knowledge 

previously undescribed) ‘undifferentiated’ cell lines, as detailed above. 

Our analyses focused on using gene expression data to compare tumor and cell line samples. In 

contrast, previous efforts, such as Cellector 15, have utilized genomic alterations to identify cell lines that 

are most representative of specific disease subtypes. In general, we found that cell lines previously 

identified as poor models based on copy number and mutations were often identified as non-tumor-like 

based on our analysis of Celligner-aligned gene expression features as well. For example, Domcke et al. 

observed that OC316 was hyper-mutated 12, Sinha et al. found that SLR20 had an outlier copy number 

profile 57, and Ronen et al. found that COLO320 was dissimilar to colorectal tumors and lacked major 
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colorectal cancer driver genes 58. In our analysis, all of these cell lines were also identified as being unlike 

their respective tumor types. This may reflect the fact that genomic alterations also result in 

corresponding changes in gene expression 59,60. In general, the use of gene expression profiles for 

comparing cancer samples is advantageous as it provides an information-rich readout of cell state, does 

not require predefined sets of genomic lesions, and avoids the need for matched normal samples. 

However, a future version of Celligner that also integrates genomic features could enable more detailed 

comparisons of tumors and cell lines.  

A key component of Celligner is correcting for systematic differences between tumor and cell 

line expression profiles, most notably those related to contaminating normal cells in tumor samples. To do 

this, we utilized an unsupervised approach that did not depend on pre-defined signatures of the various 

contaminating cell types, and that also allowed us to account for unknown systematic differences between 

tumors and cell lines. For instance, we found that cell lines exhibited upregulation of cell cycle expression 

programs compared with tumors (Supplementary Fig. 3), which agrees with previous findings that a 

higher proportion of cancer cells are cycling in vitro compared to in vivo 61. The tumor/cell line 

differences we identified (MNN correction vectors) also varied across disease type, emphasizing the 

importance of using a non-linear method that allows for disease-type-specific differences. As single-cell 

data from normal tissues become more readily available, methods that use these data to estimate and 

remove the effect of different contaminating cells 62,63 could be incorporated to further improve 

comparisons between tumors and cell lines. 

In order to facilitate the use of Celligner, we have incorporated an interactive web app on the 

Cancer Dependency Map portal (https://depmap.org/portal/celligner), that allows users to explore a 

Celligner-aligned integrated resource of cell line and tumor expression profiles, as well as download the 

data. This tool enables the identification of cell line models that best represent the transcriptional features 

of a tumor type, or even a particular tumor sample, of interest. More generally, by identifying and 

removing many of the confounding differences between cell lines and tumors in an unbiased fashion, 

Celligner enables integrated analyses of cell line and tumor datasets that can be used to reveal novel 
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patterns within, and relationships between, these data, helping to improve translation of insights derived 

from cell line models to the clinic. 
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Methods  

Expression data 

Gene expression data for 12,236 tumor samples were taken from Treehouse Public Expression Dataset 

v10 obtained from Xena browser (https://xenabrowser.net). The data set compiled samples from the 

UCSC Treehouse Childhood Cancer Initiative, the Therapeutically Applicable Research to Generate 

Effective Treatments (TARGET) program, and The Cancer Genome Atlas (TCGA). Cell line gene 

expression data for 1,249 samples was taken from the DepMap Public 19Q4 file: 

CCLE_expression_full.csv downloaded from the Cancer Dependency Map portal (https://depmap.org/)48. 

All gene expression data was processed using the STAR-RSEM pipeline and is TPM log2 transformed 

(with a pseudocount of 1 added). Gene expression data were subset to 19,188 protein-coding genes that 

were present in both the tumor or cell line data. 

 

Celligner method 

To remove sources of variation that are unique to one of the data sets and align the cell line and tumor 

data we used a multi-step process. First, we used contrastive principal component analysis (cPCA) 35 to 

identify correlated variability that is enriched in the tumor data compared to the cell line data, or vice-

versa. In order to avoid identifying signatures related to differences in the cancer type or subtype 

compositions of the datasets we first clustered the tumor and cell line data separately and subtracted the 

average expression of each cluster from all samples in the cluster to estimate the average intra-cluster 

covariance for tumors and cell lines. The data sets were clustered in 70-dimensional PCA space using a 

shared nearest neighbor (SNN) based clustering method implemented in the Seurat R package 64, with a 

resolution parameter of 5. We then regressed out the first four cPCs (components which are higher 

variance in the tumor data) from both the tumor and cell line data (Supplementary Fig. 6).  
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We then performed mutual nearest neighbors (MNN) correction 37 on the data sets, using the cell line data 

as the reference dataset. To identify mutual nearest neighbors between the two datasets we used a set of 

genes that showed high between-cluster variance in each data set. Specifically, we used limma 65 to 

estimate the across-cluster variation in each gene’s expression within each dataset, using the empirical-

Bayes moderated F-statistics as a metric of between-cluster variability. We used the union of the top 1000 

genes from each data set with the lowest F-statistics (Supplementary Table 2). We modified the MNN 

algorithm from the R package scran 66 to use different k values (the numbers of nearest neighbors to 

consider) for each data set, which was necessary to account for the much larger set of tumor samples used 

compared with cell lines. Specifically, we used a k value of 5 to identify nearest neighbors in the cell line 

data and a k value of 50 to identify nearest neighbors in the tumor data. We verified that the output was 

robust to modest changes in these parameters (Supplementary Fig. 6) and stable even if a tissue type was 

removed from one of the datasets (Supplementary Fig. 6). 

 

Measuring tumor/cell line similarity 

To evaluate the similarity of cell lines to tumor samples we performed PCA on the Celligner-aligned data, 

then took the Euclidean distance between each cell line and tumor in PCA space (using 70 components). 

Cell lines were classified as a tumor type by identifying the most frequently occurring tumor type within 

each cell line’s 25 nearest tumor neighbors.  

 

Differential expression analysis 

Differential expression analysis was performed on gene-level read count data using the ‘limma-trend’ 

pipeline 65,67. We first subsetted the data to genes that had a counts-per-million value greater than one in 

10 or more samples. The data were normalized per sample using the ‘TMM’ method from the edgeR 

package 68, and transformed to log2 counts-per-million using the edgeR function ‘cpm’. Linear model 

analyses, with empirical-Bayes moderated estimates of standard error, were then used to identify genes 
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whose expression was most associated with covariates of interest, such as disease type, or membership in 

a particular cluster. When analyzing differential gene expression related to the ‘undifferentiated’ cell line 

cluster (Fig. 5e), we included disease type as a covariate in the model. The differential dependency 

analysis and differential drug analysis were also performed using the limma pipeline 65,67 with empirical 

Bayes moderated t-stats for p-values and disease type included as a covariate.  

 

Dependency data 

We used estimates of gene dependency taken from the Achilles genome-wide CRISPR-Cas9 KO data 3, 

19Q4 release 1. Specifically, we used gene effect estimates based on the CERES algorithm, taken from 

the file gene_effect_corrected.csv from the Cancer Dependency Map portal (https://depmap.org) 48. 

  

Drug sensitivity data 

Cell line drug sensitivity data were taken from a dataset of repurposing drugs screened with PRISM 5. For 

the PRISM dataset replicate-collapsed, log fold change data at a 2.5 µM dose from the secondary screen 

were used. Specifically, we used the ‘secondary-screen-replicate-collapsed-logfold-change’ and 

‘secondary-screen-replicate-treatment-info’ vailable on the Cancer Dependency Map portal 

(https://depmap.org) and figshare 69. Annotations of compound mechanism of action (MOA) were also 

taken from ‘repurposing related drug annotations’ from the CLUE data library (clue.io/data).  

 

Gene set enrichment analysis 

For gene set enrichment analysis of gene expression profiles we used the fgsea R package 69, using 

100,000 permutations of gene-level values (log fold change values in Fig. 5d, contrastive principal 

component loadings in Fig. 1e, Supplementary Fig. 2, and average MNN correction vectors in 

Supplementary Fig. 3), to calculate normalized enrichment scores for gene sets from the ‘Hallmark’ and 

‘GO_biological_proccesses’ gene set collections from MSigDB v6.2 70.  
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2D embedding 

To compute 2D embeddings of gene expression profiles (e.g. Fig. 2; Supplementary Table 1) we used 

the UMAP method 38, as implemented in the Seurat v3 package 64. The UMAP embedding was computed 

on the first 70 principal components, using Euclidean distance, with an ‘n.neighbors’ parameter of 10, and 

a ‘min.dist’ parameter of 0.5.  

 

Code availability 

The full source code implementing the method and generating figures is made available at 

https://github.com/broadinstitute/Celligner_ms. 

 

Data availability 

All datasets used to generate the results presented here are publicly available. The results of Celligner 

applied to the TCGA, TARGET, Treehouse, and CCLE datasets are available in a Fighare dataset at: 

https://figshare.com/articles/Celligner_data/11965269. 
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