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Summary 

Hippocampal firing is organized in theta sequences controlled by internal memory-

related processing and by external sensory cues. How these computations are segregated or 

integrated, depending on the cognitive needs, is not fully understood. Although theta activity 

in the hippocampus is most commonly studied as a unique coherent oscillation, it is the result 

of a complex interaction between different rhythm generators. Here we investigated the 

coordination between theta generators as a possible mechanism to couple or decouple 

internally and externally driven computations. We separated and quantified three different 

theta current generators from the hippocampus of freely behaving rats, one originating in CA3 

with current sinks in CA1 str. radiatum and two with current sinks in CA1 str. lacunosum-

moleculare and dentate molecular layer, mainly driven by entorhinal cortex (EC) layers 3 and 

2, respectively. These theta generators followed non fully coherent dynamics and presented 

epochs of higher and lower phase coupling, suggesting a flexible interaction between them. 

Selective optogenetic inhibition in CA3 depressed the str. radiatum generator without affecting 

the EC-driven theta oscillations, indicating that theta rhythm generators can be modulated 

independently. In addition, band-specific gamma interactions with theta oscillations selectively 

occurred with the corresponding pathway-specific theta current generator, supporting the 

existence of different theta-gamma coding frameworks to organize neuronal firing in the 

hippocampus. Importantly, we found that epochs of highly synchronized theta rhythmicity 

across generators preferentially occurred during memory-guided exploration and mismatch 

novelty detection in familiar environments, two conditions in which internally generated 

memory representations need to be coordinated with the incoming sensory information about 

external cues. We propose a mechanism for segregating and integrating hippocampal 

computations based on the coexistence of different theta-gamma frameworks that flexibly 

couple or decouple accommodating the cognitive needs. 
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Introduction 

The hippocampal formation flexibly combines computations subserving spatial 

navigation, driven by external environmental cue stimuli (McNaughton et al., 1983; O’Keefe 

and Nadel, 1978), but also memory processing, dependent on internally generated firing 

sequences (Pastalkova et al., 2008; Wang et al., 2015). The characteristic oscillatory activity 

patterns in brain networks have been proposed as a mechanism to organize different 

computations and, depending on the cognitive needs, integrate or segregated them in 

oscillatory cycles (Buzsáki and Draguhn, 2004; Engel et al., 2001; Lisman and Jensen, 2013). 

In the hippocampus, theta and gamma oscillations are the most prominent rhythms recorded in 

freely moving animals (Buzsáki, 2002; Colgin, 2016, 2013; Vanderwolf, 1969). Theoretical 

and experimental work in the hippocampus have associated the processing of environmental 

cues and the encoding of memories with the input from the entorhinal cortex (EC) arriving at 

CA1 at a particular phase of the theta cycle, and the retrieval of memories with the CA3 output 

to CA1 in a different phase of the cycle (Douchamps et al., 2013; Hasselmo et al., 2002; Siegle 

and Wilson, 2014). Information transmission between these regions is proposed to occur in 

gamma oscillations of different frequencies organized in the phase of the slower CA1 theta 

rhythm (Colgin et al., 2009; Lisman and Idiart, 1995; Lisman and Jensen, 2013). These theta-

gamma associations, known as cross-frequency coupling (CFC), are modulated during 

exploration and memory-guided behaviours (Canolty et al., 2006; Colgin, 2015a; Fernández-

Ruiz et al., 2017; Lasztóczi and Klausberger, 2016, 2014; Schomburg et al., 2014; Tort et al., 

2008). However, theta oscillations originating in different anatomical layers of the 

hippocampus are known to coexist (Alonso and García-Austt, 1987; Bland and Whishaw, 

1976; Buzsáki, 2002; Charpak et al., 1995; Green and Rawlins, 1979; H. Vanderwolf et al., 

1973; Kramis et al., 1975; Montgomery et al., 2009; Vanderwolf, 1969; Winson, 1974) and, 

therefore, theta-gamma interactions need to be interpreted in the context of multiple rhythm 

generators.  

In addition to the classical medial septum/diagonal band of Broca input imposing a 

global rhythmicity to the hippocampus and EC, important rhythm generators are located in EC 

layers II (EC2) and III (EC3), whose activity reach the dentate gyrus (DG) and hippocampus 

proper though the perforant and temporoammonic pathways respectively, and from CA3 

activity reaching CA1 stratum radiatum through the Schafer collaterals (Buzsáki, 2002). 

Importantly, although theta oscillations in the hippocampus are most commonly studied as a 

unique coherent oscillation across hippocampal layers, exhibiting a characteristic 
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amplitude/phase vs. depth variation (Buzsáki, 2002), the frequency and phase of the CA3 theta 

rhythm generator was shown to change relatively independently from the EC theta inputs 

(Kocsis et al., 1999; Montgomery et al., 2009). How these multiple theta rhythm generators 

and pathway-specific gamma oscillations interact in the hippocampus is not well understood. 

One appealing possibility is that different theta oscillations may represent different theta-

gamma coding frameworks, thus providing the substrate to segregate, but also to integrate 

different computations based on a communication-through-coherence like mechanism (Fries, 

2005). A decrease in the coherence between the theta oscillations would decouple the 

processing streams, segregating the underlying cognitive processes (i.e. retrieval from 

encoding). However, an increase in the coherence would rather couple them, facilitating the 

integration in CA1 neurons of both information streams (i.e. when stored and ongoing 

contextual information need to be compared).   

Here we investigated the function of pathway-specific synchronization of oscillatory 

activity in the hippocampus of rats freely exploring known and novel environments and 

resolving a T-maze. Using high density electrophysiological recordings aided by source 

separation techniques we characterized the dynamic properties of three different theta and three 

different gamma dipoles in the hippocampus with origins in the CA3 Schaffer collateral layer, 

the EC3 projection to the stratum lacunosum-moleculare and EC2 projection to the mid-

molecular layer of the DG, respectively, and found strong support for the existence of different 

theta-gamma frameworks. We then characterized theta-gamma interactions between the 

different pathways and established an association with the synchronization state in the 

hippocampal network. Finally, we investigated the functional role of these theta-gamma 

frameworks for contextual learning requiring the update of an existent memory with the 

changes found in the environment.  

 

Results 

Pathway-specific theta and gamma oscillations 

We performed electrophysiological recordings using linear array electrodes across the 

dorsal hippocampus in five rats (see Supplementary Methods, Figure 1). Recordings were 

carried out while the animal freely explored a familiar open field (Figures 1-6), a novel open 

field (Figure 6) or a T-maze (Figure 7). Using spatial discrimination techniques to separate 

LFP sources contributed by different synaptic pathways, based on independent component 
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analysis (ICA, Figure S1) (Benito et al., 2014; Fernández-Ruiz and Herreras, 2013; Herreras, 

2016; Makarov et al., 2010; Makarova et al., 2011), we dissected 3 robust components in all 

subjects (Figure 1; Supplementary Methods). The maximum voltages (Figure 1b) and dipoles 

in the current source density (CSD) depth profiles (Figure 1c) of the three components matched 

the stratified distribution of known terminal fields in the hippocampus, and the currents 

resulting from stimulation of the corresponding pathways, as previously shown (Benito et al., 

2014; Fernández-Ruiz and Herreras, 2013; Lasztóczi and Klausberger, 2014; Schomburg et al., 

2014). The first component was located in the stratum radiatum, where the CA3 Schaffer 

collateral/commissural pathway targets the CA1 region (labelled as Schaffer component or 

Sch-IC). The second matched the EC3 projection in the stratum lacunosum-moleculare (lm-

IC), and the third one the perforant pathway from EC2 to the mid-molecular layer of the DG 

(PP-IC). These three components, referred to as pathway-specific LFPs or IC-LFPs, represent 

the synaptic contributions with distinct anatomical origins recorded in the LFP (Herreras, 

2016).  

The power spectra of these signals exhibited a clear peak at theta frequency (6-10 Hz) 

and broadband gamma activity (Figure 1e). CA3 and EC3 neurons have been shown to fire 

phase locked to discrete gamma band oscillations in the downstream Sch-IC and lm-IC, 

respectively (Fernández-Ruiz et al., 2012, p.; Schomburg et al., 2014), with gamma oscillations 

segregated in the phases of the theta wave recorded in CA1 (Colgin et al., 2009; Lasztóczi and 

Klausberger, 2014; Schomburg et al., 2014). In good agreement, pathway-specific gamma 

activities were distributed in the theta cycle, with lm-IC close to the theta peak (π radians) and 

followed by Sch-IC (Figure 1f), showing consistency with the firing properties of principal 

neurons in their respective upstream afferent layers. Similarly, entorhinal principal cells in EC2 

and EC3 were shown to fire in anti-phase, relative to the theta oscillation (Mizuseki et al., 

2009) and, accordingly, large amplitude gamma oscillations in PP-IC and lm-IC in our 

recordings were found shifted 180º (Figure 1f).  These results support the use of multichannel 

recordings and source separation tools to investigate interactions between theta and gamma 

current generators in multiple layers of the hippocampal formation. 

The relative phase and coherence of these components was first compared with the theta 

oscillation recorded at the pyramidal layer of CA1, commonly used as the reference for 

temporal interactions in the hippocampus. We measured coherence and the inter-cycle phase 

clustering index (ICPC) which, in addition to a measure of coherence, computes the phase 

differences between signals in a cycle by cycle basis (see Supplementary Methods). All IC-

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 26, 2020. ; https://doi.org/10.1101/418434doi: bioRxiv preprint 

https://doi.org/10.1101/418434
http://creativecommons.org/licenses/by/4.0/


Lopez-Madrona et al - 6 

 

LFPs exhibited prominent coherence with the LFP signal mainly in the theta range (and its first 

harmonic, Figure 1g). Similarly, the coherence at theta frequency was high between IC-LFP 

pairs (0.41, 0.31, 0.61, for Sch-lm, Sch-PP and lm-PP, respectively, Figure 1g), being larger 

between EC-associated generators (p<0.0001, ANOVA with degrees of freedom corrected by 

Greenhouse-Geisser, F(1.091, 4.363)=89.33). These results were confirmed by the ICPC 

analysis, showing significant coupling in the theta range with the reference LFP signal (ICPC 

= 0.50/0.73/0.61 for Sch-IC/lm-IC/PP-IC vs. CA1 LFP, respectively, p<0.0001, surrogate test), 

which also showed the characteristic phase shift across layers (π/2, 0.8π and 1.1π radians for 

Sch-IC, lm-IC and PP-IC, respectively; Figure 1h). Interestingly, the lack of coherence closer 

to the unit between theta oscillations in the IC-LFPs was already suggesting the coexistence of 

different theta current generators with certain degree of independency, rather than the artificial 

breakdown of a unique theta rhythm into spatially segregated components. In the latter, the 

coherence between the oscillations should be maximum, as they would be three components 

of one single wave.      

 

 

Figure 1. Pathway-specific local field potentials (LFPs).  
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(a) Depth profiles of the electrophysiological signals recorded in the dorsal hippocampus (32 
recordings, sites spaced every 100 μm) evoked by an electric pulse stimulating the perforant pathway 
(left panel) or during resting activity (right panel). Black traces represent the LFPs and color maps the 
corresponding current source density (CSD). Evoked activity was used to consistently localize the 
electrodes during implantation. Or, stratum oriens; pyr, pyramidal layer; rad, stratum radiatum; lm, 
stratum lacunosum-moleculare; gc, granule cell layer; hil, hilus. 
(b and c) Examples of voltage- and CSD-loadings of the three pathway-specific LFPs extracted with the 
ICA, with maximum loadings overlapping the corresponding afferent layers in the str. radiatum (Sch-
IC), lacunosum-moleculare (lm-IC) and the molecular layer of the dentate gyrus (PP-IC).  
(d) Position of the recording electrode in one representative animal (arrows). The histological section 
is immunostained with GFAP antibodies.  
(e) The power spectra of the three ICs averaged across subjects show a clear peak at the theta 
frequency and a broadband gamma activity.  
(f) Distribution of gamma amplitude (mean ± s.e.m.) in IC-LFPs along the theta cycles of the LFP 
recorded in pyr CA1, where its trough and peak coincide with 0 and π radians, respectively. Black 
waves are an example of the theta oscillation. Colorcoded bars represent statistically significant values 
relative to the surrogated distribution in all animals (Supplementary Methods).  
(g) Coherence analysis comparing the IC-LFPs against the LFP recorded in pyr CA1 (left) and across 
them (right). Black lines represent the statistical threshold. 
(h) Theta phase difference between IC-LFPs and LFPs recorded in CA1 pyr layer. Gray lines represent 
individual theta wave’s phase relative to CA1 pyr theta trough (at 0/2π radians). Average phase is 
represented by the colored thick line. Length of the thick line represents ICPC. 
See also Figures S1, S2, and S3. 

 

 

Different theta frameworks coexist in the dorsal hippocampus 

To provide direct evidence of the independency between theta current generators, we 

next used an optogenetic approach (Figure 2). Using a transgenic rat cre line (LE-TG[Pvalb-

iCre]2Ottc, NIDA, USA) and adeno-associated virus (AAV1-EF1a-DIO-hChR2(H134R)-

eYFP-WPRE-hGH, Penn Vector Core, USA) injected in the dorsal CA3, we expressed the 

excitatory Channelrhodopsin-2 (ChR2) in parvalbumin positive (PV+) interneurons (Figure 2a, 

Supplementary Methods Elena). Animals (n=3) implanted bilaterally with optic fibres 

targeting dorsal CA3, and multichannel electrophysiological recordings as before (Figure 1) 

were used to test the hypothesis that hippocampal theta generators can be modulated 

independently by activating CA3 PV-interneurons and decreasing the Schaffer collateral 

output. As shown in Figure 2c, blue light illumination (460 nm) in animals freely-exploring an 

open field, significantly and specifically decreased the power of theta in the Sch-IC and the 

corresponding pathway-specific low gamma oscillations. In contrast, the oscillatory activities 

(power and peak frequency) in lm-IC and PP-IC were preserved (Figure 2c). The modulation 

of theta power specifically in the Sch-IC with the preservation of peak theta frequencies in the 
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three generators, supported the existence of different theta oscillators in CA3 and EC (Kocsis 

et al., 1999). 

We next investigated in more detail the functional interactions between the three IC-

LFP theta frequencies. To reduce the error of the theta phase estimation to less than 1% of the 

theta cycle, we selected for further analysis only those epochs in which theta power was four 

times higher than delta (1-4 Hz) activity (Supplementary Methods and Figure S2 for a 

mathematical validation of this threshold). As expected from the results in figure 1g and 1h, 

theta interactions between pathways were not constant in time, but presented periods of high 

and low synchronization (Figure 2d). To get insight into these states, we computed a dynamic 

ICPC for each theta cycle, measuring the variation of the phase relationship between theta 

oscillations with respect to the previous and consecutive cycles (Supplementary Methods, 

Figure S3). The dynamic ICPC was measured for all pairs of IC-LFPs and for the three signals 

simultaneously (Figure 2e, Figure S4). The distribution of the ICPC over all animals showed a 

peak close to perfect phase locking, but with an important tail of low-synchronized epochs, 

with approximately the 20% of the cycles presenting an ICPC lower than 0.8. Again, the 

highest synchronization was found between PP-IC and lm-IC, in agreement with the coherence 

analyses (Figure 1g) and consistent with the origin of these generators in two sublayers of the 

same cortical regions (EC). In order to understand better the temporal dynamics of the theta 

couplings, we analysed the variability of the ICPC across time by comparing the value of a 

given cycle to that of the previous ones (Figure 2f). These results provided a monotonously 

rising curve up to 0.75 s; from there on, the curve hardly increased. This indicates that the 

coupling strength between consecutive cycles spreads on a time scale in the order of one 

second, thus expecting dynamical changes in the ICPC in this time scale. Overall, this 

methodology allowed a cycle-by-cycle characterization of the temporal synchronization in the 

network, highlighting dynamical changes in the coupling strength between hippocampal 

pathways in the theta range. 
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Figure 2. Different theta frameworks coexist in the dorsal hippocampus. 
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(a) Schematic representation of virus injections (left), implantation of optic fibers and multichannel 
electrode (middle) and experimental setup (right).   
(b) Representative images of coronal sections confirming the specificity of ChR2 infection in PV 
interneurons in dorsal CA3. Left, low magnification image showing overlapped DAPI staining (blue), 
PV+ immunostaining (red) and ChR2-eYFP expression (green). Right, higher magnification images from 
the CA3 region showing PV+ immunostaining (red), ChR2-eYFP expression (green) and their co-
localization. White arrows point to double PV+ and eYFP+ interneurons.   
(c) Optogenetic manipulation of PV interneurons. Power spectra analysis (mean ± s.e.m) of the IC-LFPs 
during light OFF (black traces) and light ON (colored traces) conditions. Blue light (470 nm) illumination 
reduced theta and slow-gamma power selectively in Sch-IC (* p<0.05, paired t-test, t=7.88/7.34 for 
theta/gamma Sch-IC, N=3). Note different y-axis scales for low (< 20 Hz) and high (> 20 Hz) frequencies 
for visualization purposes. 
(d) Traces of theta-filtered IC-LFPs showing epochs with high (top) and low (bottom) phase locking 
between their rhythms. Triangles pointing to the peak of theta cycles in each IC-LFP (differentiated by 
colors as before) are used to highlight variability in phase differences. 
(e) Distribution of ICPC values per theta cycle between pairs of components or with the three IC-LFPs 
simultaneously (mean ± s.e.m). 
See also Figure S4. 
(f) Dynamics of ICPC changes. The y axis represents the average ICPC differences in absolute values 
between two cycles, and the x axis represents the time difference between their occurrences. 
Consecutive cycles demonstrate more similar ICPC values than those separated in time up to 0.75 s. 

 

 Theta-gamma CFC reflects pathway-specific interactions  

The above results supported the coexistence of different temporal frames in the theta 

range to organize hippocampal activity. Thus, since gamma activity is nested to the theta cycle, 

it opened the possibility to multiple theta-gamma interactions (Figure 3a). A conventional 

analysis of theta-gamma CFC (Figure 3b) using as a phase reference the theta in the LFP 

recorded in the pyramidal layer, as is usually done (Colgin, 2015a; Colgin et al., 2009; 

Csicsvari et al., 1999; Fernández-Ruiz et al., 2017; Lasztóczi and Klausberger, 2016, 2014; 

Schomburg et al., 2014; Tort et al., 2009, 2008), identified the typical coupling between CA1 

theta and a slow gamma band of CA3 origin (Sch-IC; maximal modulation at 37.5 ± 5 Hz, 

CA1S) (Colgin et al., 2009; Lasztóczi and Klausberger, 2014; Schomburg et al., 2014) and a 

medium gamma band of EC3 origin (lm-IC; 82.5 ± 4 Hz medium gamma, CA1M) (Colgin et 

al., 2009; Lasztóczi and Klausberger, 2014; Schomburg et al., 2014). The analysis also revealed 

an additional theta-nested fast gamma band (130 ± 10 Hz,) in the mid-molecular layer of the 

DG (DGF) overlapping the terminal field of EC2 inputs, compatible with the previously found 

theta-gamma CFC in the DG (Bragin et al., 1995). Interestingly, when we then computed the 

CFC using as references the different theta oscillations separated in the IC-LFPs, we found 

stronger CFC as demonstrated by the significantly higher modulation indices (MI; Figure 3b). 

The result was not totally unexpected, since we had found that the theta oscillation recorded in 
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the LFP and typically used as a reference in CFC analysis, was indeed a mixture of different 

theta generators of variable coherence (see Figure 2d-e above).  

We finally asked whether pathway specific gamma activities were preferentially 

coupled to the theta oscillation in their same afferent pathway, likely reflecting local 

computations, or in different pathways, thus reflecting inter-pathway interactions, or both. 

Results in Figure 3c-d demonstrate a dominant CFC between oscillations recorded in the same 

IC-LFP. Therefore, theta-gamma CFC mainly reflects pathway-specific interactions, rather 

than a unique carrier theta wave to which the gamma activity from different origins is 

multiplexed in segregated theta-gamma channels. The higher theta-gamma CFC found by 

using pathway-specific theta references, provided yet another indication of the coexistence and 

relevance of distinct temporal theta frameworks in the hippocampus. 

 

Figure 3. Theta-gamma coupling reflects pathway-specific interactions.  
(a) Representative theta- and gamma-filtered traces of lm-IC showing how the gamma envelope is 
phase-locked at the trough of the theta oscillation recorded in the same IC-LFP, but not with the 
oscillation recorded in the CA1 pyramidal layer (pyr CA1). 
(b) Modulation strength (color coded MI) of gamma amplitude (30-250 Hz) in the IC-LFPs and the theta 
phase recorded in the pyr CA1 LFP (upper panels) or the pathway-specific thetas in the corresponding 
IC-LFPs (lower panels).  
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(c) Interregional CFC across all gamma and theta oscillations recorded in the three IC-LFPs and pyr 
CA1. Each rectangle represents the MI between the theta phase and the gamma amplitude at a single 
specific frequency (gamma reference: slow/medium/fast gamma for Sch-IC/lm-IC/PP-IC). The location 
and width of the rectangles indicate the theta phase at which gamma amplitude is coupled, and the 
color the MI (color scales at the bottom of each column). Theta waveforms (black traces) are extracted 
as the average of all theta cycles in the corresponding signals. The highest CFC strength (red rectangle) 
was always found between theta and gamma oscillations of the same pathway. 
(d) Maximum theta-gamma CFC corresponds to oscillations recorded in the same IC-LFP, higher than 
any between-pathway combination. Left/middle/right panel represents the MI (mean ± s.e.m.) 
between slow/medium/fast gamma recorded from Sch-IC/lm-IC/PP-IC, and the theta phase of all IC-
LFPs and the LFP from pyrCA1. Significantly stronger MI values were found in all cases when theta 
phases were calculated from the corresponding pathway-specific generators, in contrast to pyr CA1 
LFP, and when theta and gamma oscillations had the same origin (*/** p<0.05/0.01, one-way ANOVA 
of repeated measurements between MI with the same theta reference, followed by Bonferroni 
correction, F(1.182, 4.729)=36.16 / F(1.133, 4.531)=8.649 / F(1.555, 6.219)=35.32 for Sch-IC/lm-IC/PP-
IC as theta reference, N=5).  

 

High theta-gamma CFC is associated to synchronization between theta frameworks 

Having shown that theta generators can be modulated independently and present 

variable synchrony (Figure 2) and gamma nesting is pathway-specific (Figure 3), we next 

explored the theta and gamma features accounting for the different synchronization states. We 

found that theta power in all IC-LFPs correlated with the ICPC, with larger theta power 

associated with states of higher synchronization (Figure 4a, 4b and 4c). Theta frequencies in 

lm-IC and PP-IC progressively increased with the synchronization states (Figure 4a) 

correlating with ICPC (Figure 4b and 4c). Regarding gamma activity, broadband power did 

not correlate with theta synchronization (not shown), in contrast to narrowband power 

(slow/medium/fast gamma for Sch-IC/lm-IC/PP-IC, respectively), which correlated with the 

ICPC in lm-IC, but not in Sch-IC nor PP-IC (Figure 4b).  

Because running speed also correlates with hippocampal theta power and frequency 

(Vanderwolf, 1969), we performed a multiple linear regression (MLR) analysis including 

running speed, theta power and theta frequency as explanatory variables to predict the ICPC 

(Figure 4c). This analysis allowed us to estimate the contribution of each variable to the ICPC 

that cannot be accounted by any other variable in the model. We used for the analysis all theta 

cycles recorded while animals were exploring a familiar open-field. The MI was not included 

in the MLR since its value for individual theta cycles is not reliable. The result demonstrated 

the main effect of theta power on the ICPC value, with a lower, but significant, contribution of 

theta frequency and running speed (Figure 4c, p<0.05, t-test against zero between beta values 

of each factor, Bonferroni corrected, Supplementary Methods). 
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Finally, this analysis unveiled a striking correlation between the CFC and theta 

synchronization (Figure 4b and 4d). Strong theta-gamma modulation was associated with high 

ICPC values, while weak or nearly absent CFC was found in periods of low synchronization. 

Note that, as mentioned above, only cycles with high theta power activity were selected in this 

analysis (Figure 4d), so that signal’s power could not affect the estimation of its phase (Figure 

S2), thus preventing the introduction of any bias in the synchronization measurement (Figure 

S2, Supplementary Methods). This result indicated that within-pathway CFC was associated 

to the synchronization between pathways.  
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Figure 4. Characterization of theta oscillations as a function of their synchronization.  
(a) Power spectrum of the IC-LFPs during high (blue, ICPC > 0.95) and low (red, ICPC < 0.8) theta 
synchronization epochs. A strong increase of the theta peak can be seen in all IC-LFPs during theta 
synchronization, together with a right-shift of the peak frequency for lm-IC and PP-IC.  
(b) Theta frequency correlated with ICPC in lm-IC and PP-IC (black lines represent statistically 
significant linear correlations; R=0.94/0.92, p<0.05, respectively, surrogate test). Theta power 
correlated in all ICs with the synchronization state (R=0.93/0.99/0.99, p<0.05/0.0001/0.0001, 
respectively). Medium-gamma band was correlated with lm-IC (R=0.96, p<0.0001), but not with Sch-
IC nor PP-IC. CFC in all pathway-specific generators increased with ICPC (R=0.71/0.82/0.77, 
p<0.01/0.05/0.001, respectively). Correlations were computed on the mean values of each ICPC bin. 
For all figures, the central mark of the box indicates the median, and the bottom and top edges of the 
box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme 
data points not considered outliers, and the outliers are plotted individually with red asterisks. 
(c) MLR analysis including theta power, theta frequency and speed as factors to predict the ICPC. Bars 
represents the variance explained by each factor that cannot be accounted for by other variables. For 
all cases, the contribution was considered significant (see Supplementary Methods) 
(d) Representative theta and gamma traces showing differences in CFC and theta frequency in two 
synchronization states, from recordings with comparable theta power. 

 

Gamma oscillations consistently precede theta waves  

Theta and gamma oscillations reflect the extracellularly added excitatory and inhibitory 

synaptic and active dendritic currents of two processes occurring at different timescales 

(Herreras, 2016). We hypothesize that CFC may reflect a mechanism through which fast 

excitation-inhibition interactions organize the activity of principal cells in different theta 

frameworks found in our analysis. We then looked for an indication of directionality in the 

interaction between the two frequencies, and computed the cross-frequency directionality 

index (CFD) (Jiang et al., 2015), based on the phase-slope index to compute the phase 

difference between two signals. This methodology was specially developed to estimate the 

directionality between signals with large differences in signal to noise ratio, as theta and 

gamma frequencies, demonstrating in these conditions to be more efficient than classical 

approaches such as Granger Causality (Granger, 1969; Jiang et al., 2015; Nolte et al., 2010). 

In CFD, an increase of the phase difference between the theta phase and the gamma amplitude 

with frequency gives rise to a positive slope of the phase spectrum (i.e. a positive CFD value) 

when the phase of the slow oscillation consistently precedes the amplitude of the fast, this is, 

when the time difference between a theta phase and the next burst of gamma activity is 

constant. The slope is negative when the amplitude of the fast oscillation consistently precedes 

the phase of the slow, in our analysis, when the delay from the gamma activity to the next theta 

cycle is constant. As shown in Figure 5a for the group data, and Figure S5 for individual 

animals, CFD resulted in negative values (amplitude-phase coupling, APC) for the specific 
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gamma bands nested to the theta oscillations in the corresponding IC-LFPs. This gamma 

amplitude to theta phase directionality is given by the consistent anticipation of the gamma 

activity to the theta phase. In Figure 5b, there is a representative example of the gamma-to-

theta directionality in PP-IC. The delay from gamma to theta is almost fixed, while in the 

opposite direction (theta to gamma) is highly variable.  

To validate the finding, we also computed the CFD directly in the LFP signals recorded 

in the different hippocampal layers. To compare with the IC-LFPs, we chose the LFP signals 

from the channels matching the site of maximum contribution to each IC-LFP (Figure 5c and 

5d). Negative values of CFD were found in the LFPs in str. lacunosum-moleculare and in the 

DG, supporting the driving role of gamma oscillations over the phase of the theta waves. We 

could not find a significant directionality in the case of the str. radiatum LFP and, in all cases, 

the absolute value of the CFD was higher using IC-LFPs than LFPs (Figure 5d), demonstrating 

that source-separation tools outperform the use of raw LFPs to investigate pathway 

interactions. Overall, our CFD analysis suggests that the neuronal circuits supporting gamma 

oscillations in the hippocampus set the timing of principal cells activity in the theta range, as 

reflected in the phase of the recorded theta oscillations.  

Finally, an interesting added value of CFD is to discard potential contributions of 

harmonics to the CFC (Sheremet et al., 2019, 2016; Zhou et al., 2019). Spurious couplings 

between the fundamental 8 Hz frequency of the theta rhythm and its harmonics, i.e. at 16 Hz 

or 32 Hz, could be in principle possible (Aru et al., 2015). However, in this scenario, both the 

theta and gamma oscillations are components of the same signal and would be perfectly 

coupled. Therefore, the CFD analysis would fail in detecting a directionality between them. 

The presence of a significant nonzero CFD (either positive or negative) demonstrates that a 

found CFC is not just originated by the presence of harmonics, while a zero value would not 

allow to discriminate the nature of the CFC. In our analysis, the found significant negative 

values of CFD align with the first case. 
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Figure 5. CFD analysis reveals that gamma activity modulates the phase of theta.  
(a) CFD analysis of the pathway-specific signals demonstrates maximum negative values (APC) for 
those pairs of theta-gamma oscillations with the highest CFC (encircled area). These results suggested 
that gamma oscillations modulate the theta phase.  
(b) Example of gamma-to-theta coupling in the PP-IC. The time difference from the maximum of 
gamma activity to the theta peak is almost fixed (APC, blue arrows), while the distance from theta to 
gamma varies in each cycle (PAC, red arrows). 
(c) Same CFD analysis as in (a) using the raw LFP from different hippocampal layers confirmed the APC 
directionality.  
(d) Comparison between CFD values using IC-LFPs and LFPs showed convergent results, with IC-LFPs 
outperforming the raw signals (* p<0.05, paired t-test across subjects between IC and LFP values for 
each IC-LFP separately, t=3.99/2.98/4.59 for Sch-IC/lm-IC/PP-IC, N=5).  
See also Figure S5. 

 

Behavioural modulation of theta-gamma CFC and theta synchronization  

Previous studies have shown that both CFC and inter-region coherence, independently, 

correlate with learning (Canolty et al., 2006; Engel et al., 2001; Fries, 2015, 2005; Palva et al., 

2005; Tort et al., 2009, 2008). Our analysis (Figure 4) now showed that both phenomena seem 

to be linked. Therefore, in our final set of experiments, we looked for behavioral evidence in 

support of the hypothesis that they are part of a common mechanism to flexibly integrate or 

segregate neuronal computations. More specifically, we hypothesized that layer-specific 

interaction will phase-lock theta oscillations between layers to facilitate the integration in CA1 

of CA3-mediated and EC-mediated information streams, for instance, in learning conditions 

requiring the comparison of context representations from memory (Sch-IC pathway) and from 

the environment (lm-IC and PP-IC pathways) (Buzsáki and Moser, 2013; Dudai and Morris, 

2013; Wang and Morris, 2010).  
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One such learning conditions is mismatch novelty (Lever et al., 2006) in which the 

subject is re-exposed to a previously visited context which has been modified. The ‘mismatch’ 

occurs when comparing the expected representation from memory and the found representation 

in the environment. To test whether ICPC and CFC increase in parallel during mismatch 

novelty, we trained the animals in a task in which, after habituation to an open field (8 min 

session 1 per day during 8-10 days, Figure 6a control), we introduced a novel tactile stimulus 

in the floor of the otherwise unchanged field (Figure 6a novelty, see Supplementary Methods). 

We computed and compared theta synchrony and CFC between the novelty session and the 

habituation session the day before. When the animal entered the arena, the ICPC between theta 

oscillations was high and comparable in both conditions during the first two minutes of 

exploration (Figure 6b, t1). As the animal explored the context, synchronization remained high 

during novelty, but rapidly decayed in the known environment (Figure 6b, t2). Consistent with 

the notion of information transmission to update an existing memory, by the end of the 

exploration time both conditions decreased to the same level of theta synchronization (Figure 

6b, t3), when the introduced tactile stimulus lost its novelty. As a control, we tested locomotor 

activity comparing movement velocity between novelty and habituation sessions (Figure 6c), 

without finding differences between sessions (p>0.3, t-test (Figure 6c). Therefore, differences 

in the ICPC cannot be solely explained by changes in locomotor activity. We used MLR 

analysis as before, to investigate now the independent contribution of theta power and 

frequency, experimental condition (control vs. novelty sessions), running speed and time in the 

task to the measured ICPC (Figure 6d). We found that theta power and the experimental 

condition are the main factors contributing to the ICPC value with other variables such us 

running speed and time marginally contributing.   

 We then computed the CFC index (MI) in the same recordings and found that it 

paralleled the changes in theta synchronization during the complete session in both conditions, 

as shown in Figure 6b and 6e. The CFC strength was higher in the three IC-LFPs during the 

novelty sessions associated with the higher theta synchronization, and decreased towards the 

end of the session in parallel with the ICPC (Figure 6e). In contrast to mismatch novelty, 

uncharted novelty involves the exposure to a previously unvisited context and therefore it lacks 

a memory representation. Interestingly, a recent study using an uncharted novelty test showed 

increased theta-gamma CFC exclusively in EC pathways, but not in the CA3→CA1 pathway 

(Barth et al., 2018). Thus, in the absence of a memory representation, only EC-pathways 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 26, 2020. ; https://doi.org/10.1101/418434doi: bioRxiv preprint 

https://doi.org/10.1101/418434
http://creativecommons.org/licenses/by/4.0/


Lopez-Madrona et al - 19 

 

conveying information about the environmental cues demonstrate enhanced theta-gamma 

coupling, lending support to our hypothesis.  

Furthermore, in the above uncharted novelty study, the authors showed that CFC in EC 

pathways preferentially occurs when the animal is rearing on its hind legs, an exploratory 

response to novelty (Lever et al., 2006), which is also associated with increased theta frequency 

(Barth et al., 2018). To investigate the potential contribution of rearing behaviour to our 

findings in the mismatch novelty task, we removed from our recordings the epochs in which 

animals were rearing on their hind legs and then reanalysed ICPC and CFC. As shown in Figure 

S7 the increased theta synchronization between the three IC-LFPs is maintained during novelty 

in the absence of rearing epochs. Similarly, the MI is higher during novelty, although more 

variable, likely reflecting to the decrease in the number of data samples after rearing removal. 

Importantly, increased CFC reached significance in the rearing-associated EC pathways (Barth 

et al., 2018). Overall, the changes found in mismatch novelty cannot be solely explained by 

the rearing behaviour. Furthermore, we measured theta frequency in the complete time series 

and compared it between control and novelty conditions, and did not find an increase 

comparable to unchart noverty (Barth et al., 2018), but rather a significant decrease for Sch-IC 

and PP-IC theta frequency in t2 (Figure S6) (Wells et al., 2013). 
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Figure 6: Local theta-gamma CFC and theta synchronization increase in parallel during mismatch 
novelty.  
(a) Scheme of known (left) and novel (right) open-field contexts. After the habituation period (control), 
the animals were exposed to a different floor (sand paper) located inside the familiar open field, 
providing a new tactile stimulus (novelty). 
(b) Time evolution of the dynamic ICPC (mean ± s.e.m. across all subjects) during exploration: before 
(blue) and after (red) the introduction of the novel tactile stimulus. Both conditions have a maximum 
ICPC value at the beginning of the task (t1), corresponding to the initial exploration, followed by a 
decay in control but not in novelty (t2, inset * p<0.05, paired t-test comparing the average ICPC in 
control vs. novelty for each time period separately, t=3, N=5). Both conditions decrease to the same 
ICPC level by the end of the exploration time (t3). 
(c) Averaged movement velocity of the animals during control and novelty. There were not significant 
differences between both conditions (paired t-test across subjects for each time period, N=4). Colour-
lines represent the values of each subject. 
(d) MLR with theta power, theta frequency, speed, session (control or novelty) and time as 
independent factors contributing to ICPC. Bars represent the variance explained by each factor that 
cannot be accounted for by other variables. All contributions were significant (see Supplementary 
Methods) except for the theta frequency in Sch-IC and lm-IC. 
(e) CFC ratio computed as the ratio between the averaged MI in the defined time window (t1, t2 and 
t3) in the novelty condition with respect to the control one (* p<0.05, paired t-test across subject, 
t=2.95/5.65/2.92 for Sch-IC/lm-IC/PP-IC in t2, N=5). 
See also Figure S6 and S7 
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In a second behavioural experiment, a hippocampus-dependent delayed spatial 

alternation task was used in which the animal needed to remember the arm visited in the 

previous trial and update the memory with the choice made in the current trial (Ainge et al., 

2007; Montgomery and Buzsáki, 2007; Wood et al., 2000), again relying on the interaction 

between context representations form memory and from external sensory cues. Rats learned in 

an 8-shaped T-maze to alternate between the left or right arms on successive trials for water 

reward (Figure 7a) until they reached performances above 80%. In this task, the central arm is 

associated with memory recall, decision making and encoding of the current decision 

(DeCoteau et al., 2007; Montgomery and Buzsáki, 2007; Tort et al., 2008; Wood et al., 2000), 

while neuronal recordings in the side arm are thought to convey little information to predict 

behavioural outcomes in the following trial (Pastalkova et al., 2008; Schomburg et al., 2014). 

Using this task, a phase shift between theta oscillations recorded in CA1 and CA3 pyramidal 

layers was shown associated to the central arm (Montgomery et al., 2009). We then computed 

and compared theta-gamma CFC and theta synchronization in recordings obtained from the 

central and side arms in correct trials, selecting only those epochs were the movement velocity 

was comparable in both arms (Figure 7b). We found significantly increased CFC in the central 

arm for the three IC-LFPs (Figure 7c). This result is consistent with previously shown increased 

CFC in the same task in the CA1 radiatum and lacunosum-moleculare IC-LFPs (Schomburg 

et al., 2014). Importantly, concomitant with CFC, we also found an increase in theta ICPC in 

the central arm during the same epochs (Figure 7d and 7e). The results of the two behavioural 

tasks, thus, demonstrate that theta-gamma CFC and theta ICPC across generators are linked 

and preferentially occur during memory-guided exploration and mismatch novelty detection, 

two conditions in which internally generated memory representations need to be integrated 

with the incoming sensory information about external cues.  They support the idea that different 

theta-gamma frameworks may flexibly coordinate information transmission in the 

hippocampus. 
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Figure 7: Local theta-gamma CFC and theta synchronization change in parallel and associated with 
decision making in a T-maze task.   
(a) Example of running trajectories during the T-maze task. 
(b) Averaged movement velocity in the centre and side arms (mean ± s.e.m. across all subjects). Only 
trials with similar speed in both conditions were considered for the analysis. 
(c) Ratio between the MI at the centre of the maze and that at the sides (* p<0.05, paired t-test across 
subjects, averaging all selected trials for each animal, t=3.61/4.03/3.54 for Sch-IC/lm-IC/PP-IC, N=4).  
(d) ICPC values in the centre and side arms showing the synchronization between the three IC-LFPs (* 
p<0.05, group level paired t-test, t=4.79, N=4). Differences within-subject (colour lines) were done 
with paired t-test using all correct trials (yellow line: p<0.0001, N=114 trials; purple: p<0.05, N=63; 
green: p<0.001, N=151; blue: p=0.07, N=69). 
(e) Representative example of ICPC values for different locations in one trial. 

 

  

Discussion 

Overall, our results provide functional evidence supporting independent theta 

oscillations in the hippocampus whose coordination can be seen as a mechanism to channel 

information between hippocampal layers and bind distributed computations. Less 

synchronized theta states may secure relatively independent processing in local circuits of the 

hippocampal formation (segregation). Theta coordination (phase locking) across hippocampal 

layers is associated with stronger CFC. Furthermore, directionality analysis suggests that band- 

and pathway-specific gamma activity contributes to the synchronization of theta oscillations 

across layers. We thus hypothesize that the CFC reflects a mechanism operated by fast 

excitation-inhibition interactions to coordinate neuronal communication in theta waves. In a 

network with multiple connected nodes, theta-phase locking between specific nodes will 

further contribute to the directionality of the information flow, habilitating targets between 

which communication is permitted or prevented in defined time windows. We have provided 

evidence supporting this hypothesis by showing that CFC and the coordination between the 

theta current generators recorded in the hippocampus increases in the mnemonic process. 

In this work, we have separated the LFP sources contributed by different synaptic 

pathways using spatial discrimination techniques based on independent component analysis 

(Benito et al., 2014; Fernández-Ruiz and Herreras, 2013; Herreras, 2016; Makarov et al., 2010; 

Makarova et al., 2011). This processing step allowed us to work with a more reliable 

representation of the local electrophysiological dynamics, as compared to raw LFPs or CSDs 

(Martín-Vázquez et al., 2013). The main drawback of LFPs is the multisource origin of the 

signals, a blend of dipolar (or quadrupolar) field potentials. While the CSD of multisource raw 

LFPs avoids the problem of volume conduction, it does not separate the co-activating current 

sources in the recorded region, hence the CSD of pathways targeting the same cells (e.g. CA1 
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pyramidal cells) overlap and add/subtract, cancelling each other. In these conditions, the time 

course of the CSD is a composite one (as it is that of native LFPs) and cannot be unambiguously 

assigned to any of the co-activating sources. Therefore, source separation techniques are 

necessary to obtain the correct time course of each individual synaptic contribution. 

Extensive previous research has demonstrated the existence of multiple theta rhythms 

and current generators in the hippocampus and EC (Buzsáki, 2002). While septal activity is 

required for theta rhythmicity, and lesions targeting the medial septum eliminate theta 

oscillation in both structures, intrinsic hippocampal activity from CA3 and extrinsic EC inputs 

do also contribute to the recorded theta oscillations (Buzsáki, 2002). Surgical removal of the 

EC unveils a theta oscillation that depends on the integrity of CA3 and is highly coherent across 

hippocampal layers (Bragin et al., 1995). In the presence of an intact EC, however, the 

coherence between theta signals in the stratum radiatum and lacunosum-moleculare is reduced 

(Kocsis et al., 1999), consistent with an input competition between CA3 and EC3. The different 

modulation of theta oscillations is further supported by our optogenetic experiment and the fact 

that amplitude, frequency and phase vary independently and dynamically in the theta 

generators (Figure 2 and 4, respectively). We find that theta coherence between the generators 

is not fixed; it rather changes dynamically and is regulated by behaviour. Not surprisingly, 

when pathway-specific theta oscillations have been taken as the temporal reference instead of 

the LFP recording, interactions between theta and gamma oscillations were higher (Figure 3). 

Overall, taking brain oscillations as rhythmic changes in neuronal excitability that can define 

sequential information packages (Canolty and Knight, 2010; Fries, 2005), the dynamic 

variation in theta synchrony found in the hippocampus likely reflects multiple theta-

coordinated time-frames, with phase differences between oscillations having a large impact on 

the timing of neuronal firing in the respective layers. Synchronization of theta frameworks will, 

in turn, coordinate, though not necessarily synchronize (Mizuseki and Buzsaki, 2014), firing 

sequences in consecutive hippocampal stations. The processing streams thus generated could 

transmit independent information, e.g. driven by memory retrieval or external environmental 

cues, or the result of integrating/comparing both information sources, depending on the 

cognitive needs.  

Interactions between the phase of the theta oscillation and the amplitude of the gamma 

activity have been extensively documented and proposed as an effective mechanism to 

integrate activity across different spatial and temporal scales (Bragin et al., 1995; Bruns and 

Eckhorn, 2004; Buzsáki and Draguhn, 2004; Canolty et al., 2006; Canolty and Knight, 2010; 
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Colgin, 2015a; Colgin et al., 2009; Engel et al., 2001; Fell and Axmacher, 2011; Lakatos et al., 

2008, 2005; Lisman and Idiart, 1995; Lisman and Jensen, 2013; Mormann et al., 2005; Palva 

et al., 2005; Saleh et al., 2010; Soltesz and Deschênes, 1993; Tort et al., 2009, 2008; Zheng et 

al., 2016). Our analysis demonstrates that phase-amplitude CFC between theta and gamma 

oscillations in the hippocampus is a pathway-specific phenomenon (Figure 3). This 

observation, together with previous and important evidence demonstrating that firing of 

principal cells in CA3 and EC3 is phase-locked to downstream theta-nested gamma oscillations 

recorded in the CA1 stratum radiatum (CA1S) and lacunosum-moleculare (CA1M), 

respectively (Colgin et al., 2009; Lasztóczi and Klausberger, 2014; Schomburg et al., 2014), 

suggest that CFC reflects a local interaction driven by upstream afferences organizing 

downstream circuits in gamma oscillations. Our CFD analysis further supports this 

interpretation, since it shows a predominant amplitude-to-phase coupling for the same 

pathway-specific gamma frequency bands. This does not mean that theta oscillations in the 

hippocampus are generated by gamma activity, on the contrary, we suggest that gamma 

activities, reflecting the interplay of inhibitory-excitatory networks (Cardin et al., 2009; 

Neymotin et al., 2011; Orbán et al., 2006; Rotstein et al., 2005; Stark et al., 2013; Tort et al., 

2007), impose phase shifts on the on-going theta oscillations in their corresponding layers. 

Therefore, local gamma-generating circuits, driven by afferences from their respective 

upstream layers, might not be activated at a particular theta phase, but rather be coordinating 

principal cells activity and setting the phase of the local theta oscillation. 

This interpretation would also explain phase-phase coupling between CA1 theta and 

CA1S and CA1M (Belluscio et al., 2012), as the consequence of theta phase driven by 

pathway-specific gamma activity entrained by upstream inputs in CA3 and EC3, respectively. 

Recent studies, however, highlighted the importance of frequency harmonics and waveform 

asymmetry when measuring phase-phase coupling (Scheffer-Teixeira and Tort, 2016) and also 

amplitude-phase CFC (Cole and Voytek, 2017). Waveform asymmetry in oscillatory activity 

introduce spectral content that cannot be defined solely by sinusoidal components (Amzica and 

Steriade, 1998) and, therefore, may result in spurious CFC (Aru et al., 2015; Cole and Voytek, 

2017; Kramer et al., 2008; Scheffer-Teixeira and Tort, 2016). Several approaches have been 

developed to overcome these limitations (Cole and Voytek, 2019; Kramer et al., 2008), 

improving the estimation of the theta phase and minimizing the effect of sharp edges. We 

applied these methods in our analysis (Suppl. Methods). The specific waveform of an 

oscillation should not be seen as a problem but as a source of physiological information when 
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appropriately considered (Cole and Voytek, 2017). We further introduce CFD as a valuable 

tool to unveil spurious contributions of harmonics to a measured CFC.  

The proposed scenario provides a mechanism to coordinate distributed computations 

organized in theta waves, by synchronizing theta oscillations in connected regions through 

theta-gamma CFC. The highly significant positive correlation between CFC strength and theta 

synchronization found in our study (Figure 4) supports this view. In this way, our results 

explicitly link theta-gamma CFC (Lisman and Idiart, 1995) and coherence-based 

communication (Fries, 2005), the first reflecting the mechanism to align higher excitability 

windows, so that communication channels between specific network nodes are opened. A 

number of different studies investigating learning and memory processes in the entorhinal-

hippocampal network have indeed, but separately, reported increases in theta-gamma CFC or 

synchronization in different frequency bands associated with memory performance (Buzsáki 

and Draguhn, 2004; Canolty and Knight, 2010; Engel et al., 2001; Lisman and Jensen, 2013). 

The association of both phenomena in our study has been possible by the separation of 

pathway-specific LFPs, that otherwise would have render a mixed readout of theta-gamma 

interactions (Herreras, 2016). 

We have suggested a link between CFC and theta synchronization through a gamma-

driven adjustment of theta phase and frequency (Figure 3 and 5). While dissecting the precise 

circuit mechanisms supporting the transfer function from gamma activity to theta phase is out 

of the scope of the present work, several possibilities exist. Computational works have 

demonstrated that theta-gamma CFC emerges from the interactions between functionally 

distinct interneuron populations, as the basket and oriens-lacunosum-moleculare (OLM) cells, 

interconnected in a network of principal cells receiving an external theta rhythm generator, 

such as the septal input (Neymotin et al., 2011; Orbán et al., 2006; Rotstein et al., 2005; Tort 

et al., 2007). The on-going theta oscillation is thus modulated by the inhibitory network, whose 

activity is known to be reflected in the gamma activity in in vivo extracellular recordings 

(Cardin et al., 2009; Csicsvari et al., 1999; Stark et al., 2013), and is associated to pathway-

specific inputs (Colgin et al., 2009; Lasztóczi and Klausberger, 2014; Schomburg et al., 2014). 

Subsets of interneurons can phase-lock to different hippocampal rhythms (Klausberger et al., 

2003; Klausberger and Somogyi, 2008) and, interestingly, recent findings showed in the CA1 

region that some interneurons can specifically phase-lock to CA1S and others to CA1M, 

supporting the idea that different classes of interneurons drive slow and medium gamma 

oscillations (Colgin, 2015b; Fernández-Ruiz et al., 2017; Lasztóczi and Klausberger, 2014). 
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Thus, an appealing mechanism for gamma-modulation of theta phase would be the control of 

different interneuron classes by pathway-specific inputs, which would entrain specific gamma 

networks modulating principal cell excitability and firing in response to on-going theta inputs, 

advancing or delaying theta phase. Spiking resonance in principal cells may contribute to this 

mechanism too, since optogenetic activation of basket interneurons (PV-cells) in the 

hippocampus and neocortex pace pyramidal cell firing in the theta range, by virtue of 

postinhibitory rebound of Ih activity (Stark et al., 2013). In that experiment, theta-band firing 

of excitatory neurons required rhythmic activation of basket cells, as white noise activation 

effectively modulated their activity but did not entrained pyramidal theta-band firing (Stark et 

al., 2013). Feed-forward activation of interneurons from upstream layers or an external 

rhythmic input (i.e. cholinergic or GABAergic inputs form the septum), are thus required for 

resonance amplification. Intrinsic cellular properties and network mechanism may thus interact 

to support gamma-dependent coordination of theta phases across hippocampal layers.   

Interactions between slow and fast brain oscillations have been measured in multiple 

brain regions during perception, attention, learning and memory formation (Buzsáki and 

Draguhn, 2004; Engel et al., 2001; Lisman and Jensen, 2013). Despite its ubiquitous presence 

in fundamental cognitive processes, its function is largely unknown. Our results provide a 

mechanism for binding or segregating distributed computations packed on theta waves and 

routing the information flow based on theta-gamma cross-frequency coupling. Important 

questions remain to be answered. How theta synchronization in the hippocampus relates to 

hippocampal-neocortical interactions (Siapas et al., 2005; Sirota et al., 2008) known to be 

favoured at theta and beta frequencies (Igarashi et al., 2014; Moreno et al., 2016) and 

modulated by synaptic plasticity in the hippocampus (Alvarez-Salvado et al., 2014; Canals et 

al., 2009)? The conditions triggering the coordination between theta-gamma frameworks are 

not well understood, but given that theta-gamma uncoupling seems to represent an early 

electrophysiological signature of hippocampal network dysfunction in Alzheimer’s disease 

(Goutagny et al., 2013; Iaccarino et al., 2016; Palop and Mucke, 2009; Verret et al., 2012) as 

well as for schizophrenia and other psychiatric disorders (Olypher et al., 2006; Phillips and 

Silverstein, 2003; Uhlhaas and Singer, 2006), further and detailed mechanistic investigations 

are granted. 
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Methods 

All animal experiments were approved by the Animal Care and Use Committee of the Instituto 

de Neurociencias de Alicante, Alicante, Spain, and comply with the Spanish (law 32/2007) and 

European regulations (EU directive 86/609, EU decree 2001-486, and EU recommendation 

2007/526/EC). 

Animals and Surgery 

Five male Long-Evans rats, with a weigh of 250-300 g. were trained in different behavioral 

tasks, with a multichannel electrode recording the electrophysiological activity in the 

hippocampus. All of them were implanted with a 32 channels silicon probe (Neuronexus 

Technologies, Michigan, USA) connected in turn to a jumper consisting of two corresponding 

connectors joined by 5 cm of flexible cable. An Ag/AgCl wire (World Precision Instruments, 

Florida, USA) electrode was placed in contact with the skin on the sides of the surgery area, 

and used as ground. The data was acquired at 5 kHz, with an analog high-pass filter at 0.5 Hz. 

After digitalization, we initially low-pass filtered them at 300 Hz, removed the net noise with 

Notch filters at 50 Hz and 100 Hz and down-sampled the signals at 2.5 kHz. We adjusted the 

final position of both electrodes using as a reference the typical evoked potentials at the dentate 

gyrus (Andersen et al., 1966), so that a maximal population spike in the dentate gyrus was 

recorded. 

After the surgery, the rats were left for at least 10 days until they recovered completely. During 

the first 72 hours, they were injected subcutaneously with analgesic twice per day 

(Buprenorphine, dose 2-5 μg/kg, RB Pharmaceutical Ltd., Berkshire, UK). During 1 week, 

they had as well antibiotic dissolved in the water (Enrofloxacin, dose 10 mg/kg, Syva, León, 

Spain). The behavioral tasks were not started until the animals showed no signs of discomfort 

with the manipulation of the implants. 

Data acquisition 

All subjects were trained before the surgery following the next protocol. The first three days 

consisted on a habituation process with two 10-minutes sessions per day in an open field, with 

freedom of movement. The environment was a methacrylate sandbox of 50 x 50 cm, opened 

at the top and with three visual cues in three of the walls. After that, they carried out two new 

sessions per day for 8 days, first repeating the habituation and then performing a modified T-

maze task, that has been described previously (Wood et al., 2000). It consisted in several tracks 

in 8-like shape (132/102/80 cm long/wide/high with track wide 8 cm, Figure 6e). The starting 
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point was located at the beginning of the central rail (Figure 6e, start) and the rat was forced to 

run across that arm (Figure 6e, centre), blocking other pathways with black panels. At the end 

of the track, it must choose one of the two directions of the T-junction and a small drop of 

water was delivered at the corner (Figure 6e, reward) in successfully trials. Each repetition is 

considered successful if the rat chooses the opposite direction with respect to the previous trial, 

finding always a reward at the corner after the T-junction. Then, another panel located after the 

water prevented the rat from retracing its route, forcing it to go to the starting point across the 

corresponding side arm (Figure 6e, side), for a new trial. Each session had a duration of 20 

minutes with around 30 trials, and all the subjects reached a performance greater than 80% in 

the last session. Only correct trials were considered for further analysis. 

After the surgery and recovery, we repeated the same protocol for 8 days. For further 

electrophysiological analysis, we considered only those sessions were the subjects kept a high 

level of performance (80%) without any interference. There were in total between 2 and 5 

sessions of 4 subjects. During the 9th day, we carried out a “novelty” test. The rats were exposed 

to a novelty by introducing them in a “novelty chamber” located inside the familiar open field; 

such chamber was a transparent methacrylate box with a square base 35 cm wide, and 40 cm 

high, opened at the top, with sand paper on the floor to provide a noticeable tactile stimulus. 

After this time, the novelty chamber was removed, and the animals were left another 10 

minutes in the open field, considering this session as the control condition for the analysis. 

Except for the results in figure 6, all the analyses were carried out during the control session 

(last session), with freedom of movement in a well-known environment.  

Optogenetic experiments 

Four male Long-Evans transgenic rats, expressing Cre recombinase under the rat parvalbumin 

promoter (LE-TG[Pvalb-iCre]2Ottc, NIDA, USA), were bred in our facilities, housed in pairs 

with food and water available ad libitum and maintained on a 12/12h light-dark cycle. 

Virus injection and surgeries 

For the surgery, rats were anesthetized with isoflurane (4.5% induction, 1-2% maintenance, in 

0.8 l/min O2) and locally anesthetized by subcutaneous injection of bupivacaine (0.2 ml). All 

rats weighted 300-330 gr at the time of the first surgery. The Cre-dependent viral vector AAV1-

EF1a-DIO-hChR2(H134R)-eYFP-WPRE-hGH (Penn Vector Core) was bilaterally injected in 

dorsal CA3 (AP -3.5mm, LM ±3.6mm from bregma and DV –2.8mm from the brain surface) 
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using a Hamilton syringe attached to an infusion pump (1µl per hemisphere at 1µl/min). Thus, 

ChR2 is specifically expressed in PV+ cells (PV-ChR2).  

Two weeks after the virus injection, rats underwent a second surgery for two fiber-optic 

cannulas and one recording electrode implantation. First, five screws were attached to the skull 

to strengthen the fixation of the implant. As in the previous group of rats, a 32 channels silicon 

probe connected to a jumper (Neuronexus Technologies, Michigan, USA) was placed in the 

left hippocampus covering dorsal CA1 and DG. Reference wires were attached to one of the 

screws. The coordinates for the electrode implantation were AP -3.5mm, LM ±2.5mm from 

bregma and DV –3.0mm from the brain surface, although its final position was adjusted based 

on the electrophysiological potentials evoked by stimulating the perforant pathway. Then, a 

fiber-optic cannula (200 µm diameter, 0.66 NA, 10 mm length; Doric Lenses, Quebec, Canada) 

was placed in the dorsal CA3 of both hemispheres with an angle of 20º in the coronal plane at 

the coordinates AP -3.5mm, LM ±5.2mm from bregma and DV –3.2mm from the brain surface 

(Figure 2a). Once the electrode and the two fibers were positioned, the stimulation electrode 

was removed and several layers of dental cement (SuperBond or Palacos) were applied to 

ensure enough fixation of all the components. The post-operative care was the same as in the 

previous group of rats (see above). One of the subjects was excluded from the experiment after 

the surgery and prior to any analysis due to the reduced quality of its electrophysiological 

recordings. 

Optogenetic manipulation in behaving animals and data acquisition 

All behavioral procedures were conducted during the dark cycle. After the complete recovery 

following the implantation surgery and before starting the experiments, we handled the animals 

during 5 days in order to habituate them to the experimenter as well as to the manipulation of 

the implant (connection of the headstage and the fiber-optic patch cords).  

Rats performed an 8-minutes daily session during 5 consecutive days in an already known open 

field (50x50x40cm box of black methacrylate) with bedding covering the floor. Animals were 

allowed to freely explore the arena in each session while receiving ON/OFF periods of light 

stimulation. The light for excitation of ChR2 was delivered at 50mW/mm2 by a blue LED 

source (Prizmatix, Canada) at a wavelength of 460 nm. Stimulation protocol consisted on 5 

seconds 40-Hz trains with 1-ms light pulses each 30 seconds during the entire session.  

For the bilateral stimulation, we used a branching fiber-optic patch cord (500 µm diameter, 

0.63 NA; Doric Lenses) connected to a rotatory joint (Prizmatix) which in turn connects to the 
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LED source by a fiber-optic patch cord (1 mm diameter, 0.63 NA; Doric Lenses). The power 

density of the delivered light was measured prior to each session using a powermeter (Thorlabs) 

to ensure the same power density in all sessions (50mW/mm2).  

Light pulses were triggered by a stimulus generator (STG2004, Multichannel Systems, 

Reutlingen, Germany) controlled by MC_Stimulus software (Multichannel Systems). 

Electrophysiological data was recorded at 5 kHz sampling rate with an open-source acquisition 

system (Open Ephys) and synchronized with light stimulation and video recording by using an 

I/O board (Open Ephys).  

Inmunohystochemical analysis 

After the performance of the experiments, the rats were perfused intracardially with PFA 4%. 

Brains were kept in post-fixation for 3h at RT and then stored in PBS at 4ºC o/n. Then, brains 

were cut in 50µm-slices to corroborate the viral infection as well as the correct position of the 

recording electrode and the fiber-optic cannulas. Slices were incubated with monoclonal PV 

antibody developed in mouse (1:2000, Swant, Switzerland) and afterwards with an anti-mouse 

secondary antibody developed in goat (1:500, Alexa Fluor 594 dye, Life Technologies, USA). 

After completion of histological treatments, brain sections were imaged using a fluorescence 

microscope (DM4000B, Leica) coupled to a Neurolucida software (MicroBrightField, Inc.) 

and images were processed with Image J software.    

 

Video recording and tracking 

The animals were monitored during all the tasks, and their behavior was recorded using a 

standard camera located at the top of the room. Using those videos, the location of the subjects 

was tracked with a custom-made matlab script, taking their centroid as the refence point. The 

synchronization of the video and the electrophysiological recordings was made triggering a red 

LED and matching the temporal mark that it left in the recordings with the first frame with 

light.   

Current source density analysis of LFPs 

The first approach to achieve the information of the sources contributing to the LFPs was the 

use of current source density (Freeman and Nicholson, 1975; Herreras, 1990; Holsheimer, 

1987; Mitzdorf, 1985) (CSD) analysis. It measures the transmembrane currents, providing a 

spatiotemporal distribution of the local sinks and sources (inward and outward currents, 
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respectively). Contrary to the LFPs, these currents represent spatially localized phenomena, 

increasing the spatial resolution.  

The membrane currents can be achieved following the Laplace equation and using the 

measured field potentials and the conductivity of the medium. As the hippocampus is a layered 

structure, the one-dimensional approach in the direction parallel to the recording electrode was 

used:  

𝐶𝑆𝐷𝑚(𝑡) = −
𝜎

ℎ2
(𝑢𝑚−1(𝑡) − 2𝑢𝑚(𝑡) + 𝑢𝑚+1(𝑡)), 

where  𝑢𝑚(𝑡) is the LFP recorded at the m-th site, ℎ is the distance between channels and 𝜎 is 

the conductivity of the extracellular space. 

We assumed the whole structure as an isotropic and homogeneous medium. Though 

hippocampal strata present different resistivities, they do not affect much to the temporal 

dynamics of specific locations (Herreras, 1990; Holsheimer, 1987; López-Aguado et al., 2001). 

Therefore, the distance and conductivity are constants, and they merely act as a scale factor. In 

this work, the distance between contacts was ℎ  = 100 μm and we assumed a constant 

conductivity 𝜎= 350 Ω-1cm-1 (López-Aguado et al., 2001). 

Though the CSD presents higher spatial resolution than the LFPs, it does not discriminate 

contributions from different pathways. Multiple membrane currents with different origins may 

overlap spatiotemporally, and local currents are also affected by the activity in nearby domains 

(Herreras, 2016; Korovaichuk et al., 2010; Martín-Vázquez et al., 2013). To overcome these 

limitations, we applied an independent component analysis (ICA). 

Independent Component Analysis of LFPs 

The LFP represent the mixed activity of multiple local and remote populations. Methods as the 

CSD allows to eliminate the propagated field potentials and extract the local transmembrane 

currents (see above). Nevertheless, different pathways are contributing to these currents, and 

their activities may overlap spatiotemporally. To disentangle the specific sources that generate 

the LFPs, we applied an ICA. 

The effectiveness of this approach has been well studied and established in the hippocampus 

(Fernández-Ruiz et al., 2012b; Herreras et al., 2015; Korovaichuk et al., 2010; Makarov et al., 

2010; Makarova et al., 2011; Schomburg et al., 2014). It aims to solve the problem of 

separating N statistically independent sources that have been mixed in M output channels. To 
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do that, it performs a blind separation of patterns, because the different distributions of the 

sources are unknown. Moreover, it assumes spatial immobility of the sources or, in other terms, 

a fixed location of the axon terminals. The contribution of their synaptic currents to the LFP 

conforms the different independent components (ICs) or generators to unravel. 

Each recorded time-series 𝑢𝑚(𝑡) is modeled as the sum of N neuronal sources multiplied by a 

constant factor: 

𝑢𝑚(𝑡) = ∑ 𝑉𝑚𝑛𝑠𝑛(𝑡), 𝑚 = 1,2, … , 𝑀,

𝑁

𝑛=1

 

where 𝑉𝑚𝑛 is the mixing matrix with the voltage loadings of N LFP generators on M electrodes 

and  𝑠𝑛(𝑡) is the time-series associated to the n-th LFP generator.  

As the number of ICs with significant variance is usually low (4-7 out of 32) (Benito et al., 

2014; Korovaichuk et al., 2010), we applied a dimension reduction of the loading matrix by 

prior use of principal component analysis, keeping 99% of the original LFP variance. For each 

structure and electrographic state, the number of optimal components is determined by 

stepwise increase of the number of principal components until the new ICs are only noise 

(Makarov et al., 2010). Since noisy components contribute negligible variance (in absence of 

artefacts in the signal) we always choose this number plus two.  There are several algorithms 

to compute the mixing matrix that transforms LFP data into ICs, nevertheless, all of them share 

a common theory framework. In this work, we have used the information-maximization 

approach RUNICA (Bell and Sejnowski, 1995), implemented in the matlab toolbox 

“ICAofLFPs” (http://www.mat.ucm.es/~vmakarov/downloads.php). For comparison 

porpoises, the kernel density ICA algorithm KDICA (Chen, 2006) was also computed, 

obtaining similar results. 

By definition, the ICA may extract as many generators as the number of LFP signals. To 

correctly identify the presynaptic specificity of an IC, several conditions must be taken into 

account. First, each IC contributes differently to the total variance (power) of the LFP. Only 

those with a significant contribution (>1% in this work) were considered for further analysis. 

Second, the anatomic structure of each generator is fixed in each subject (Castellanos and 

Makarov, 2006; Korovaichuk et al., 2010; Makarov et al., 2010). In other words, the spatial 

profile of each ICs must be stable along the time. This was assessed by applying the ICA in 

different short-term epochs (Korovaichuk et al., 2010). Only those components present in all 
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conditions with a stable spatial loading may represent true current generators. Moreover, a 

certain degree of similarity is expected between subjects and a specific pathway should have a 

comparable profile for different animals. Third, the synaptic specificity of each generator was 

determined by stimulating their respective excitatory pathways with subthreshold evoked 

activity (Makarova et al., 2011). Fourth, not every synaptic input leaves a footprint in the LFP. 

The geometry of the region and the distribution of axons and dendrites determines the real 

contribution of each pathway to the field potential (Buzsáki et al., 2012; Herreras, 2016; 

Herreras et al., 2015). This requires specific realistic models to test the multiple origins of the 

measured currents.  

Applying ICA in our data recordings and considering all the conditions mentioned above, we 

were able to extract three common and stable generators in all subjects (Figure 1). They 

correspond to pathway-specific inputs to the hippocampus. Two of them were in CA1, one in 

str. radiatum, which correspond to the synaptic terminals of Schaffer collaterals from CA3 to 

the pyramidal cells in CA1 (Benito et al., 2014; Fernández-Ruiz et al., 2012a; Korovaichuk et 

al., 2010; Makarova et al., 2011; Martín-Vázquez et al., 2016; Schomburg et al., 2014) (Sch-

IC). The other component had a current sink in str. lacunosum-moleculare (lm-IC), where are 

located the inputs from entorhinal cortex layer III (EC3) to the pyramidal cells in CA1 (Benito 

et al., 2014; Martín-Vázquez et al., 2016; Schomburg et al., 2014). A third component was 

identified in the DG, which corresponded to the axons projected from the EC layer II (EC2) to 

the dendrites of the granular cells through the perforant-pathway (Benito et al., 2014; 

Korovaichuk et al., 2010; Makarova et al., 2011) (PP-IC). Note that the active synaptic domain 

of PP-IC was in the molecular layer of the DG, but its field potential was dominant in the hilar 

region (Figure 1). This was generated by the volume conduction of the cell membranes in the 

molecular layer. The field potential of common currents, above and below the hilus, are 

overlapped in this region, thus increasing their electric field (Benito et al., 2014; Herreras, 

2016; Herreras et al., 2015).  

The extracted ICs represent the current sources of specific pathways to the hippocampus. 

Therefore, the temporal dynamics and rhythms of each generator reflects the activity generated 

in different nearby regions (CA3, EC3 and EC2 for Sch-IC, lm-IC and PP-IC, respectively). 

One limitation of this approach is that it cannot separate distinct temporal patterns within the 

same origin (i.e. theta and gamma oscillations). This is the consequence of two main effects. 

First, the same neuron could fire in multiple modes (Vinogradova, 2001). Moreover, the 
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currents generated by synaptic terminals from the same region are fully overlapped in the space 

and their combination made up a single generator. 

Another consideration is that the strongest generators could introduce contamination in other 

components (Korovaichuk et al., 2010; Schomburg et al., 2014). To ensure that the huge theta 

power is not affecting the discrimination of ICs, we separate the LFP in slow and fast rhythms 

by filtering the raw LFPs at 30 Hz (low-pass at < 30 Hz and a high-pass at > 30 Hz, 

respectively). The ICA was applied to each filtered data-set separately. We compared the 

resultant ICs with those using the unfiltered data, confirming that the same generators were 

found in all conditions with quite similar time-series (Figure S2). 

ICA does not ensure the correct polarity and amplitude of each generator. However, as the ICA 

algorithm is invertible, the LFPs generated by each component can be retrieved separately. The 

CSD can be applied to these reconstructed signals, obtaining the sinks and sources of each 

specific pathway. Such partial signals do have the correct polarity and amplitude (Korovaichuk 

et al., 2010; Martín-Vázquez et al., 2013). 

Preprocessing and power analysis of time series 

After computing the ICA algorithm, the dataset corresponding to each subject was composed 

by three time-series. These signals were downsampled at 625 Hz to improve the speed of 

computational analysis. They were also normalized, imposing to each dataset an averaged 

mean value of zero and a standard deviation of one to each signal separately. This way, we 

increase the similarities inter-subject and facilitate their comparison.  

Power spectra were estimated using the multitaper method (Thomson, 1982). For power 

analysis at specific frequency bands we used an approach based on filtering and Hilbert 

transform (Jackson et al., 2006; Ólafsdóttir et al., 2017). First, the signal is bandpass filtered 

with a FIR filter between the frequencies of interest. Then, we computed the Hilbert transform 

and the instantaneous power was estimated as the squared complex modulus of the signal at 

each time point. The mean value was obtained as the averaged power in a certain time window. 

We defined the following frequency bands which are used along the text (unless otherwise 

indicated): delta (1-4 Hz), theta (6-10 Hz), slow gamma (30-60 Hz), medium gamma (60-100 

Hz) and fast gamma (100-150 Hz). 

The linear interaction between IC-LFPs at each specific frequency was assessed using a 

coherence analysis. It measures the ratio between the cross power spectral density and their 

individual power spectral densities and was computed using the mscohere.m function in 
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Matlab. The statistical significance was determined by a surrogate analysis (1000 surrogates in 

this work). With this methodology, the temporal relationship between signals was broken by 

randomly displacing one signal respect to the other. Then, the coherence surrogated results at 

each frequency were approximated to a Gaussian distribution and the significance threshold 

was the value for which the previous cumulative distribution was 0.95 (p=0.05). 

To evaluate the distribution of the gamma activity along the phase of theta, the signals were 

first filtered at the frequencies of interest (gamma and theta) and the amplitude and phase were 

extracted using the Hilbert transform. Then, for each theta cycle, the envelope of the gamma 

activity was divided into N equidistant bins; an average along all cycles was then taken. Similar 

to the coherence analysis, the statistical significance was assessed by a surrogate analysis (1000 

surrogates), randomly shifting the gamma signal with respect to the theta phase. The surrogated 

distribution was estimated by averaging the results of all simulations. 

Detection of theta rhythm 

From the whole recordings, only those epochs with a real theta rhythm in all components where 

considered for further analysis, that is, with high power at that band. Moreover, as oscillations 

with low amplitude could result in a less accurate estimation of their phase, we selected only 

those cycles with a minimum value of theta power to avoid this issue. To find such threshold 

we have modeled theta rhythm data as the combination of theta oscillations (𝑋𝜃(𝑡)) and pink 

noise (𝑋𝑛(𝑡)) to simulate the neural noise of the recordings: 

𝑋𝜃
𝑛(𝑡) = 𝑋𝑛(𝑡) + 𝑋𝜃(𝑡) 

The noise was computed using the function pinknoise from Matlab, while 𝑋𝜃(𝑡) was composed 

by 𝑑 segments or cycles defined as: 

𝑆𝑖
𝑘(𝑡𝑖) = 𝐴(sin(2𝜋𝑓𝑖𝑡𝑖 + 1.5𝜋)) 

Where 𝑘 = 1,2, … , 𝑑  and 𝑓𝑖𝑡𝑖  where selected in order to that cycle had a duration of 𝑇𝑖 ∈

[0.1, 0.145]  seconds, randomly chosen from a normal distribution with mean 0.125 and 

standard deviation 0.02.  

Knowing each 𝑆𝑖
𝑘(𝑡𝑖), we could estimate perfectly the phase of the theta rhythm, i.e. this was 

the ground truth. Briefly, for each simulation we changed the relative power between both 

components by varying the 𝐴 parameter and we estimated the phase of the theta oscillation 

(see below). Doing so, we were able to measure the error between our estimation and the 
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ground truth as a function of the relative theta power and then find the value that minimizes 

that error. A detailed description of these steps follows. 

For each dataset, we bandpass filtered each signal at delta (1-4 Hz) and theta (6-10 Hz) 

frequencies. Then, we computed the Hilbert transform and the instantaneous power was 

estimated as the squared complex modulus of the signal at each time point. The relative theta 

power was obtained as the ratio between the averaged theta by the delta power (Jackson et al., 

2006; Ólafsdóttir et al., 2017). The phase of the oscillation was estimated for the theta filtered 

signal through Hilbert, being zero and π radians the values corresponding to the trough and the 

peak of the cycle, respectively. Finally, the error was measured as the averaged distance (in 

milliseconds) between each trough of the real phase and the estimated one. Additionally, we 

computed the minimum error as that obtained when 𝑋𝑛(𝑡)  is set to zero. This value 

corresponds to the noise introduced by the method used to estimate the phase and does not 

depend on the power. The relationship between the ratio and the error is shown in Figure S3.  

Using the simulated data, we considered that the theta power was not influencing the estimation 

of the theta phase when the error due to the amplitude (i.e. not considering the one introduced 

by the filtering) was lower than 1 ms. This corresponded to a ratio of theta power 3.78 times 

(we took 4 for simplicity) higher than delta (Figure S3). In the real recordings we expect not 

only neural noise but also activity at the delta band. Thus, the theoretical threshold obtained by 

this procedure represent a conservative measurement. For those cases with high delta activity, 

the threshold would be more restrictive as the ratio decreases, but the theta power would be 

always high enough to guarantee a correct estimation of the phase. 

To detect the theta rhythm in all the ICs recorded, we used a sliding window of one theta cycle 

(approximately 125 ms) and selected only those epochs where the ratio between their theta 

power by delta (computed as described above) was higher than 4. Moreover, analysis taken 

thresholds of 6 and 8 were also done for comparison purposes, showing no significant 

differences. 

Optogenetic modulation of pathway-specific theta activity. 

In the Cre-expressing transgenic subjects we analyzed whether the light stimulation of CA3 

PV-interneurons had an effect exclusively in the Schaffer collateral theta output. We compared 

time windows of two seconds immediately after the stimulation with the first two seconds of 

the stimulus. This period was chosen to minimize the influence of different locomotor activities 

between windows. For all trials, only those with theta oscillation (see above) were further 
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considered. Then, we computed the power spectrum of each IC-LFP using a multitaper 

approach (Thomson, 1982).    

Inter-cycle phase clustering 

To estimate the relative theta phase between ICs, we used a modified inter-trial phase clustering  

approach (Cohen, 2014) to account for differences between cycles instead of trials (inter-cycle 

phase clustering, ICPC). In this methodology, each trial is defined as a vector with modulus 

one and the angle corresponding to the phase of the oscillation measured at a specific time 

point (φt). Then, the ICPC is computed as the modulus of the averaged vector among all trials: 

𝐼𝐶𝑃𝐶 = |
1

𝑁
∑ 𝑒𝑖𝜑𝑡

𝑁

𝑡=1

| 

If the distribution of angles is uniform along the polar axis, then the ICPC value is zero. On the 

contrary, values near one indicate a preferred phase in the distribution, being one when all trials 

have the same phase. 

For the analysis in Figure 1h, the phases of each signal were extracted following (Cole and 

Voytek, 2019) to have a better characterization of the shape of the theta rhythm. The LFP 

measured in the pyramidal layer of CA1 (pyr. CA1) was considered as reference, where its 

trough and peak coincide with 0 and π radians, respectively. We calculated the ICPC for the 

different components separately, where each trial was the phase of the IC measured at each 

trough of pyr. CA1. Thus, the number of trials corresponded to the number of theta cycles in 

pyr. CA1 and the angle and value of the ICPC can be interpreted as the phase difference and 

the stability of the IC with respect to pyr. CA1, respectively. 

The statistical significance was assessed by a surrogate analysis (1000 surrogates in this work), 

randomly shifting the phase of the IC and keeping pyr. CA1 constant. For each simulated 

dataset, the ICPC was computed fitting all the surrogated results into a normal distribution. 

Then, the p-value associated to the ICPC of the IC was obtained as 1 minus the previous normal 

cumulative distribution evaluated at the ICPC value. 

Cycle-by-cycle synchronization using ICPC 

Using the ICPC approach, the degree of coherence between theta rhythms was estimated for 

each cycle separately. Doing this process, a dynamic measurement of synchronization can be 

done identifying time epochs of high and low coherence. Considering two ICs, one acting as 
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the reference, the ICPC value of each theta cycle was computed using only three cycles, which 

corresponded to the relative phase at that cycle and the previous and consecutive ones (Figure 

S4). If the waves were highly coherent, then their phase would be similar along theta cycles, 

resulting in an ICPC value close to 1; for those with different phases, the ICPC would be lower. 

In this work, we considered the theta oscillation in lm-IC as the reference to compute the ICPC, 

as it had the highest amplitude at that frequency. Moreover, the ICPC between pairs of signals 

(i.e. lm-IC vs. Sch-IC and lm-IC vs. PP-IC) was averaged as an approximation of the global 

synchronization of the network at each time epoch. 

The instantaneous ICPC can be compared to other metrics as frequency or power, analyzing 

the correlation between synchronized state and the features of the signals. To compute each 

correlation, the data was classified into 10 groups as a function of the ICPC, with ten 

equidistant bins from 0.75 to 1. We chose these values as they contain at least the 90% of the 

cycles in all subjects and 80 cycles per bin (around 10 seconds). Then, the averaged value of 

the different metrics was computed for each group, analyzing the correlation between the 

means and the ICPC value. To identify reliably relationships, we compared if the resultant 

correlation value (ρ) was higher than the obtained by a surrogate analysis. Each simulated 

dataset (100 surrogates in this work) was built by randomly shifting the IC components, 

breaking any temporal relationship between them. Then, the correlation between the ICPC and 

other features of interest were computed, fitting the results to a gaussian distribution. We 

considered that a correlation was significant if its value was higher than the 95th percentile of 

the surrogated distribution. 

Multiple linear regression 

The joint analysis of several features as predictors of the ICPC was done using a multiple linear 

regression (MLR). Firstly, we ranked all the values associated to each feature (function 

tiedrank.m in matlab) to minimize the effect of outlayers in the dataset. Then, a single MLT is 

fitted using each predictor multiplied by a beta factor:  

𝐼𝐶𝑃𝐶 = 𝛽0 + 𝛽1𝑝𝑜𝑤𝑒𝑟 + 𝛽2𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝛽3𝑠𝑝𝑒𝑒𝑑 + ⋯ + 𝜀 

Where 𝛽0 is a constant value and 𝜀 are the residuals. 

The contribution of one specific predictor to the total explained variance of the model is 

estimated by fitting a reduced MLR without that predictor and computing the difference 

between variances in the full model minus the reduced one. 
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To estimate if each variable is significantly contributing to the ICPC across subjects, we 

followed (Montgomery and Buzsáki, 2007) and we tested their associated beta values for a 

statistical difference from zero (t-test, Bonferroni corrected). 

Cross-Frequency Coupling 

Interactions between the phase of a low frequency oscillation and the amplitude of a faster one 

were measured using an approach based on the modulation index (MI) (Canolty et al., 2006; 

Tort et al., 2008). The original method computed the phases and amplitudes through filtering 

and Hilbert transform. Nevertheless, theta rhythms in the hippocampus are non-sinusoidal 

oscillations and filtering the signal results in errors at estimating the waveform shape and could 

introduce spurious coupling (Cole and Voytek, 2017; Kramer et al., 2008). A new methodology 

has been proposed to overcome this issue and estimate the instantaneous phase of this kind of 

oscillations (Cole and Voytek, 2019). Briefly, we used a combination of a narrowband filter to 

detect the zero-crossing points (which correspond to the ascendant and descendant slope of the 

oscillation, or the phases π/2 and 3π/3, respectively) and a broadband filter to find the trough 

and the peak (phases 0 and π, respectively). This way, the phase of the signal does not vary 

monotonically (as in the case of a sinusoidal one) but could follow fast changes in the cycle as 

an abrupt ascendant slope and a soft descent. We named this signal as 𝑥𝜃𝜑(𝑡). 

The amplitude of the faster oscillation is computed as the envelope of the signal filtered at the 

specific frequency which we want to analyze. First, we used a filter centered at that frequency 

and with a bandwidth at least two times the frequency of the phase signal where the coupling 

is expected to be maximum (Aru et al., 2015). Considering that the main rhythm in the 

hippocampus is around 8 Hz, the bandwidth should have at least 16 Hz (we used 20 Hz in this 

work). Then, the envelope is computed using the Hilbert transform. The resultant signal is 

labelled as 𝑥𝛾𝐴(𝑡). 

To compute the MI, we divide each cycle of 𝑥𝜃𝜑(𝑡) into N bins. To avoid the issues introduced 

in this method due to the previously mentioned non-uniform theta oscillation (Cole and 

Voytek, 2017; van Driel et al., 2015), these bins were not of the same size, but were equalized 

along the phase of the theta cycle. Instead of using N bins, we divided each cycle into 4 

segments which correspond to the epochs between the peak, the trough and both ascendant and 

descendant pendants (Cole and Voytek, 2019), and then divided that segment into N/4 bins of 

the same size. Therefore, N/4 bins were used from the trough to the middle of the ascendant 

phase, N/4 bins from this point to the peak and so on. After that, we computed the mean 
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amplitude of 𝑥𝛾𝐴(𝑡) at each bin, calling < 𝑥𝛾𝐴 >𝜑 (𝑗) the amplitude at the phase bin 𝑗. From 

them, we can calculate the entropy 𝐻, defined by: 

𝐻 = − ∑ 𝑝𝑗 log 𝑝𝑗

𝑁

𝑗=1

 (12) 

where N was set to 20, and 𝑝𝑗 is given by 

𝑝𝑗 =
< 𝑥𝛾𝐴 >𝜑 (𝑗)

∑ < 𝑥𝛾𝐴 >𝜑 (𝑗)𝑁
𝑗=1

 (13) 

The value of MI is obtained normalizing 𝐻 by the maximum entropy (𝐻𝑚𝑎𝑥), given by the 

uniform distribution 𝑝𝑗 = 1 𝑁⁄  (i.e. 𝐻𝑚𝑎𝑥 = log 𝑁): 

𝑀𝐼 =  
𝐻𝑚𝑎𝑥 − 𝐻

𝐻𝑚𝑎𝑥
 (14) 

A value of MI near to 0 indicates lack of phase-to-amplitude modulation, while larger MI 

values reflect higher coupling between both signals. The statistical significance has been 

assessed following the steps proposed by Canolty and colleagues (Canolty et al., 2006), by a 

surrogate analysis (n=100 surrogates) in which each surrogate is built by cutting the phase 

signal at a random point and exchanging the resultant segments. This breaks the temporal 

relationship between both time-series minimizing the distortion of their dynamics (Aru et al., 

2015). The MI estimated among surrogates represents the coupling due to the oscillatory nature 

of the signals but not by a real temporal relationship. Therefore, the MI values of all surrogates 

are approximated to a gaussian distribution, whose 95th percentile is considered as a 

significance threshold.  

Cross-Frequency Directionality 

The MI is a measurement of the degree of interaction between the phase and the amplitude of 

two frequencies, but it has no information regarding the directionality in this coupling. On the 

one hand, the theta phase would modulate the amplitude at gamma frequencies while, on the 

other hand, the gamma activity could be leading the phase. To identify leader and follower in 

this interaction, we have used the cross-frequency directionality (CFD) index (Jiang et al., 

2015). The main idea is that, supposing that the phase component precedes the amplitude with 

a fixed time delay of k ms, the distance from the peak of the phase to the next peak of the 

amplitude should be k ms (i.e. there is an increase of gamma activity k ms after the peak of 

theta phase). Thus, as not all phase cycles have the same duration, the distance from the peak 
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of the gamma amplitude to the next peak of theta may vary. Nevertheless, in the case of gamma 

activity preceding theta, the result would be the opposite. The peak of gamma activity should 

appear k ms before the peak of the phase, while the timing from phase to amplitude would be 

different for each cycle. Note that the CFD is an estimation of the temporal relations between 

signals, but not a measurement of causality per se as, for example, a third source could be 

interacting with both signals.  

The CFD identifies this relationship using the phase-slope index (Nolte et al., 2008) (PSI), a 

measurement of directionality between time series. Briefly, if the oscillation of one signal x(t) 

at a certain frequency is driving a second one y(t) with a time delay, then the phase difference 

between them at that specific delay will change consistently with the frequency of the signals. 

The slope of the phase is obtained in function of the frequency, and its sign will indicate who 

is the driver. If the slope is positive (higher the frequency, higher the phase difference between 

signals) then x(t) leads y(t) in time, while negative values would indicate that y(t) precedes x(t). 

The CFD is a variant of the PSI, where one signal is the theta component, and the other the 

envelope of the gamma activity.  

Calling 𝑥(𝑡) to the original signal, 𝑥𝛾𝐴
𝑣 (𝑡) to the power envelope of the signal at a 𝑣 gamma 

frequency, and being 𝑋 and 𝑋𝛾𝐴
𝑣  their Fourier transform, respectively, the CFD is defined as 

the PSI by: 

𝜓(𝑣, 𝑓𝑗) = Im (∑ 𝐶∗(𝑣, 𝑓𝑗)𝐶 (𝑣, (𝑓𝑗 + ∆𝑓))
𝑓𝑗+

𝛽
2

𝑓𝑗−
𝛽
2

) 

where 

𝐶(𝑣, 𝑓𝑗) =
∑ 𝑋𝑠𝑆

𝑠=1 (𝑋𝛾𝐴
𝑣,𝑠)∗

√∑ |𝑋𝑠|2𝑆
𝑠=1 ∑ |𝑋𝛾𝐴

𝑣,𝑠|
2𝑆

𝑠=1

 

is the complex coherency, 𝑓𝑗 is the theta frequency under study, 𝑆 is the number of segments 

in which the signal has been divided and β is the bandwidth for which the phase slope is 

measured, and it has been fixed at 2 Hz, 4 times the resolution (∆𝑓 = 0.5 Hz). 

This methodology has been proposed specifically for those frameworks with phase-amplitude 

coupling as more classical approaches like Granger Causality (Granger, 1969) have some 

unavoidable limitations due to the use of filters (Barnett and Seth, 2011) and the differences of 
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signal-to-noise ratio in both components (Nolte et al., 2010), which provoke that they cannot 

identify the correct directionality in CFC models (Jiang et al., 2015). 

To provide statistical significance, a new surrogate test (n=100 surrogates) has been developed 

following the same steps than in the MI analysis. Note that in this case, two thresholds are 

imposed, considering both tails of the gaussian distribution (i.e. positive and negative values). 

In this work, we have used the Matlab toolbox HERMES (Niso et al., 2013) and the 

implementation of PSI in Matlab code (http://doc.ml.tu-berlin.de/causality/). To emphasize the 

directionality in the region of higher CFC, the MI comodulogram has been redefined as a mask, 

with values from 0 to 1 (minimum and maximum value MI). Applying this mask to the CFD 

comodulogram, areas without phase-amplitude coupling will be attenuated, while the main 

cluster remains constant. 
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Figure S1: Signal pre-processing minimally affects the ICA results. (A) Voltage loadings obtained from 
an ICA applied to the raw (broadband) LFP recording (left), to the same LFP but low-pass filtered at 30 
Hz (centre) or high-pass filtered at 30 Hz (right). In all cases, the three main components share a 
common spatial pattern, with maximums at their afferent hippocampal pathway. (B) Examples of time 
series comparing the IC-LFP extracted by computing the ICA algorithm and then filtering the signal 
(black traces), versus those obtained by filtering first the LFPs and then applying ICA (colour-coded 
traces). There are no significant differences neither in the phase of the theta rhythm (center, low-pass 
filtered at 30 Hz) nor in the amplitude of gamma oscillations (right, high-pass filtered at 30 Hz). 
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Figure S2: (a) Phase estimation error for simulations with different ratio between theta and delta 
power. Each point of the solid black line represents the mean error and the grey shadow the standard 
deviation over 100 simulations. The dashed line is the minimum error, when no noise is added to the 
model and the estimation does not depend on theta power. The red line marks the point where error 
due to power is lower than 1 millisecond (ratio = 3.78). (b) Estimation of the error in the ICPC between 
two signals as a function of the ratio between theta and delta, following the same methodology as in 
panel (a) to simulate the signals. For a ratio of 3.78, the accuracy of the ICPC value has and error lower 
than ± 0.01. 
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Figure S3: Examples of synchronization using ICPC. (Top) Temporal traces of Sch-IC (filtered at theta 
frequency) and the theta phase of lm-IC. Each step in the saw-tooth signal (π radians) is marked with 
a red triangle and corresponds to a peak in the theta oscillation of lm-IC. Black dashed lines indicate 
the cycle under consideration. (Bottom) The synchronization between signals is measured by 
computing the ICPC using the previous, present and consecutive cycles.  
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Figure S4: Representative values of ICPC in one animal along time. The dashed line represents the ICPC 

computed between the three IC-LFPs, while color-coded curves are the ICPC between pairs of IC-LFPs. 

A schematic diagram of the connectivity at specific time points is shown at the top, where the 

thickness of the lines represents the ICPC value between pairs. For clarity, epochs of lower ICPC are 

represented as nodes without links. 
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Figure S5: CFD for individual animals measured along all the recording time. Significant negative values 
(gamma amplitude drives theta phase) were found in 4 out of 5 subjects in Sch-IC and lm-IC for those 
pairs of frequencies with maximum CFC (37.5 ± 5 Hz in Sch-IC and 82.5 ± 4 Hz in lm-IC), while negative 
CFDs were significant in PP-IC for all subjects. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 26, 2020. ; https://doi.org/10.1101/418434doi: bioRxiv preprint 

https://doi.org/10.1101/418434
http://creativecommons.org/licenses/by/4.0/


Lopez-Madrona et al - 59 

 

 

Figure S6: Ratio of theta frequency in novelty sessions with respect to control sessions and for three 

different time windows during the task (* p<0.05, paired t-test, N=5).  
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Figure S7: Comparison between ICPC (left, ** p<0.01, paired t-test between subjects, t=7.86, N=4) and 

MI (right) in control versus novelty sessions after discarding epochs of rearing in the recordings (* 

p<0.05, paired t-test between subjects, t=3.34/4.91 for lm-IC/PP-IC in t2, N=4). 
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