
1

On Inferring Additive and Replacing Horizontal
Gene Transfers Through Phylogenetic

Reconciliation
Misagh Kordi, Soumya Kundu, and Mukul S. Bansal

✦

Abstract—Horizontal gene transfer is one of the most important mech-
anisms for microbial evolution and adaptation. It is well known that
horizontal gene transfer can be either additive or replacing depending on
whether the transferred gene adds itself as a new gene in the recipient
genome or replaces an existing homologous gene. Yet, all existing
phylogenetic techniques for the inference of horizontal gene transfer
assume either that all transfers are additive or that all transfers are
replacing. This limitation not only affects the applicability and accuracy of
these methods but also makes it difficult to distinguish between additive
and replacing transfers.

Here, we address this important problem by formalizing a phylo-
genetic reconciliation framework that simultaneously models both ad-
ditive and replacing transfer events. Specifically, we (1) introduce the
DTRL reconciliation framework that explicitly models both additive and
replacing transfer events, along with gene duplications and losses, (2)
prove that the underlying computational problem is NP-hard, (3) perform
the first experimental study to assess the impact of replacing trans-
fer events on the accuracy of the traditional DTL reconciliation model
(which assumes that all transfers are additive) and demonstrate that
traditional DTL reconciliation remains highly robust to the presence of
replacing transfers, (4) propose a simple heuristic algorithm for DTRL
reconciliation based on classifying transfer events inferred through DTL
reconciliation as being replacing or additive, and (5) evaluate the classifi-
cation accuracy of the heuristic under a range of evolutionary conditions.
Thus, this work lays the methodological and algorithmic foundations
for estimating DTRL reconciliations and distinguishing between additive
and replacing transfers.

An implementation of our heuristic for DTRL reconciliation is freely
available open-source as part of the RANGER-DTL software package
from https://compbio.engr.uconn.edu/software/ranger-dtl/.

Keywords: Phylogenetic reconciliation; horizontal gene
transfer; additive transfer; replacing transfer; xenologous
gene displacement; DTRL reconciliation

1 INTRODUCTION

The transfer of genetic information between organisms that
are not in a direct ancestor-descendant relationship, called
horizontal gene transfer or simply transfer for short, is a crucial
process in microbial evolution. The problem of detecting

• Department of Computer Science & Engineering, University of Connecti-
cut, Storrs, USA. mukul.bansal@uconn.edu

• Misagh Kordi is currently with the Department of Computer Science at
the University of California, Los Angeles, CA, USA. Soumya Kundu is
currently with the Department of Computer Science at Stanford Univer-
sity, CA, USA.

transfer events has been extensively studied and many
different methods have been developed for the problem; see,
e.g., [32] for a review. The two most widely used classes of
methods are those based on atypical sequence composition
and those based on phylogenetic discordance. Sequence
composition methods look for atypical dinucleotide fre-
quencies, codon usage biases, or other sequence features
that might indicate instances of horizontally acquired genes,
but are only effective at short evolutionary time scales and
are unable to accurately identify the donors and recipients
of transfer events [32], [12]. Phylogenetic methods rely on
the fact that horizontal transfers leave tell-tale phylogenetic
signatures in the topologies of the transferred genes. These
methods construct gene trees for individual gene families
and compare them to known species phylogenies to infer
possible transfer events. It is well-understood that when a
gene is horizontally transferred, it may either add itself as
a new gene to the recipient genome, resulting in an additive
transfer, or replace an existing homologous gene, resulting
in a replacing transfer [19], [9], [18]. Yet, there do not cur-
rently exist any phylogenetic methods that simultaneously
model both these types of transfers. This limitation not only
affects the applicability and accuracy of these methods but
also makes it difficult to distinguish between additive and
replacing transfers.

Phylogenetic methods for inferring transfer events can
be divided into two classes: (i) Those that implicitly as-
sume that all transfers are replacing transfers and that all
discordance between gene trees and species trees is due
to these replacing transfer events, e.g., [13], [5], [24], [30],
[17], [6], [15], [1], and (ii) those based on the Duplication-
Transfer-Loss (DTL) reconciliation framework, which model
gene duplication and gene loss as additional sources of
gene tree/species tree discordance, but implicitly assume
that all transfers are additive transfers, e.g., [11], [23], [31],
[10], [8], [2], [27], [28], [29], [25], [16], [20]. Thus, no existing
phylogenetic method models both additive and replacing
transfers. And while methods based on DTL reconciliation
represent a major advance in the ability to accurately detect
transfer events, they are limited by their inability to properly
handle replacing transfers.

Our contribution. In this work, we define and formalize
a phylogenetic reconciliation framework that simultane-

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

2

ously models both additive and replacing transfer events.
Our framework builds upon the standard parsimony-based
DTL reconciliation model [31], [2], which assumes that the
species tree is undated and seeks an optimal (and not nec-
essarily time-consistent) reconciliation, by explicitly mod-
eling replacing transfer events.1 Specifically, we formally
define the Duplication–Additive-Transfer–Replacing-Transfer–
Loss (DTRL) reconciliation model that explicitly models both
additive and replacing transfer events, along with gene du-
plications and losses. As with the underlying DTL reconcili-
ation model, we formulate the DTRL reconciliation problem
as one of finding a most parsimonious DTRL reconciliation,
i.e., one with smallest total “reconciliation cost”. We prove
that the problem of computing a most parsimonious DTRL
reconciliation is NP-hard, using a reduction from the NP-
hard minimum rooted Subtree Prune and Regraft (rSPR) distance
problem, and perform the very first experiments to study
the impact of replacing transfer events on the accuracy of
DTL reconciliation itself. Surprisingly, we found that DTL
reconciliation is highly robust to the presence of replacing
transfer. Based on these results, we devise a simple heuristic
to classify transfer events inferred through DTL reconcili-
ation as being either additive or replacing, and study its
classification accuracy using simulated datasets over a range
of evolutionary conditions. Our experimental results show
that, even though the problem of inferring optimal DTRL
reconciliations is NP-hard, it should be possible to design
effective heuristics for the problem based on the simpler,
and efficiently solvable, DTL reconciliation model.

We note that the problem of integrating replacing trans-
fers with DTL reconciliation has also been recently, and
independently, studied by Hasic and Tannier in a recently
published manuscript [14]. That manuscript proves that
the problem of inferring replacing transfers through phy-
logenetic reconciliation is NP-hard when the species tree is
dated. However, the results in that manuscript are largely
complementary to the current work. Specifically, we provide
a rigorous and precise formalization of the DTRL recon-
ciliation framework, our proof of NP-hardness is not only
completely different but applies to the undated version of
the problem where the species tree is undated (arguably the
more widely applicable version of the problem), we provide
the first experimental results on the impact of replacing
transfer on conventional DTL reconciliation, and we devise
and evaluate the first heuristic algorithm for estimating
optimal DTRL reconciliations.

An abridged version of this paper without proofs ap-
peared in the Proceedings of the 10th ACM International
Conference on Bioinformatics, Computational Biology and
Health Informatics (ACM-BCB 2019) [21].

The remainder of the manuscript is organized as follows:
Basic definitions, preliminaries, and a formal description of
the DTRL reconciliation model appear in the next section.
The NP-hardness proof appears in Section 3, and experi-
mental results on the effect of replacing transfers on DTL

1. Note that the DTL reconciliation model [31], [2] on which our
new model is based allows the inferred reconciliation to be time-
inconsistent. This is simply because imposing time consistency makes
the DTL reconciliation problem NP-hard [31], while allowing time-
inconsistency makes the problem efficiently solvable with negligible
impact on accuracy.

reconciliation are described in Section 4, and our heuristic
for classifying transfers is described and tested in Section 5.
Concluding remarks appear in Section 6.

2 DEFINITIONS AND PRELIMINARIES

We follow basic definitions and notation from [2]. Given a
rooted tree T , we denote its node, edge, and leaf sets by
V (T), E(T), and Le(T) respectively. The root node of T is
denoted by rt(T), the parent of a node v ∈ V (T) by paT (v),
its set of children by ChT (v), and the (maximal) subtree of
T rooted at v by T (v). The set of internal nodes of T , denoted
I(T), is defined to be V (T) \ Le(T). We define ≤T to be
the partial order on V (T) where x ≤T y if y is a node
on the path between rt(T) and x. The partial order ≥T is
defined analogously, i.e., x ≥T y if x is a node on the path
between rt(T) and y. We say that y is an ancestor of x, or
that x is a descendant of y, if x ≤T y (note that every node
is a descendant as well as ancestor of itself). We say that
x and y are incomparable if neither x ≤T y nor y ≤T x.
Given a non-empty subset L ⊆ Le(T), we denote by lcaT (L)
the last common ancestor (LCA) of all the leaves in L in
tree T ; that is, lcaT (L) is the unique smallest upper bound
of L under ≤T . Given x, y ∈ V (T), x →T y denotes the
unique path from x to y in T . We denote by distT (x, y) the
number of edges on the path x →T y; note that if x = y
then distT (x, y) = 0. Given a set L ⊆ Le(T), let T ′ be the
minimal rooted subtree of T with leaf set L. We define the
leaf induced subtree of T on leaf set L, denoted T [L], to be the
tree obtained from T ′ by successively removing each non-
root node of degree two and adjoining its two neighbors.
A tree is binary if all of its internal nodes have exactly two
children. Throughout this work, the term tree refers to rooted
binary trees.

A species tree is a tree that depicts the evolutionary rela-
tionships of a set of species. Given a gene family from a set
of species, a gene tree is a tree that depicts the evolutionary
relationships among the sequences encoding only that gene
family in the given set of species. Thus, the nodes in a
gene tree represent genes. Throughout this work, we denote
the gene tree and species tree under consideration by G
and S, respectively. We assume that each leaf of the gene
tree is labeled with the species from which that gene (se-
quence) was obtained. This labeling defines a leaf-mapping
LG,S : Le(G) → Le(S) that maps a leaf node g ∈ Le(G) to
that unique leaf node s ∈ Le(S) which has the same label as
g. Note that the gene tree can have zero, one, or more than
one gene from any species under consideration. The species
tree contains at least all the species represented in the gene
tree.

2.1 Additive and replacing transfers

When a gene is horizontally transferred, there are two pos-
sibilities for how it may incorporate itself into the recipient
genome. The first possibility is that the transferred gene
inserts itself to the recipient genome without overwriting
any existing genes, thereby creating a new gene locus for
itself. The second possibility is that the transferred gene
replaces an existing homologous copy of itself, preserving
the total number of genes in the recipient genome; this

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

3

� � � � �

���	
�������

����������	
���	�
���������
������

����
������	
���	
���������
������

� �� ��

�����������

� � � � ��

�����������

Fig. 1. Additive and replacing transfers. This figure shows the evolution
of two gene families inside the same species tree. Both gene families
exist in the root of the species tree and evolve according to the topology
of the species tree without any gene duplications or losses. Gene family
1 is affected by a replacing transfer event, as shown in the figure by the
upper orange (dashed) arrow. Gene family 2 is affected by an additive
transfer event, as shown by the lower orange (dashed) arrow. The
topologies of the resulting gene trees for these two gene families are
shown.

type of horizontal transfer is sometimes also referred to as
xenologous gene displacement [19].

Definition 2.1 (Additive transfer).
An additive transfer is a horizontal gene transfer that inserts

itself into the recipient genome through the addition of a new gene
locus.

Definition 2.2 (Replacing transfer).
A replacing transfer is a horizontal gene transfer that inserts

itself into the recipient genome by replacing a homologous gene at
an existing gene locus.

Note that additive transfers result in an increase in
the total number of genes in the recipient genome, while
replacing transfers do not. We also point out that replacing
transfers can only happen if the recipient genome already
contains a homologous copy of the gene being transferred.
Figure 1 illustrates how additive and replacing transfer
events impact the resulting gene tree topology.

2.2 DTRL Reconciliation

The Duplication–Additive-Transfer–Replacing-Transfer–Loss
(DTRL) Reconciliation model is based upon the well-studied
parsimony-based DTL reconciliation framework [31], [2]
(which implicitly assumes that all transfer events are
additive). However, the introduction of replacing transfers
into the model poses several challenges, as we describe
below, and the DTL reconciliation framework must
therefore be substantially extended to allow for replacing
transfers. Specifically, to fully specify a DTRL reconciliation,
we must (i) account for hidden duplication or transfer
events that do not label any node of the gene tree, and (ii)
include in the reconciliation those gene lineages that have
been lost (i.e., are no longer visible on the gene tree) but
which played a role in the evolution of that gene family
by participating in transfer events. We elaborate on these
below.

���������	����

��

�����	����

� �� � � �

���������	����
���������������	�����

�

���

� �� � � ��

���

� �� � � �� �� � � � �

�

� � �

��

���������	����
���������������	�����

�

� �� � � �� �� � � � �

�

� � �

���

Fig. 2. Hidden events and augmented gene trees. Parts (b) and (c) of
the figure show two alternative DTRL reconciliations for the gene tree
G and species tree S shown in Part (a). Each reconciliation shows the
augmented gene tree G′, the event type for each internal node in the
augmented gene tree (where Σ represents speciation, ∆ represents du-
plication, ΘA represents additive transfer, and ΘR represents replacing
transfer), and the red arcs show the mapping for each node of G′ not
in Le(G) (the mapping for each leaf node of G is implicitly defined by
its leaf label). The bold orange edges represent transfer edges. The
reconciliation in Part (b) invokes an additive transfer event and a loss
event. For this reconciliation in Part (b), G′ is the same as G. The
reconciliation in Part (c) invokes a replacing transfer event, a hidden
gene duplication event (marked by the blue star), and a loss event. The
invisible lineage replaced by the replacing transfer event is shown by the
purple dotted line in G′.

Hidden events. Unlike the DTL reconciliation model, where
each speciation, duplication, or transfer event required by
the reconciliation can be assigned to an individual gene tree
node, a most-parsimonious DTRL reconciliation may postu-
late duplication and transfer events (additive or replacing)
that cannot be assigned to any node on the gene tree.
Such hidden events may be required for most-parsimonious
DTRL reconciliation but are invisible on the gene tree either
because only descendants from one of the loci resulting
from a duplication or additive transfer event survive in
the gene family or because they appear on an invisible
lineage. The reason hidden events can occur in optimal
DTRL reconciliations is that one of the loci resulting from
the hidden event is subsequently used (and overwritten)
by one or more replacing transfers. This phenomenon is
illustrated in Figure 2.

Invisible gene lineages and augmented gene trees. To
properly recover replacing transfer events and correctly
count the number of losses, it is necessary to postulate and

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

4

account for those gene lineages that are no longer visible
on the gene tree but which played a role in the evolution
of that gene family by participating in replacing transfer
events. Such invisible gene lineages can result from dupli-
cation, speciation, or transfer events, but become invisible
because no descendants survive in the extant gene family.
If these lineages do not participate in any transfer events
that impacted the rest of the gene tree, then they can be
safely ignored, but otherwise they must be accounted for if
replacing transfers are to be recovered accurately and the
number of losses counted correctly. We account for invisible
lineages by augmenting the input gene tree with additional
edges/subtrees, resulting in an augmented gene tree, and
showing the DTRL reconciliation for this entire augmented
gene tree. Figure 2 shows an example of an augmented gene
tree and illustrates why it is important to consider invisible
gene lineages.

The DTRL reconciliation model takes as input a rooted
gene tree and a rooted species tree and defines a framework
for reconciling the gene tree with the species tree by postu-
lating duplication, additive transfer, replacing transfer, and
gene loss events. The reconciliation creates an augmented
gene tree, maps each augmented gene tree node to a unique
species tree node, respecting the temporal constraints im-
plied by the species tree topology, and designates each aug-
mented gene tree node as representing either a speciation,
duplication, additive transfer, or replacing transfer event.
For any gene tree node, say g, that represents a transfer
event, the reconciliation also specifies which of the two
edges (g, g′) or (g, g′′), where g′, g′′ denote the children
of g, represents the transfer edge and identifies the recip-
ient species of the corresponding transfer. If g represents
a replacing transfer event, the reconciliation also identifies
the specific gene lineage that was lost as a result of that
replacing transfer.

Next, we define what constitutes a valid DTRL reconcil-
iation.

Definition 2.3 (DTRL-reconciliation).
A DTRL-reconciliation for G and S is a ten-tuple

〈L, G′,M,Σ,∆,ΘA,ΘR,Ξ, τ, λ〉, where L : Le(G) → Le(S)
represents the leaf-mapping from G to S, G′ represents the aug-
mented gene tree, M : V (G′) → V (S) maps each node of G′ to a
node of S, the sets Σ, ∆, ΘA and ΘR partition I(G′) into speci-
ation, duplication, additive transfer, and replacing transfer nodes,
respectively, Ξ is a subset of E(G′) that represents transfer edges
(additive or replacing), τ : ΘA∪ΘR → V (S) specifies the recipi-
ent species for each transfer event, and λ : ΘR → Le(G′)\Le(G)
is an injective function that associates each replacing transfer
event with a lost gene in the augmented gene tree, subject to the
following constraints:
Augmented gene tree constraint

1) G = G′[Le(G)].

Mapping constraints

2) If g ∈ Le(G), then M(g) = L(g).
3) If g ∈ I(G′) and g′ and g′′ denote the children of g, then,

a) M(g) 6<S M(g′) and M(g) 6<S M(g′′),
b) At least one of M(g′) and M(g′′) is a descen-

dant of M(g).

Event constraints

4) Given any edge (g, g′) ∈ E(G′), (g, g′) ∈ Ξ if and only
if M(g) and M(g′) are incomparable.

5) If g ∈ I(G′) and g′ and g′′ denote the children of g, then,

a) g ∈ Σ only if M(g) = lca(M(g′),M(g′′)) and
M(g′) and M(g′′) are incomparable,

b) g ∈ ∆ only if M(g) ≥S lca(M(g′),M(g′′)),
c) g ∈ ΘA ∪ΘR if and only if either (g, g′) ∈ Ξ or

(g, g′′) ∈ Ξ.
d) If g ∈ ΘA∪ΘR and (g, g′) ∈ Ξ, then M(g) and

τ(g) must be incomparable, and M(g′) must be
a descendant of τ(g), i.e., M(g′) ≤S τ(g).

Replacing transfer constraint

6) If g ∈ ΘA∪ΘR, then g ∈ ΘR if and only if M(λ(g)) =
τ(g).

Note: This definition allows any invisible leaf node g (i.e.,
g ∈ Le(G′)\Le(G)) to map to a leaf node of S, say s ∈ Le(S).
However, gene g is not actually present in species s (other-
wise it would not be invisible). Instead, M(g) = s indicates
that g existed in a predecessor species of s represented along
the edge (pa(s), s) ∈ E(S).

In the definition above, Constraint 1 specifies that the
augmented gene tree, G′, must be consistent with the topol-
ogy of the input gene tree G. Constraint 2 above ensures that
the mapping M is consistent with the leaf-mapping L. Con-
straint 3a imposes on M the temporal constraints implied
by S, and Constraint 3b implies that any internal node in G′

may represent at most one transfer event. Constraint 4 deter-
mines the edges of T that are transfer edges. Constraints 5a,
5b, and 5c state the conditions under which an internal node
of G′ may represent a speciation, duplication, and (additive
or replacing) transfer respectively. Constraint 5d specifies
which species may be designated as the recipient species for
any given transfer event. Finally, constraint 6 specifies that a
transfer event is labeled as a replacing transfer if and only if
there exists a unique invisible leaf node in G′ that represents
the gene that is “replaced” by that replacing transfer. Note
that constraints 2 through 5 are similar to those used in
the DTL reconciliation model (e.g. [2]), except that they
apply to the augmented gene tree G′, not to G as in DTL
reconciliation, and take replacing transfers into account.
Constraints 1 and 6 are unique to DTRL reconciliation.

While duplications, additive transfers, and replacing
transfers are directly specified by any DTRL-reconciliation,
losses are not. However, given a DTRL-reconciliation, the
minimum number of losses implied by that reconciliation
can be computed along the same lines as in the DTL recon-
ciliation model [2], but with an adjustment to account for
invisible lineages and replacing transfers. The adjustment is
required to account for the implicit loss of a gene that occurs
at each invisible leaf in the augmented gene tree G′. Some of
these “losses” are due to replacing transfers, but those that
are not must be explicitly counted as gene losses.

Definition 2.4 (Losses). Given a DTRL-reconciliation α =
〈L, G′,M,Σ,∆,ΘA,ΘR,Ξ, τ, λ〉 for G and S, let g ∈ I(G′)
and {g′, g′′} = Ch(g). The number of losses Lossα(g) at node
g, is defined to be:

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

5

• |distS(M(g),M(g′))−1|+|distS(M(g),M(g′′))−1|,
if g ∈ Σ.

• distS(M(g),M(g′))+distS(M(g),M(g′′)), if g ∈ ∆.
• distS(M(g),M(g′′)) + distS(τ(g),M(g′)) if (g, g′) ∈

Ξ.

The number of implicit losses at invisible leaves of G′ (i.e., for
the set Le(G′) \ Le(G)) is defined to be | Le(G′) \ Le(G)|− |ΘR|.

The total number of losses in the DTRL-reconciliation α is de-
fined to be Lossα = | Le(G′)\Le(G)|−|ΘR|+

∑
g∈I(G) Lossα(g).

In the DTRL reconciliation framework, each evolution-
ary event other than speciation is assigned a positive cost.
Let P∆, PΘA

, PΘR
, and Ploss denote the gene duplica-

tion, additive transfer, replacing transfer, and gene loss
costs, respectively. The reconciliation cost of a given DTRL-
reconciliation is defined as follows.

Definition 2.5 (Reconciliation cost). Given a
DTRL-reconciliation α = 〈L, G′,M,Σ,∆,ΘA,ΘR,Ξ, τ, λ〉,
the reconciliation cost for α is the total cost of all events
invoked by α. In other words, the reconciliation cost of α is
|∆| × P∆ + |ΘA| × PΘA

+ |ΘR| × PΘR
+ Lossα ×Ploss.

The goal is to find a DTRL-reconciliation that has mini-
mum reconciliation cost. More formally:

Definition 2.6 (ODTRL problem). Given G and S, along with
P∆, PΘA

, PΘR
, and Ploss, the Optimal DTRL-Reconciliation

Problem (ODTRL) problem is to find a DTRL-reconciliation for
G and S with minimum reconciliation cost.

3 NP-HARDNESS OF ODTRL
We claim that the ODTRL problem is NP-hard and that
the corresponding decision problem is NP-Complete. The
decision version of the ODTRL problem is as follows:

Problem 1 (D-DTRL).
Instance: G and S, along with event costs P∆, PΘA

, PΘR
, and

Ploss, and a non-negative integer l.
Question: Does there exist a DTRL-reconciliation for G and S
with reconciliation cost at most l?

Theorem 3.1. The D-DTRL problem is NP-Complete.

The D-DTRL problem is clearly in NP. In the remainder
of this section we will show that the D-DTRL problem is NP-
hard using a poly-time reduction from the decision version
of the NP-hard minimum rooted Subtree Prune and Regraft
(rSPR) Distance problem [7].

3.1 Reduction from minimum rSPR distance

We begin by defining an rSPR operation and define the
decision version of the minimum rSPR distance problem.

Definition 3.1 (rSPR operation [7]). Let T be a rooted binary
tree and let e = {u, v} be an edge of T where u is the vertex that
is in the path from the root of T to v. Let T ′ be the rooted binary
tree obtained from T by deleting e and then adjoining a new edge
f between v and the component Cu that contains u in one of the
following two ways:

• Creating a new vertex u′ which subdivides an edge in
Cu, and adjoining f between u′ and v. Then, either

suppressing the degree-two vertex u or, if u is the root
of T , deleting u and the edge incident with u, making the
other end-vertex of this edge the new root.

• Creating a new root vertex u′ and a new edge between u′

and the original root. Then adjoining f between u′ and v
and suppressing the degree-two vertex u.

We say that T ′ has been obtained from T by a single rooted
subtree prune and regraft (rSPR) operation.

Definition 3.2 (rSPR distance). Given two trees T and T ′ with
identical leaf sets, the rSPR distance between T and T ′, denoted
drSPR(T, T

′), is defined to be the minimum number of rSPR
operations required to transform T into T ′.

The minimum rSPR distance problem is to find the rSPR
distance between two trees. Its decision version can be
stated as follows:

Problem 2 (D-rSPR problem).
Instance: Two trees T and T ′ with identical leaf sets, and a non-
negative integer k.
Question: Is drSPR(T, T

′) ≤ k?

The D-rSPR problem is NP-Complete [7]. Consider any
instance ρ of the D-rSPR problem with trees T and T ′ on the
same leaf set of size n (i.e., Le(T) = Le(T ′) and n = | Le(T)|),
and non-negative integer k. We will show how to transform
ρ into an instance δ of the D-DTRL problem by constructing
G, S, and assigning the four event costs P∆, PΘR

, PΘA
,

and PLoss, such that there exists a YES answer to the D-
rSPR problem on ρ if and only if there exists a YES answer
to the D-DTRL instance δ with reconciliation cost at most
l = 10n+ 5k − 4.

3.2 Gadget

We assume that the leaf set of T and T ′ is {t1, t2, . . . , tn}.
We also assume that the internal nodes of T are labeled
{z1, z2, . . . , zn−1}, as depicted in Figure 3(a). Next, we first
show how to construct the species tree S, then the gene tree
G, and then assign event costs.
Species tree. The species tree S, is composed of two subtrees
denoted Sl and Sr and ten extraneous leaf nodes (which
are not represented in the gene tree). The root of subtree
Sl is a child of rt(S). The other subtree, Sr , is connected to
rt(S) through a path to which the ten extraneous leaves are
connected; these ten extraneous leaves ensure that no node
of G maps to rt(S) in any optimal DTRL reconciliation. This
is shown in Figure 3(b). The subtree Sl is identical to tree
T ′. Subtree Sr is a modified version of tree T , obtained as
follows: We first perform a post-order traversal of tree T and
number each node according to its position in the ordering,
e.g, the left-most leaf node in T would be labeled with a 1,
while rt(T) would be assigned the number 2n− 1. Next, for
each edge (pa(t), t) ∈ E(T), if the number associated with t
is i, we attach a subtree ((xi, u2i−1), u2i); to edge (pa(t), t).
Thus, 2n−2 subtrees are attached in all. Finally, we delete all
the original leaf nodes {t1, t2, . . . , tn} from T and binarize
the remaining tree by suppressing all non-root nodes of
degree two. The resulting tree is Sr. This modification is
depicted in Figure 3.

Gene tree. Gene tree G consists of two main subtrees,
denoted Gl and Gr . Subtree Gl is obtained from species

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

6

tree subtree Sr by removing all leaf nodes labeled with
prefix x and then suppressing all non-root nodes of degree
two. Subtree Gr is obtained by modifying T as follows:
We consider again the post-order numbering of the nodes
of T and, for each edge (pa(t), t) ∈ E(T), if the number
associated with t is i, we attach a leaf labeled xi to edge
(pa(t), t). The new internal node created in attaching leaf
xi to the tree is denoted yi. This construction is depicted in
Figure 3(c)

tn t1t3 t4

x1 x2u1 u3

t1

y3

t2 x3

10 extra leaves

u4n-4u1 u2

x1 x2

y1 y2

t3x4

y4

z'2

x2n-2

u2 u4

...

u4n-5

z'1

z'2n-2

z2

t3t2

z1

t1 tn

zn-1

T

S

G

t4t3tn t1

T '(a)

(b)

(c)

tn

Sl

Gl

Sr

Gr

u4n-4

u4n-5
x2n-2

y2n-2

Fig. 3. This figure illustrates the construction of species tree S (Part (b))
and gene tree G (Part (c)) for D-DTRL problem instance δ based on
trees T and T ′ (Part (a)) in the input instance ρ of the D-rSPR problem.

Observe that each internal node of T
has a corresponding node in Gr . We la-
bel these corresponding nodes of Gr as
ZG = {z′1, z

′

2, . . . , z
′

n−1}, where node z′i ∈ I(Gr)
corresponds to node zi ∈ I(T) for 1 ≤ i ≤ n − 1.
We also define the following three subsets of V (G):
YG = {y1, y2, . . . , y2n−2}, XG = {x1, x2, . . . , x2n−2}, and
TG = {t1, . . . , tn}. Note that I(Gr) = YG ∪ ZG.

Event costs. Event costs are assigned as follows: P∆ = 4,
PΘA

= 6, PΘR
= 5, and Ploss = 3.

This completes our construction of instance δ of the D-DTRL
problem. Note that G and S can be both constructed in time
polynomial in n = | Le(T)|.

Claim 1. There exists a YES answer to the D-rSPR problem on ρ
if and only if there exists a YES answer to the D-DTRL instance
δ with reconciliation cost l ≤ 10n+ 5k − 4.

The correctness of Theorem 3.1 follows immediately
from Claim 1.

The remainder of this section is devoted to proving
this claim, thereby establishing Theorem 3.1. The main idea
behind our reduction can be explained briefly as follows.
Each rSPR operation on instance ρ corresponds to exactly
one replacing transfer event on gene tree G from instance
δ. Based on the structure of gene tree G and species tree S,
we will be able to show that for each rSPR operation there
is at least one way to get a valid corresponding replacing
transfer.

Next, we prove the forward and reverse directions of the
claim.

3.3 Proof of Claim 1: Forward direction

Assuming we have a YES answer for the rSPR instance ρ,
we will show how to construct a DTRL-reconciliation α for
instance δ with reconciliation cost at most 10n+ 5k − 4.

Suppose drSPR(T, T
′) = k′, where k′ ≤ k. Then, based on

the close association between rSPR distances and maximum-
agreement forests [7], we know that drSPR(T, T

′) =
m(T, T ′), where m(T, T ′) is the size of a maximum-
agreement forest for T and T ′. In particular, there exist k′

rooted, vertex-disjoint subtrees of T , denoted T1, . . . , Tk′

with leaf sets L1, . . . ,Lk′ , respectively, such that T [Li] =
T ′[Li] for all i ∈ {1, . . . , k′}, and L1 ∪ . . . ∪ Lk′ = Le(T).
These k′ subtrees from the maximum-agreement forest cor-
respond to the k′ subtrees that are pruned and regrafted
to transform T into T ′ through rSPR operations. In other
words, there exist k′ nodes, denoted P = {p1, . . . , pk′}
in V (T), corresponding to the roots of the k′ subtrees
T1, . . . , Tk′ , respectively, that identify the edges that will be
cut in the k′ rSPR operations. For brevity, we refer the reader
to [7] for a definition of maximum-agreement forests and for
proofs of the preceding statements.

The following observation states three simple facts about
the set of nodes P .

Observation 1. Let t ∈ V (T) and Ch(t) = {t′, t′′}.

1) If t, t′ ∈ P , then t′′ 6∈ P .
2) If t′, t′′ ∈ P , then t 6∈ P . Moreover, the set (P \ t′) ∪

t must also correspond to a valid maximum-agreement
forest for T and T ′.

3) |P| = k′ ≤ k ≤ n− 2.

Parts (1) and (2) in the above observation follow directly
from the definition of a maximum-agreement forest. Part
(3) follows from the fact that the maximum rSPR distance
between any two rooted trees with n leaves is bounded
above by n− 2 [26].
Notation: Note that both leaf nodes and internal nodes of T
have corresponding nodes in the gene tree subtree Gr . We
denote by P ′ = {p′1, . . . , p

′

k′} the nodes corresponding to
P = {p1, . . . , pk′} in Gr .

Next, we show how to construct the augmented gene
tree G′ and reconcile G′ with S such that the total reconcili-
ation cost is no more than 10n+5k−4. We begin by showing
how to reconcile G with S and then show how to augment
G into G′ and complete the reconciliation. It is worth noting
that we start out with P ′ as initialized above, but change its

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

7

composition as we proceed with defining the reconciliation;
however, we will always maintain |P ′| = k′.

Reconciliation of G and S. We begin by defining a useful
edit operation for reconciliations.

Definition 3.3 (Switch-recipient operation). Given a partial
reconciliation of G and S (i.e., a reconciliation in which some
nodes of G may not yet have been assigned an event or mapping),
and a node g ∈ V (G) that is labeled as a (replacing or additive)
transfer event, let g′ and g′′ denote the two children of g such
that (g, g′) is the transfer edge. A switch-recipient operation on
g, denoted SR(g), modifies the partial reconciliation by setting
(g, g′′) to be the transfer edge, removing edge (g, g′) from the
set Ξ, and updating the mappings M(g) and τ(g) to be M(g′).
Note that the partial reconciliation of G and S need not remain a
valid DTRL-reconciliation after this operation.

Note: As will become apparent later, the purpose of
switch-recipient operations (and also the purpose of the YG

nodes in the gadget) is to allow for the option of making a
transfer node g and its sibling have incomparable mappings
in S. Doing so makes it possible to label the parent of g as a
transfer as well.

The leaf-to-leaf mapping from G to S is defined by the
leaf labels. To define the remainder of the reconciliation, we
first perform a post-order traversal of Gl and map each in-
ternal node a ∈ I(Gl) to the species node lca(M(b),M(c)),
where b, c denote the two children of a, and assign a to be
a speciation event. Next, we perform a post-order traversal
of Gr and map each internal node a ∈ I(Gr), where b and c
denote its two children, as described below.

Observe that I(Gr) = YG ∪ ZG, that XG ∩ P ′ = ∅, that
every node from YG has exactly one child in XG, and that
every node from ZG has both its children from YG.

1) If a ∈ YG and b ∈ XG then:

a) If c /∈ P ′, then a maps to M(c) and rep-
resents a replacing transfer event with (a, b)
representing the transfer edge and τ(a) =
M(b).

b) If c ∈ P ′, then a maps to M(c) and rep-
resents a replacing transfer event with edge
(a, b) representing the transfer edge and
τ(a) = M(b). We also update P ′ to be
(P ′ \ {c}) ∪ {a}.

2) If a ∈ ZG and b, c ∈ YG, then:.

a) If a, b, c /∈ P ′, then a maps to
lca(M(b),M(c)) and represents a speciation
event.

b) If a, b /∈ P ′ and c ∈ P ′, then a maps to M(b)
and represents a replacing transfer event and
edge (a, c) represents the transfer edge with
τ(a) = M(c). By Case 1 above, we know
that every node of YG represents a replacing
transfer event, and so c must also represent a
replacing transfer event. If M(b) and M(c)
are comparable in S, i.e., M(c) ≤S M(b) or
M(b) ≤S M(c), then we perform the switch-
recipient operation SR(c) (which, as we prove
later, makes M(b) and M(c) incomparable).

c) If a, c /∈ P ′ and b ∈ P ′, then this case is
analogous to the previous case.

d) If a /∈ P ′ and b, c ∈ P ′, then

• If M(b) and M(c) are incomparable in
S, then a maps to M(b) and repre-
sents a replacing transfer event with edge
(a, c) representing the transfer edge and
τ(a) = M(c).

• If M(b) and M(c) are comparable in
S, then we perform the switch-recipient
operation SR(c). Observe that nodes b
and c must represent replacing transfer
events. We also update P ′ to be P ′ =
(P ′ \ {b}) ∪ {a}.

e) If a ∈ P ′ and b, c /∈ P ′, then a maps to
lca(M(b),M(c)) and represents a speciation
event.

f) If a, b ∈ P ′ and c /∈ P ′, then a maps
to M(c) and represents a replacing transfer
with edge (a, b) representing the transfer
edge and τ(a) = M(b). If M(b) and M(c)
are comparable in S then we perform the
switch-recipient operation SR(b) (recall that b
must represent a replacing transfer event).

g) If a, c ∈ P ′ and b /∈ P ′, then this case is
analogous to the previous case.

h) If a, b, c ∈ P ′, then, as we prove later in
Lemma 3.1, this case cannot arise in any
optimal solution.

Finally, rt(G) maps to rt(Sr) and represents an additive
transfer event with edge (rt(G), rt(Gr)) representing the
transfer edge and τ(rt(G)) = M(rt(Gr)).

Next, we prove some useful properties of the reconcilia-
tion described above, show how to augment G into G′ and
“complete” the reconciliation, and prove that the completed
DTRL-reconciliation is valid.

Lemma 3.1. Suppose a ∈ ZG, with children b and c, then at
no point in the post-order traversal of Gr , as described above, can
a, b, and c be in the set P ′ simultaneously.

Proof. Assume, for contradiction, that a, b, c ∈ P ′ at some
point during the post-order traversal. Let a′ denote the node
corresponding to a in the tree T . Suppose a′ 6∈ P . Then,
a 6∈ P ′ at the beginning of the post-order traversal. Observe
that a cannot be added to P ′ unless the post-order traversal
is exactly at node a and both b, c ∈ P ′ at that time. If a is
added to P ′ at this step, then one of b or c will be removed
from P ′ and will never be added back at any later time.
Thus, if a′ 6∈ P then a, b, c 6∈ P ′ at any point during the
post-order traversal. Consequently, under our assumption,
we must have a′ ∈ P .

We will now show that there must exist a node l ∈
Le(T (a′)) such that no node along the path from a′ to l,
except for a′ itself, is in P . Consider the two children u and
v of a′ in T . By part 1 of Observation 1, we know that at most
one of u or v can be in the set P . Without loss of generality
we may therefore assume that u 6∈ P . Now, if u ∈ Le(T),
then we are done. Therefore, suppose u 6∈ Le(T) and let u′

and u′′ denote the two children of u in T . There are now
two possible cases:

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

8

1) v ∈ P : In this case, it is not possible that both u′ and
u′′ are in the set P . This is because if a′, v, u′, u′′ ∈
P , then P\{a′}) would yield a valid solution for the
D-rSPR problem instance ρ, implying drSPR(T, T

′) =
k′ − 1, which is a contradiction.

2) v /∈ P : In this case, if v ∈ Le(T), then we have
proved our claim. Therefore, assume v 6∈ Le(T) and
let v′ and v′′ denote the two children of v. Now, it is
not possible that a′, u′, u′′, v′, v′′ are simultaneously
in the set P . Otherwise, P\{a′}) would yield a valid
solution for the D-rSPR problem instance ρ, imply-
ing drSPR(T, T

′) = k′ − 1, which is a contradiction.

By applying this argument inductively from a towards
the leaves of T , it follows that there exists a node l ∈
Le(T (a′)) such that no node along the path from a′ to l,
except for a′ itself, is in P .

Finally, consider the path from l to a in Gr . This path in
Gr consists of nodes corresponding to the l to a′ path in T ,
along with a subset of nodes from YG. Observe that, before
the post-order traversal of Gr , P ′ is initialized to P and so
none of the nodes along the l to a path in Gr , except for node
a is in P ′. Furthermore, during the post-order traversal of
Gr , the current node is added to P ′ only if both children of
the current node are in P ′ at that time. Thus, no node along
the path from l to a in Gr , except for node a can ever be
added to the set P ′, and so a, b, and c cannot simultaneously
be in P ′ at any time during the post-order traversal.

Lemma 3.2. In the constructed reconciliation of G and S,
M(z) ∈ V (Sl) for all z ∈ ZG.

Proof. Observe that each node of TG maps to a node from Sl,
and that each z ∈ ZG has both children from YG. To prove
that M(z) ∈ V (Sl), for all z ∈ ZG, it suffices to prove that,
for each y ∈ YG, M(y) ∈ V (Sl) when M(y) is first assigned
during the post-order traversal of Gr . This is because, per
case (2) of the post-order traversal, the mapping M(z) is
assigned based on the initial mapping assignment of the two
children of z, and while the mapping of one of the children
of z may be subsequently be changed through a switch-
recepient operation, the mapping of z remains unchanged.

There are two possible cases:
Case 1: consider any y ∈ YG such that y does not have a

child from ZG. In this case, one child of y must be in TG and
the other in XG. Since all nodes of TG map to Sl, by case (1)
of the post-order traversal we know that the initial mapping
assignment for y must also be to a node in Sl.

Case 2: consider any y ∈ YG that has a child from ZG. In
this case, one child of y must be in ZG and the other in XG.
Under a simple inductive argument, we may assume that
the child of y that is from ZG maps to a node of Sl. Under
this assumption, case (1) of the post-order traversal applies
and the initial mapping assignment for y would therefore
be to a node of Sl.

A simple inductive argument now immediately estab-
lishes that, for each y ∈ YG, M(y) ∈ V (Sl) when M(y) is
initially assigned during the post-order traversal of Gr .

The next two lemmas helps establish that the assigned
transfer events and speciation events are valid.

Lemma 3.3. In the constructed reconciliation of G and S, if
g ∈ V (G) represents a replacing or additive transfer event then
M(g) and τ(g) must be incomparable.

Proof. Observe that if g ∈ ΘA∪ΘR, then g ∈ {rt(G)}∪YG∪
ZG. We therefore have the following three cases:

1) g = rt(G). In this case, based on the constructed
reconciliation, τ(g) = M(rt(Gr)) and M(g) =
M(rt(Gl)). Note that rt(Gr) ∈ ZG and so, by
Lemma 3.2, rt(Gr) must map to a node in V (Sl).
Similarly, based on the constructed reconciliation,
rt(Gl) and rt(G) both map to Sr. Thus, M(rt(G))
and τ(g) are incomparable.

2) g ∈ YG. Let g′ and g′′ denote the two children of
g. We know that g′ ∈ ZG ∪ TG and g′′ ∈ XG. We
know that all nodes of XG map to nodes of Sr , all
nodes of TG map to nodes of Sl, and, by Lemma 3.2,
all nodes of ZG map to nodes of Sl. Thus, g′ must
map to a node of Sl and g′′ must map to a node
of Sr . Thus, in the initial mapping assignment of
g, M(g) ∈ V (Sl) while τ(g) ∈ V (Sr). Later, if a
switch-recipient operation is performed on g, we
would get M(g) ∈ V (Sr) while τ(g) ∈ V (Sl). In
either case, M(g) and τ(g) are incomparable.

3) g ∈ ZG. Let g′ and g′′ denote the two children of g.
We know that g′ and g′′ are both in YG. Based on
the case above, we know that each node from YG

has one child mapping to Sl and the other child
mapping to Sr . According to case 2 of the post-
order traversal, if M(g′) and M(g′′) are comparable
(so both map to either Sl or both to Sr) then a
switch-recipient operation is performed on one of
the children of g, say g′, which would change the
mapping of g′ from either Sl to Sr or vice versa.
Thus, g′ and g′′ are either incomparable to begin
with or are made incomparable through a switch-
recipient operation. Finally, the mapping of M(g) is
assigned to be the mapping of one of g′ or g′′, with
τ(g) assigned to be the mapping of the other child.
M(g) and τ(g) must therefore be incomparable.

For the next lemma we need the following definition.

Definition 3.4 (Base Leaf Set). Given the reconciliation
of G and S as defined earlier, along with the set P ′, we
define the base leaf set of a node g ∈ V (G) in G, de-
noted BLeG(g), to be {l ∈ Le(G(g)) | none of the nodes,
except possibly g, on the path from g to l is in P ′}. We also de-
fine BLeS(g), for g ∈ V (G), to denote the corresponding set
of leaf nodes from S.

Note that, based on the proof of Lemma 3.1, it follows
that |BLeG(g)| ≥ 1 for any g ∈ V (G).

Lemma 3.4. In the constructed reconciliation of G and S, if
g ∈ I(G) represents a speciation event and g′, g′′ denote the two
children of g, then M(g′) and M(g′′) must be incomparable in
S.

Proof. Based on the constructed reconciliation, if g ∈ I(G)
represents a speciation event then either g ∈ I(Gl) or g ∈
ZG. We consider these two cases separately.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

9

1) g ∈ I(Gl). In this case, M(g) maps to
lca(M(g′),M(g′′)), and, based on the topologies of
G and S, M(g′) and M(g′′) must be siblings in S.
Thus, M(g′) and M(g′′) must be incomparable in
S.

2) g ∈ I(Gr). In this case, based on cases 2(a) and 2(e)
of the post-order traversal, we must have g ∈ ZG,
g′, g′′ /∈ P ′ and g′, g′′ ∈ YG. Now, observe that
for any node y ∈ YG, where y /∈ P ′, if y′ is the
child of y that is from ZG ∪ TG, then y′ /∈ P ′

and M(y) = M(y′). Also observe that if a node
z ∈ ZG is not in P ′, then it follows from the proof
of Lemma 3.1 that at most one of its two children,
denoted y′, y′′, can be in P ′. Furthermore, if y′ ∈ P ′,
then M(z) = M(y′′), while if y′, y′′ /∈ P ′, then
M(z) = lca(M(y′),M(y′′)).
Continuing in this fashion towards the leaves of G,
it follows that M(g′) = lca(BLeS(g

′)) and M(g′′) =
lca(BLeS(g

′′)). Since g is a speciation node it also
follows that BLeG(g) = BLeG(g

′) ∪ BLeG(g
′′) and

M(g) = lca(M(g′),M(g′′)). Consider the induced
subtrees
G[BLeG(g)], G[BLeG(g

′)], and G[BLeG(g
′′)]. Since

none of the edges in these induced subtrees is in P ′,
these subtrees must be isomorphic to the induced
subtrees S[BLeS(g)], S[BLeS(g

′)], and S[BLeS(g
′′)],

respectively. Thus, since G(g′) and G(g′′) are dis-
joint subtrees, so must S(M(g′) and S(M(g′′)),
completing the proof

Lemma 3.5. In the constructed reconciliation of G and S, there
is at most one gene copy in each node (or edge) of S.

Proof. This follows directly from the fact that all internal
nodes in V (G) \ {rt(G)} represent either speciation or re-
placing transfer events.

We now show how to create the augmented tree G′

based on gene tree G and construct a complete DTRL-
reconciliation. We begin by initializing G′ to be the same as
G,with each node of G′ having the same event and mapping
assignment as in the reconciliation of G. We then perform a
post-order traversal of G′ and for each node that represents
a replacing transfer event, say g, we will augment G′ by
adding a new leaf node, denoted ū, connected to G′ through
a new internal node denoted u. This augmentation happens
through the AddG′operation defined below.

Definition 3.5 (Add operation). Given G′, S, and a node
g ∈ V (G′) that is a replacing transfer event, let g′ and g′′ denote
the two children of g such that (g, g′) is the transfer edge and
s′ = M(g′). Note that s′ ∈ V (S) \ {rt(S)} and so it must
have a sibling, which we denote by s′′. Let u ∈ V (G′) be a node
such that M(u) ∈ V (S(s′′)), M(pa(u)) >S s′′ and M(u)
has minimum distance to the node s′′ among all options for u.
The operation AddG′(g) modifies G′ by (i) adding a new node u
subdividing the edge (u, pa(u)) (or as new root of G′ in the case
that rt(G′) = u), (ii) adding an edge connecting u to a new leaf
node denoted ū, (iii) assigning to u a mapping of pa(s′) and event
type speciation, and (iv) assigning to (̄u) a mapping of s′.

Lemma 3.6. For any g ∈ G′ where g ∈ ΘR, the operation
AddG′(g) can be successfully applied.

Proof. Suppose g has children g′ and g′′, with (g, g′) ∈ Ξ.
Based on the constructed reconciliation, if node g ∈ ΘR,
then g ∈ V (G′

r) \ {rt(G′

r)}. Consequently, M(g′) ∈ V (Sl)∪
V (Sr) \ {rt(Sl)} \ {rt(Sr}. Thus, if s′ = M(g′), then s′ must
have a sibling, say s′′.

Now, since each leaf y ∈ Le(Sr) ∪ Le(Sl), has a mapping
from a node in G′, there must be at least one node u that
maps to a node in V (S(s′′)) and for which M(pa(u)) >S s′′.
Thus, AddG′(g) can be successfully applied.

Lemma 3.7. The final augmented gene tree G′ is a valid DTRL-
reconciliation.

Proof. From Lemmas 3.1 through 3.4 we know that the
mapping and event assignments on G were valid, and from
Lemma 3.6 we know that each Add operation itself can
be successfully applied. To show that G′ is a valid DTRL-
reconciliation it therefore suffices to establish the following:
(i) the new internal nodes added through the Add operations
have valid mapping and event assignments, (ii) the parent
of each newly added internal node continues to have a valid
event and mapping assignment (carried over from G), and
(iii) each replacing transfer event on G′ is associated with a
unique lost gene on G′.

Consider any new internal node u added to G through
a Add operation. By the definition of an Add operation, if u
maps to node s in the S, then one child of u maps to a node
from V (S(s′′)), and the other child of u maps to node s′,
where s′ and s′′ denote the two children of s. Thus, both the
mapping assignment and event assignment (of speciation)
for u are valid.

Now, consider the edge (v, u) ∈ E(G′), where v = pa(u),
on which a new internal node u is added through an Add
operation. Let s = M(u), s′, s′′ ∈ Ch(s), and, consistent
with the definition of an Add operation, M(u) ∈ V (S(s′′)).
Observe that, since M(u) < M(v), v could only have been
a speciation node in G. Moreover, from the definition of
an Add operation we know that M(v) ≥S s. However,
node v could not map to s, since then the sibling of u in
G′ would map to a node from V (S(s′). But then, s′ could
not have been the recipient of a replacing transfer event, a
contradiction. Thus, M(v) >S s, and so v remains a valid
speciation event in G′ with a valid mapping.

Finally, since an Add operation is performed for each
replacing transfer node g in V (G) and AddG′(g) adds a cor-
responding lost gene copy to the gene tree, each replacing
transfer event on G′ is associated with a unique lost gene on
G′.

Lemma 3.8. If G′ denotes the final augmented gene tree, the
constructed reconciliation of G′ and S does not have any gene
losses.

Proof. From Lemma 3.5 we know that each node (edge) on
S has at most one gene copy. We also know that each leaf
node of the species tree node a ∈ Le(S(Sr)) ∪ Le(S(Sl)) has
a corresponding gene in G′. Thus, if there was ever a loss
of a gene copy along any edge of the species tree, it would
have to be compensated for by either a gene duplication
event or am additive transfer event to ensure that all species

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

10

descended from that edge still have a copy of the gene. Since
the constructed reconciliation of G′ and S does not have any
gene duplications and the only additive transfer does not
affect edges of Sr or Sl, there can not be any losses in the
constructed reconciliation.

The following lemma establishes the forward direction
of claim 1.

Lemma 3.9. If there exists a YES answer to the D-rSPR problem
on ρ then there exists a YES answer to the D-DTRL instance δ
with reconciliation cost at most 10n+ 5k − 4.

Proof. Lemma 3.7 shows that the constructed reconciliation
of G′ an S is a valid DTRL-reconciliation, and Lemmas
3.7 and 3.8 imply that this reconciliation does not have
any losses or duplications. Furthermore, if |P| ≤ k then,
based on our construction and on Observation 1, |P ′| ≤ k.
Thus, the constructed reconciliation of G′ and S has at most
2n + k − 2 nodes that represent replacing transfers, with
at most k replacing transfers corresponding to the nodes
of P ′ and exactly 2n − 2 replacing transfers corresponding
to the set XG. Finally, rt(G) represents an additive transfer
event. Thus, the reconciliation cost of G′ and S is at most
(2n+ k − 2) · PΘR

+ PΘA
which is 10n+ 5k − 4.

3.4 Proof of Claim 1: Reverse direction

Conversely, we now assume that we have a YES answer to
the D-DTRL instance δ with reconciliation cost at most 10n+
5k − 4, and will show that there must then exist a solution
of size at most k to the D-rSPR instance ρ. In this proof, we
will first characterize the structure of any optimal DTRL-
reconciliation of G and S, and then show that this structure
implies the existence of a specific set of evolutionary events.

The next three lemmas identify basic properties of any
optimal DTRL-reconciliation of G and S and follow easily
based on the construction of the gadget. Specifically, the
first lemma follows directly from the close correspondence
between the topologies of Gl and Sr, the second lemma
follows from the presence of the 10 extraneous leaves on the
path from rt(S) to Sr , and the third lemma follows easily
from the specific construction of the nodes in YG in the gene
tree gadget.

Lemma 3.10. Given any optimal DTRL-reconciliation for G and
S, any internal node g ∈ I(Gl) must map to lcaS(L(G(g))) and
represent a speciation event.

Lemma 3.11. Given any optimal DTRL-reconciliation for G and
S, no node of G maps to rt(S).

Lemma 3.12. Given any optimal DTRL-reconciliation for G and
S, each node y ∈ YG must represent a replacing transfer event.

The next lemma shows that in any optimal DTRL-
reconciliation of G and S, the number of gene copies present
in any node (or edge) or the species tree is at most 1. The
idea behind the proof of this next lemma is illustrated in
Figure 4.

Lemma 3.13. Given any optimal DTRL-reconciliation for G and
S, there does not exist any node of S with more than one gene
copy.

Proof. Suppose for contradiction that at least one such node
a ∈ V (S) exists. Without loss of generality we can assume
that a is the first such node in a post-order traversal of
S. Since, each leaf node of S has at most one gene copy,
a must be an internal node. Thus, let a′ and a′′ denote
the two children of a. By our assumption, both a′ and a′′

have at most one gene copy, while a has at least 2. Thus,
there must be at least one loss along the edge (a, a′) and
at least one loss along the edge (a, a′′). We will show how
to modify this current DTRL-reconciliation and reduce the
total reconciliation cost. For simplicity, we will assume that a
has exactly two gene copies, but the proof easily generalizes
to greater than two gene copies.

We will modify the current DTRL-reconciliation as fol-
lows: Instead of incurring one loss at each of the two
children edges of a, we move this loss upwards to the edge
(pa(a), a), reducing the number of gene copies in a by 1. At
least one of a′ or a′′, say a′. must have inherited its single
gene copy from the surviving gene lineage. Thus, the gene
lineage entering a′ would be unaffected by the loss of the
other copy in a. The other child a′′ may have received its
copy from the deleted lineage, and so may be affected by
the loss at a. This can be resolved by invoking a replacing
transfer event to replace the gene lineage coming into a′′

from a with the desired gene lineage. Such a replacing
transfer can always be added, if it does not already exist,
at the parent node of the node from G that maps to a′′ (or
to its closest descendant if no node maps directly to a′′).

We apply this modification iteratively towards the root
of S, until the first (or highest) node along this path with the
additional gene copy is reached. The source of the additional
gene copy at this node must be either a gene duplication
or additive transfer event on the gene tree. By removing
the extra gene copy at this node, we therefore also reduce
the number of gene duplications or additive gene transfers
by 1. Overall, during this iterative process, we reduce the
number of losses at each iteration by 2, add at most one
replacing transfer event per iteration, and replace at least
one duplication or additive transfer event by a speciation
event during the last iteration. Based on our assigned event
costs, this results in a net reduction in the total reconciliation
cost. Since the initial DTRL-reconciliation of G and S was
optimal, this is a contradiction. Thus, there cannot be any
nodes in S with more than one gene copy.

The following corollary follows immediately based on
the proof of the previous lemma.

Corollary 3.1. Given any optimal DTRL-reconciliation for G
and S, there does not exist any node in G that represents a
duplication event.

Lemma 3.14. There are no gene losses in any optimal DTRL-
reconciliation for G and S.

Proof. By Lemma 3.13 we know that each node of S has at
most one gene copy. We also know that each leaf node of
the species tree node a ∈ Le(S(Sr)) ∪ Le(S(Sl)) has a corre-
sponding gene in G′. Thus, if there was ever a loss of a gene
copy along any edge of the species tree, it would have to
be compensated for by either a gene duplication event or an
additive transfer event to ensure that all species descended
from that edge still have a copy of the gene. By Corollary 3.1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

11

replacing

transfer

New DTRL-scenario

a' a'' b' b'' c' a'

a

a'' b' b'' c'

g g

c'' c''

lineage

lineage

!

additive transfer

!

a
b c

d

e

b c

d

e

f f

loss

lineage

Fig. 4. A illustration of the idea behind the proof of Lemma 3.13. The figure on the left shows the evolution of two gene lineages, lineage l1 (solid
red lines) and lineage l2 (dashed blue lines), inside the species tree (the tube tree). According to that evolutionary scenario, both lineages are
present in the species a, b, c, d, and e of the species tree. Observe that the corresponding DTRL-reconciliation would invoke six losses, in addition
to the additive transfer that created lineage l2. The figure on the right shows how this evolutionary scenario can be modified by removing lineage
l2 and instead invoking replacing transfer events to replace the genes from lineage l1 in nodes a′′, b′, and c′. Observe that the corresponding
DTRL-reconciliation invokes six fewer losses and one fewer additive transfer but has 3 more replacing transfers. Thus, based on our assigned event
costs, the DTRL-reconciliation corresponding to the evolutionary scenario on the left could not have been optimal.

we know that G does not have any duplication nodes in
any optimal DTRL-reconciliation. Furthermore, since any
node of S has at most one gene copy (Lemma 3.13), any
additive transfer event not the root of G would either be
preceded by a gene loss in the recipient lineage or would
be immediately followed by a gene loss so as not to have
more than one gene copy in any node of S. Thus, it would
be possible to substitute any such additive transfer with a
replacing transfer event and reducing the number of gene
losses. However, this would lead to a DTRL-reconciliation
with lower reconciliation cost, a contradiction. Thus, since
the only additive transfer may occur at the root of the gene
tree, and there are no gene duplications, there cannot be
any gene losses in any optimal DTRL-reconciliation of G
and S.

Lemma 3.15. Given any optimal DTRL-reconciliation for G and
S, then there is exactly one node that represent additive transfer.

Proof. By the proof of Lemma 3.14 above, we know that the
only possible additive transfer node is rt(G). It therefore
suffices to prove that G must have at least one additive
transfer event. By Lemma 3.11 we know that no node of
G maps to rt(S), and by Lemma 3.10 we know that node
rt(Gl) maps to a node of V (Sr). Without an additive transfer
event bringing a copy of the gene to nodes of Sl, the
number of gene copies in nodes of Sl would be zero, a
contradiction.

The following lemma establishes the reverse direction of
claim 1.

Lemma 3.16. Given any optimal DTRL-reconciliation for G and
S with cost at most 10n+ 5k − 4, there exists a solution for the
D-rSPR instance ρ of size at most k.

Proof. Based on Lemmas 3.14 and 3.15 and Corollary 3.1,
we know that any optimal DTRL-reconciliation of G and S
must invoke exactly one additive transfer, no duplications,
and no losses. Thus, since the total reconciliation cost is at
most 10n + 5k − 4, the total number of replacing transfers

can be no more than 2n − 2 + k. Now, by Lemma 3.12
we know that each of the 2n − 2 nodes in YG must be
replacing transfers. Thus, the number of nodes of ZG that
are replacing transfers is at most k, and the number of nodes
of ZG that represent speciation events is at least n − 1 − k
(since |ZG| = n− 1).

Observe that, according to our gadget, the original tree
T from the D-rSPR instance ρ corresponds to subtree Gr of
the gene tree and tree T ′ corresponds to subtree Sl of the
species tree. Also observe that if a node from ZG represents
a speciation event then it must map to a node from Sl.
Therefore, there exist at most k internal nodes of Sl that are
recipients of replacing transfer events (since Sl has exactly
n − 1 internal nodes). Note that the corresponding transfer
events on G must all be from Gr , and let A denote the set of
these corresponding transfer nodes from Gr .

Now, consider the forest FS created from Sl by cutting
all edges that connect the at most k nodes that are recipients
of replacing transfer events to the rest of Sl. Likewise,
consider the forest FG created from Gr by first removing
all nodes from XG and collapsing all nodes with only one
child (i.e., all nodes of YG are collapsed), and then cutting
all edges that connect the nodes of A to the rest of the tree.
It is not hard to argue that the two forests FS and FG must
be identical, which provides a solution of size at most k for
the D-rSPR problem on T and T ′.

4 EXPERIMENTAL ANALYSIS

There do not currently exist any algorithms or heuristics to
compute DTRL reconciliations, and it is not even known
how algorithms for computing optimal DTL reconciliations
perform when confronted with gene trees that have been
affected by both additive and replacing transfers. Therefore,
we first focused on answering two fundamental questions:
(i) How is the accuracy of DTL reconciliation affected by the
presence of replacing horizontal gene transfers? (ii) How
well does DTL reconciliation perform at inferring replacing
transfer events?

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

12

To answer these questions, we used the recently de-
veloped simulation framework SaGePhy [22] to stochasti-
cally evolve gene trees inside a given species tree under a
model that allows for gene duplications, additive transfers,
replacing transfers, and gene losses. Using this simulation
framework we created a large number of gene trees with
varying rates of evolutionary events, computed optimal
DTL reconciliations for the gene/species tree pairs, and
evaluated the accuracy of the inferred reconciliations by
comparing them to the true evolutionary histories of those
gene trees. To compute optimal DTL reconciliations we
employed the widely-used RANGER-DTL [2], [3] software
package.

Simulated datasets. We used SaGePhy [22] to generate 100
species trees, each containing 100 leaves and of height 1,
under a birth-death process. Next, inside each of the species
trees, we generated three different gene trees using low,
medium, and high rates of duplication, additive transfer,
replacing transfer, and loss events, resulting in three sets of
100 gene trees. To generate the low DTRL gene trees, we
used duplication, additive transfer, replacing transfer, and
loss rates of 0.133, 0.133, 0.133, and 0.266, respectively; for
the medium DTRL gene trees we used rates of 0.3, 0.3, 0.3,
and 0.6, respectively; and for the high DTRL gene trees we
used rates of 0.6, 0.6, 0.6, and 1.2, respectively. Thus, the total
transfer rate was twice the duplication rate, with an equal
rate of additive and replacing transfers, and the loss rate
was assigned to be equal to the sum of the duplication and
additive transfer rates. These duplication, transfer, and loss
rates are based on rates observed in real data and capture
both datasets with lower rates of these events and datasets
with a very high rate of these events [4].

For the low DTRL gene trees, the average gene tree leaf
set size was 96.11, with an average of 2.37 additive transfers,
2.65 replacing transfers, and 2.19 duplication events per
gene tree. For the medium DTRL gene trees, the average
gene tree leaf set size was 94.75, with an average of 5.09
additive transfers, 5.01 replacing transfers, and 5.00 duplica-
tion events per gene tree. For the high DTRL gene trees, the
average gene tree leaf set size was 110.22, with an average of
9.52 additive transfer events, 9.42 replacing transfer events,
and 10.39 duplication events per gene tree.

4.1 Impact of replacing transfers on DTL reconciliation

We evaluated the accuracy of DTL reconciliation in inferring
the evolutionary event and species tree mapping for each
internal node in the simulated gene trees. We computed
a single optimal reconciliation for each gene tree using
RANGER-DTL 2.0 [3] with default parameters (i.e., transfer
cost of 3, duplication cost of 2, and loss cost of 1) and
compared the computed reconciliation against the true evo-
lutionary history of that gene tree. We observed very high
accuracy for inferring the correct event type (speciation,
duplication, or transfer) at each gene tree node. For instance,
for the low DTRL gene trees, 99.67%, 96.35% and 96.22% of
the gene tree nodes labeled as speciation, duplication, and
transfer, respectively, in the computed reconciliations were
inferred correctly. Even for the high DTRL gene trees, these
percentages remained very high at 95.69%, 87.49%, and
95.25%, respectively. These results are shown in Figure 5(a).

Looking at the accuracy of mapping inference, we found
that 99.09%, 97.11%, and 92.15% of all internal nodes were
assigned the correct species node mapping for the low,
medium, and high DTRL gene trees, respectively. Detailed
results are shown in Figure 5(b).

We compared these results for event and mapping accu-
racy with results obtained on gene trees simulated with the
same overall rates of duplication, transfer, and loss events
but in which all simulated transfers were additive transfers
(no replacing transfers). We found that the numbers were
nearly identical, showing that the presence of replacing
transfers does not negatively affect the accuracy of DTL
reconciliation itself. For example, for the high DTL gene
trees, the percentage of speciation, duplication, and transfer
nodes assigned the correct event type was 95%, 81%, and
95%, respectively, and 91% of all nodes were assigned the
correct mapping. Note, however, that DTL reconciliation
cannot distinguish between additive and replacing trans-
fers, and both types of transfer events are simply inferred as
“transfers”.

Accuracy of inferring replacing transfers. Next, we per-
formed additional analysis to study if there was any dis-
crepancy in the accuracies of inferring the correct event
type (transfer) or mapping for additive transfers and those
for replacing transfers. For the low DTRL gene trees, we
found that additive transfers were assigned the correct event
type 97.05% of the time and the correct mapping 89.45%
of the time, while for replacing transfers these numbers
were 95.47% and 85.28%, respectively. Likewise, for the
medium DTRL gene trees, additive transfers were assigned
the correct event type 95.87% of the time and the correct
mapping 87.03% of the time, while for replacing transfers
these numbers were 93.01% and 81.04%, respectively. For
high DTRL gene trees, these numbers were 95.38% and
75.53% for the additive transfers and 95.12% and 74.52% for
the replacing transfers. Overall, this shows that replacing
transfers are inferred and mapped with accuracy compara-
ble to that of additive transfers. These results are shown in
Parts (c) and (d) of Figure 5.

These results are highly significant and suggest that, to
design an effective heuristic for DTRL reconciliation, it may
suffice to first use DTL reconciliation to identify transfer
events and then classify those transfer events as being either
replacing or additive.

5 A HEURISTIC FOR CLASSIFYING TRANSFERS

To explore the feasibility of accurately classifying transfer
events inferred through DTL reconciliation, we designed a
simple heuristic for classifying inferred transfers and tested
its accuracy on several simulated datasets. Given gene tree
G and species tree S, our heuristic first computes an optimal
DTL reconciliation, initially classifies all inferred transfer
events as additive, and then greedily attempts to reclassify
some of these transfer events as replacing. To determine if a
transfer can be replacing, the heuristic checks if the resulting
loss of a gene lineage in the recipient species will make
it impossible to generate at least as many gene copies at
each leaf descendant of the recipient species as are actually
present. If it does then the transfer remains an additive
transfer but otherwise is reclassified as a replacing transfer.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Low Medium High

P
ro

p
o

rt
io

n
 o

f
E

v
e

n
ts

 I
n

fe
rr

e
d

 A
cc

u
ra

te
ly

DTRL Rate

Event Inference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Low Medium High

P
ro

p
o

rt
io

n
 o

f
E

v
e

n
ts

 M
a

p
p

e
d

 A
cc

u
ra

te
ly

DTRL Rate

Mapping Inference

Speciation Duplication Transfer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Low Medium High

P
ro

p
o

rt
io

n
 o

f
E

v
e

n
ts

 I
n

fe
rr

e
d

 A
cc

u
ra

te
ly

DTRL Rate

Event Inference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Low Medium High

P
ro

p
o

rt
io

n
o

f
E

v
e

n
ts

M
a

p
p

e
d

A
cc

u
ra

te
ly

DTRL Rate

Mapping Inference

Additive Transfer Replacing Transfer

(a) (b) (c) (d)

Fig. 5. Accuracy of DTL reconciliation in the presence of replacing transfers. Part (a) shows the fraction of internal nodes across all low DTRL,
medium, DTRL, and high DTRL gene trees, whose event types, speciation, duplication, or transfer, are inferred correctly through DTL reconciliation.
Part (b) shows the corresponding fractions for correct mapping inference. Part (c) shows the fraction of additive transfer nodes and replacing transfer
nodes across all low DTRL, medium, DTRL, and high DTRL gene trees, that are correctly inferred as transfer events by DTL reconciliation. Part (d)
shows the corresponding fractions for correct mapping inference. For each DTRL rate, results are averaged across 100 datasets.

This heuristic thus depends only on the actual counts (based
on G and S) and implied/inferred counts (based on the
computed reconciliation) of genes at each leaf of the species
tree.

More precisely, the heuristic works as follows:

1) Calculate the number of gene copies from Le(G) that
are present in each extant species represented in the
species tree. For a species s ∈ Le(S), this count
is represented by actual-count(s). Note that this is
simply the number of leaf nodes of G that map to
leaf s.

2) Compute an optimal DTL reconciliation for G and
S (using RANGER-DTL 2.0 [3] with default param-
eters).

3) Classify each inferred transfer event as an additive
transfer.

4) Based on the current reconciliation, compute the
number of gene copies that would occur in each
extant species if there were no gene losses. This
can be counted easily as follows: Consider the path
from the root of the species tree to the species (leaf)
under consideration. Count the number of gene
duplication nodes on the gene tree that map to a
node on this path; let this number be denoted n1.
Count the number of additive transfer events on the
gene tree whose recipient is a node on this path; let
this number be denoted n2. Determine if the root
of the gene tree maps to a node on this path; If so,
assign n3 = 1, otherwise n3 = 0. The final required
count is simply n1+n2+n3. For a species s ∈ Le(S),
this final count is represented by inferred-count(s).

5) For each node g in a pre-order traversal of G:

a) If g is a transfer event:

i) Let x ∈ V (S) denote the recipient
species for that transfer event.

ii) Check if inferred-count(s) >
actual-count(s) for each s ∈ Le(S(x)). If
yes, reclassify g as a replacing transfer
and reduce inferred-count(s) by 1 for
each s ∈ Le(S(x)).

6) Output the resulting classification of inferred trans-
fer events.

An implementation of the heuristic algorithm is freely
available open-source as part of the RANGER-DTL soft-
ware package: https://compbio.engr.uconn.edu/software/
ranger-dtl/. Next, we illustrate this algorithm through an
example.

Illustration of the heuristic. Consider the gene tree
and species tree shown in Figure 6. Suppose the inferred
reconciliation of the gene tree and species tree labels gene
node g3 as a transfer event mapping to species node s4 and
with recipient species s6, gene node g6 as a gene duplication
mapping to species D, gene node g7 as a transfer event
mapping to species node G and with recipient species A,
and all other nodes as speciations with the root of the gene
tree mapping to the root of the species tree. The heuristic
starts with this reconciliation and its task is to assign each
of the two transfer nodes at g3 and g7 to be additive or
replacing.

The actual-counts at the leaves A, B, C, D, E, F , and G
of the species tree are easily computed to be, respectively:
2, 1, 0, 2, 1, 1, 1.

The heuristic starts by assuming that both transfer events
are additive and that there are no losses, and computes the
initial values of the inferred-counts at leaves A, B, C, D, E,
F , and G of the species tree, respectively, as follows:
2, 1, 1, 2, 2, 2, 1.

Note that each of these inferred-counts is at least equal to
the corresponding actual-count.

Next, the heuristic considers all transfer nodes on the
gene tree one at a time in pre-order. Thus it first considers
node g3. It checks to see if the additive transfer at g3
could have been a replacing transfer instead. To make this
determination, it checks if the inferred-count at each leaf
descended from the recipient of this transfer event (i.e., all
leaves descended from node s6) is strictly greater than its
corresponding actual-count. In this example, we would check
to make sure that inferred-count(E) > actual-count(E) and
inferred-count(F) > actual-count(F). Both inequalities hold
true in this case, and so the transfer at node g3 is labeled as
a replacing transfer. The next step is to update the inferred-

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

14

���������	��
�����	��

� � � � � � �� � �

�
�

�

�
�

�
�

�
�

�
�

�
� �

� �
�

�
�

�
�

�
�

�
�

�
�

Fig. 6. Gene tree and species tree for illustrating heuristic.

counts to account for this change. The new inferred-counts
at the leaves A, B, C, D, E, F , and G of the species tree,
respectively, are thus:
2, 1, 1, 2, 1, 1, 1.

Continuing the pre-order traversal the heuristic then
considers the transfer at node g7, and again checks to
see if this additive transfer event could have been a re-
placing transfer. To make this determination, it checks if
inferred-count(A) > actual-count(A). This inequality does not
hold since both counts are 2. Thus, the heuristic labels the
transfer at g7 as an additive transfer.

5.1 Experimental Results

To evaluate the ability of this heuristic to classify transfer
events accurately we applied it to several simulated datasets
covering a wide range of evolutionary scenarios. We divide
these datasets into three groups: Group 1 consists of the
datasets described in Section 4 (consisting of the three sets
of low, medium, and high DTRL trees) and we refer to these
as mixed datasets since gene trees in these datasets contain
both additive and replacing transfers. Group 2 consists of
datasets in which all transfers are additive transfers. As
before, this group is composed of three sets of low, medium,
and high DTRL trees. Finally, group 3 consists of datasets in
which all transfers are replacing transfers, divided as before
into three sets of low, medium, and high DTRL trees. For
group 2 and group 3 datasets, the duplication, transfer, and
loss rates used to generate the low, medium, and high DTRL
trees are identical to those used for group 1 (described in
detail in Section 4), except that in group 2 all transfers are
additive and in group 3 all transfers are replacing. Thus, the
total number of duplication and transfer events are roughly
the same across the three groups.

To evaluate the classification accuracy of our heuristic,
we measured the following for each dataset from each of
the three groups: (1) What fraction of all transfer events in
the true evolutionary history of a gene tree are correctly
inferred as transfer events by the heuristic. (2) What fraction
of additive transfer events in the true evolutionary history
of a gene tree are correctly inferred as additive transfers by
the heuristic. And (3) what fraction of all replacing transfer
events in the true evolutionary history of a gene tree are
correctly inferred as replacing transfers by the heuristic.
Table 1 shows these results. As also seen in Section 4,
transfer events can be identified with high accuracy across
all three groups and all three DTRL rates. Results are more
variable for classification of the inferred transfers as being
either additive or replacing (which is the primary task of

the heuristic). In general, over 80% of the additive transfers
and 86% of the replacing transfers are classified correctly
for the low DTRL datasets across the three groups, 60%–
65% of additive and 80%–88% of replacing transfers are
classified correctly for the medium DTRL datasets across the
three groups, and approximately 52% of additive and 70%
of replacing transfers classified correctly for the high DTRL
datasets. These results show that the proposed heuristic is
quite accurate at classification when DTRL rates are low
but performance suffers as the rates increase. These results
also show that, in general, the heuristic infers replacing
transfers with greater accuracy than additive transfers. This
is not entirely surprising given that the heuristic attempts
to label as many of the transfers as replacing as possible;
in particular, additive transfers may appear to be replacing
due to the high loss rate in our datasets. As a result, the
false negative rate for replacing transfers is low but the
false positive rate is high (since many additive transfers
may be classified as replacing), while the opposite is true
for additive transfers.

Overall, these experimental results demonstrate that
there is often sufficient information in DTL reconciliations
to be able to distinguish between additive and replacing
transfers, and suggest that classification of transfer events
inferred through DTL reconciliation is a promising approach
for estimating optimal DTRL reconciliations. While our
current heuristic is simple and has limited classification
accuracy, our experimental results do also suggest that, in
general, the ability to distinguish between replacing and
additive transfers based purely on gene tree (and species
tree) topology diminishes rapidly as the rate of evolutionary
events increases. This is not surprising since evolutionary
events that occur after an additive or replacing transfer
can completely erase the phylogenetic (i.e., topological)
signature of that additive or replacing transfer. Nonetheless,
we expect more advanced heuristics to be more effective
at distinguishing between additive and replacing transfers
even for high rates of evolutionary events.

6 CONCLUSION

Accurate detection of both replacing and additive transfer
events is crucial for understanding horizontal gene trans-
fer in microbes and understanding microbial evolution in
general. In this work, we address this problem by for-
malizing and experimentally studying the DTRL reconcil-
iation framework that simultaneously models gene dupli-
cation, loss, and both additive and replacing transfer. Our
framework builds upon the traditional DTL reconciliation
model and extends it substantially to properly model re-
placing transfers. We prove that the underlying compu-
tational problem is NP-hard, and our proof establishes a
close relationship between the rSPR distance problem and
DTRL reconciliation. Our experimental results show that
DTL reconciliation, which assumes all transfers are additive,
is surprisingly robust to the presence of replacing transfer,
and suggest that it should be possible to design effective
heuristics for the DTRL reconciliation problem based on
DTL reconciliation. To explore the feasibility of such an
approach, we devised a simple heuristic to classify inferred
transfer events as being either additive or replacing and

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

15

TABLE 1
Classification accuracy of the heuristic. This table shows the results of applying the heuristic algorithm to the three groups of simulated datasets;

Group 1 where gene trees contain both additive and replacing transfers, Group 2 where gene tree contain only additive transfers, and Group 3
where gene trees contain only replacing transfers. Each group is further divided into low, medium, and high DTRL datasets. For each dataset in

each group, we measure (i) the percentage of true transfers that are inferred as transfers by the heuristic (“All transfers accuracy”), (ii) the
percentage of true additive transfers that are inferred as additive transfers by the heuristic (“Additive transfers accuracy”), and (iii) the percentage
of true replacing transfers that are inferred as replacing transfers by the heuristic (“Replacing transfers accuracy”). All numbers are averaged over
the 100 gene tree/species tree pairs in each dataset. Note that the numbers reported for “All transfers accuracy” for Group 1 datasets are slightly
different from those reported in Section 4. This is because there often exist multiple optimal reconciliations and each run of RANGER-DTL or the

heuristic samples one of these optimal reconciliations at random.

Mixed datasets (Group 1) Additive datasets (Group 2) Replacing datasets (Group 3)
Low
DTRL

Med.
DTRL

High
DTRL

Low
DTRL

Med.
DTRL

High
DTRL

Low
DTRL

Med.
DTRL

High
DTRL

All transfers accuracy (%) 95.2 96.2 94.3 97.8 96.6 95.8 96.1 96.4 94.6
Additive transfers accuracy (%) 84.9 65.5 54.4 80.6 59.7 52.2 – – –
Replacing transfers accuracy (%) 86.1 80.7 70.1 – – – 93.9 88.1 75.0

found that it achieves fairly good classification accuracy
for low and medium rates of evolutionary events. This
demonstrates the feasibility of estimating optimal DTRL rec-
onciliations based on optimal DTL reconciliations followed
by classification of inferred transfer events, and we expect
improved heuristics to achieve greater classification accu-
racy. Our current heuristic has several limitations, of which
the following two are particularly notable: First, it does
not directly solve the DTRL reconciliation problem and its
accuracy is therefore limited by the accuracy of the inferred
DTL reconciliation (which does not model hidden events).
Second, it ignores the presence of multiple optimal DTRL
(or even DTL) reconciliations. Addressing these limitations
may yield improved heuristics for DTRL reconciliation.

Our experimental results also suggest that, as expected,
the ability to distinguish between replacing and additive
transfers based purely on phylogenetic incongruence dimin-
ishes rapidly as the rate of evolutionary events increases,
and therefore alternative approaches may be needed for
such cases. One such alternative approach for estimating
optimal DTRL reconciliations is to make use of available
gene order information for the extant species in the anal-
ysis to classify each transfer event inferred through DTL
reconciliation as being either additive or replacing based
on genomic context. However, the applicability of such an
approach is limited since it requires the use of complete
genomic information and, due to genome rearrangements,
can only be used for relatively closely related sets of species.
A hybrid approach that uses both gene ordering information
and phylogenetic incongruence may help overcome the
limitations of the two separate approaches, and developing
this hybrid approach is a promising research direction.

Finally, it would be useful to develop exact algorithms
for the DTRL reconciliation problem. Even though we
showed the problem to be NP-hard, it may be possible to
design fixed parameter algorithms that can be efficiently
applied to gene trees with small reconciliation cost (see.
e.g., [14]), or to design effective branch and bound algo-
rithms to rapidly compute optimal DTRL reconciliations for
small gene trees.

Acknowledgements: The authors thank Abhijit Mondal for
pointing out an error in an initial implementation of the
heuristic.

Funding: This work was supported in part by NSF awards
IIS 1553421, MCB 1616514, and EAR 1615573 to MSB.

REFERENCES

[1] S. S. Abby, E. Tannier, M. Gouy, and V. Daubin. Detecting lateral
gene transfers by statistical reconciliation of phylogenetic forests.
BMC Bioinformatics, 11(1):324, Jun 2010.

[2] M. S. Bansal, E. J. Alm, and M. Kellis. Efficient algorithms for the
reconciliation problem with gene duplication, horizontal transfer
and loss. Bioinformatics, 28(12):283–291, 2012.

[3] M. S. Bansal, M. Kellis, M. Kordi, and S. Kundu. RANGER-DTL
2.0: rigorous reconstruction of gene-family evolution by duplica-
tion, transfer and loss. Bioinformatics, 34(18):3214–3216, 2018.

[4] M. S. Bansal, Y.-C. Wu, E. J. Alm, and M. Kellis. Improved gene
tree error correction in the presence of horizontal gene transfer.
Bioinformatics, 31(8):1211–1218, 2015.

[5] R. G. Beiko, T. J. Harlow, and M. A. Ragan. Highways of gene
sharing in prokaryotes. Proceedings of the National Academy of
Sciences of the United States of America, 102(40):14332–14337, 2005.

[6] A. Boc, H. Philippe, and V. Makarenkov. Inferring and validating
horizontal gene transfer events using bipartition dissimilarity.
Syst. Biol., 59(2):195–211, 2010.

[7] M. Bordewich and C. Semple. On the computational complexity
of the rooted subtree prune and regraft distance. Annals of
combinatorics, 8(4):409–423, 2005.

[8] Z.-Z. Chen, F. Deng, and L. Wang. Simultaneous identification of
duplications, losses, and lateral gene transfers. IEEE/ACM Trans.
Comput. Biology Bioinform., 9(5):1515–1528, 2012.

[9] S. C. Choi, M. D. Rasmussen, M. J. Hubisz, I. Gronau, and M. J.
Stanhope. Replacing and additive horizontal gene transfer in
Streptococcus. Molecular Biology and Evolution, 29:3309–3320, 2012.

[10] L. A. David and E. J. Alm. Rapid evolutionary innovation during
an archaean genetic expansion. Nature, 469:93–96, 2011.

[11] J.-P. Doyon, C. Scornavacca, K. Y. Gorbunov, G. J. Szöllosi, V. Ran-
wez, and V. Berry. An efficient algorithm for gene/species trees
parsimonious reconciliation with losses, duplications and trans-
fers. In E. Tannier, editor, RECOMB-CG, volume 6398 of Lecture
Notes in Computer Science, pages 93–108. Springer, 2010.

[12] R. Friedman and B. Ely. Codon usage methods for horizontal gene
transfer detection generate an abundance of false positive and
false negative results. Current Microbiology, 65(5):639–642, 2012.

[13] M. T. Hallett and J. Lagergren. Efficient algorithms for lateral gene
transfer problems. In RECOMB, pages 149–156, 2001.

[14] D. Hasić and E. Tannier. Gene tree reconciliation including trans-
fers with replacement is np-hard and fpt. Journal of Combinatorial
Optimization, Feb 2019.

[15] T. Hill, K. Nordstrom, M. Thollesson, T. Safstrom, A. Vernersson,
R. Fredriksson, and H. Schioth. Sprit: Identifying horizontal gene
transfer in rooted phylogenetic trees. BMC Evolutionary Biology,
10(1):42, 2010.

[16] E. Jacox, C. Chauve, G. J. Szollosi, Y. Ponty, and C. Scornavacca.
eccetera: comprehensive gene tree-species tree reconciliation using
parsimony. Bioinformatics, 32(13):2056, 2016.

[17] G. Jin, L. Nakhleh, S. Snir, and T. Tuller. Parsimony score of phy-
logenetic networks: Hardness results and a linear-time heuristic.
IEEE/ACM Trans. Comput. Biology Bioinform., 6(3):495–505, 2009.

[18] S. Khayi, P. Blin, J. Pedron, T.-M. Chong, K.-G. Chan, M. Moumni,
V. Helias, F. Van Gijsegem, and D. Faure. Population genomics
reveals additive and replacing horizontal gene transfers in the
emerging pathogen Dickeya solani. BMC Genomics, 16(1):788, 2015.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

16

[19] E. V. Koonin, K. S. Makarova, and L. Aravind. Horizontal gene
transfer in prokaryotes: Quantification and classification. Annual
Review of Microbiology, 55(1):709–742, 2001. PMID: 11544372.

[20] M. Kordi and M. S. Bansal. Exact algorithms for duplication-
transfer-loss reconciliation with non-binary gene trees. IEEE/ACM
Trans. Comput. Biology Bioinform., 16(4):1077–1090, 2019.

[21] M. Kordi, S. Kundu, and M. S. Bansal. On inferring additive and
replacing horizontal gene transfers through phylogenetic recon-
ciliation. In Proceedings of the 10th ACM International Conference
on Bioinformatics, Computational Biology and Health Informatics, BCB
’19, pages 514–523, New York, NY, USA, 2019. Association for
Computing Machinery.

[22] S. Kundu and M. S. Bansal. SaGePhy: An improved phylogenetic
simulation framework for gene and subgene evolution. Bioinfor-
matics, 18(35):3496–3498, 2019.

[23] D. Merkle, M. Middendorf, and N. Wieseke. A parameter-adaptive
dynamic programming approach for inferring cophylogenies.
BMC Bioinformatics, 11(Suppl 1):S60, 2010.

[24] L. Nakhleh, D. A. Ruths, and L.-S. Wang. RIATA-HGT: A fast
and accurate heuristic for reconstructing horizontal gene transfer.
In L. Wang, editor, COCOON, volume 3595 of Lecture Notes in
Computer Science, pages 84–93. Springer, 2005.

[25] J. Sjostrand, A. Tofigh, V. Daubin, L. Arvestad, B. Sennblad, and
J. Lagergren. A bayesian method for analyzing lateral gene
transfer. Systematic Biology, 63(3):409–420, 2014.

[26] Y. S. Song. On the combinatorics of rooted binary phylogenetic
trees. Annals of Combinatorics, 7(3):365–379, Dec 2003.

[27] M. Stolzer, H. Lai, M. Xu, D. Sathaye, B. Vernot, and D. Durand.
Inferring duplications, losses, transfers and incomplete lineage
sorting with nonbinary species trees. Bioinformatics, 28(18):409–
415, 2012.

[28] G. J. Szollosi, B. Boussau, S. S. Abby, E. Tannier, and V. Daubin.
Phylogenetic modeling of lateral gene transfer reconstructs the
pattern and relative timing of speciations. Proceedings of the
National Academy of Sciences, 109(43):17513–17518, 2012.

[29] G. J. Szollosi, E. Tannier, N. Lartillot, and V. Daubin. Lateral gene
transfer from the dead. Systematic Biology, 62(3):386–397, 2013.

[30] C. Than, D. A. Ruths, H. Innan, and L. Nakhleh. Confounding
factors in HGT detection: Statistical error, coalescent effects, and
multiple solutions. J. Comput. Biol., 14(4):517–535, 2007.

[31] A. Tofigh, M. T. Hallett, and J. Lagergren. Simultaneous identifi-
cation of duplications and lateral gene transfers. IEEE/ACM Trans.
Comput. Biology Bioinform., 8(2):517–535, 2011.

[32] O. Zhaxybayeva. Horizontal gene transfer: Genomes in flux, vol-
ume 532 of Methods in Molecular Biology, chapter Detection and
quantitative assessment of horizontal gene transfer, pages 195–
213. Humana Press, 2009.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010785doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.27.010785
http://creativecommons.org/licenses/by-nc/4.0/

