Article

A New High-throughput Screening (HiTS) Method for Phages - Enabling Crude Isolation and Fast Identification of Diverse Phages with Therapeutic Potential

Nikoline S. Olsen ${ }^{1}$, Niels Bohse Hendriksen ${ }^{1}$, Lars H. Hansen ${ }^{2, \ddagger, *}$ and Witold Kot ${ }^{2, \ddagger}, *$
1 Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde, Denmark; niso@envs.au.dk
2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871
Frederiksberg C, Denmark; lhha@plen.ku.dk, wk@plen.ku.dk
\ddagger W. K. and L. H. H. initiated and supervised the project equally.
* Correspondence: lhha@plen.ku.dk Phone: +45 287520 53, wk@plen.ku.dk Phone: +45 35333877
Received: date; Accepted: date; Published: date

Abstract

Bacteriophage therapy and application of phages as biocontrol in plant production and food processing, all necessitates acquisition of suitable phages. Depending on purpose, the selection criteria of phage characteristics include lifestyle (lytic/lysogenic), host range, physical stability and absence of unwanted genetic traits such as integrases, antibiotic resistance or bacterial virulence factors. The exclusivity of antibiotic resistant clinical infections and possible development of phageresistance instigates a need to continually build sizeable phage libraries and also be able to rapidly isolate and characterise novel phages of specified bacterial hosts. Current methods for phage isolation are both laborious and time consuming, suitable only for the isolation of a limited number of phages. Thus, we developed the High-Throughput Screening (HITS) method for phages for fast isolation and identification of potentially hundreds of distinct phages against single hosts. This scalable method enables screening of hundreds of samples, in multiple simultaneous setups with varying parameters increasing the likelihood of isolating multiple distinct phages specific for the given conditions. The efficiency of the method is emphasised by our screening of 200 environmental samples, resulting in the identification of an abundance of unique phage species lytic to Escherichia coli, Salmonella Enterica, Enterococcus faecalis and Pseudomonas aeruginosa.

Keywords: bacteriophage; phage isolation; phagetherapy; high-throughput; wastewater; Escherichia coli, Salmonella Enterica, Enterococcus faecalis; Pseudomonas aeruginosa.

1. Introduction

The upsurge of antibiotic resistant bacteria is one of the main health concerns of our time [1]. Pathogenic bacterial infections are becoming ever more difficult to treat, and even last resort antibiotics such as the glycopeptide antibiotics vancomycin and teicoplanin are falling short as efficient antimicrobial agents [2]. Bacteria are consecutively acquiring antibiotic resistance and develop multidrug resistance [3], which necessitates the development of alternative antimicrobials or means to increase the efficiency of existing antibiotics. Phage therapy (PT) is the therapeutic use of the viral antagonists of bacteria, the bacteriophages (phages), to treat bacterial infections in humans or animals. Most bacteriophages have narrow host-ranges, limiting their infectivity to specific species or even strains. Consequently, PT does not instigate drastic perturbations of natural microbiota like traditional antibiotic treatments [4]. Though studies have been limited, PT has not been shown to have any adverse side effects [5]. Moreover, PT has shown potential as a last resort treatment of multi-
resistant bacterial infections, when traditional antibiotics fall short [6]-[8]. Hence, PT is, especially when applied as a combination therapy together with conventional antimicrobials, foreseen to play an essential role in the multifaceted strategy required to combat the lurking antibiotic crisis [1], [9]. Furthermore, the use of phages for biocontrol in plant production and food processing has displayed a promising potential [10], and could be a sustainable alternative to traditional chemicals facing restrictions due to concerns for public health and the spread of resistance [11].

Yet, a successful biocontrol or PT venture requires phages with different modes of action, and lots of them. Infection-specific phages and prepared phage cocktails are rarely generalisable [12]. Clinical infections can be unparalleled and call for de novo isolation or genetic engineering, as was the recent case with a 15-year old patient with cystic fibrosis caused by Mycobacterium abscessus [6]. More than 10000 phages infecting Mycobacterium smegmatis were screened in addition to 100 environmental samples, resulting in only three suitable phages, two of them requiring genetic engineering [6]. Indeed, one of the greater hurdles for effective PT, is the availability of suitable phages [12]. Methodologies for isolation of phages have not changed much since phages were discovered more than 100 years ago. The procedures are laborious and time-consuming. In general, phages are isolated by either direct plating or by enrichment and then subsequent purification. Enrichment entails an introduction of a host to a phage-containing sample, which is afterwards removed by centrifugation and filtration when phages have been amplified. Direct plating and purification is typically performed with the soft-agar overlay technique, first described by A. Gratia in 1936 [13]. Improvements to increase throughputs have been proposed, such as tube-free agar overlays [14], and phage activity can now be measured by means more suitable for automation, like colorimetric methods [15]. However, no truly high-throughput isolation method has, to our knowledge been offered. A citizen science approach, like the great effort performed by The Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) has resulted in the isolation of thousands of phages against M. smegmatis [16]. But this type of approach requires both substantial funding and facilities.

In order to establish and expand libraries of phages relevant for PT and biocontrol, affordable, fast and efficient screening methods are needed to enable rapid isolation and identification of candidate phages. Large libraries of phages infecting the same single host, also enables important phage-host interaction studies, expanding our understanding of phage taxonomy and ecology. Here we present the High-Throughput Screening (HiTS) method for phages, which enables a single person to go from a high number of samples to a plethora of identified phages within weeks. The simplicity of the method enables >500 samples to be handled simultaneously. The HiTS method selects for predominantly lytic and easily culturable phages. The resolution is a single or a few phages from each sample processed. The integrated sequencing of the identified phages allows for an early assessment of genomes enabling the selection of candidates which do not possess any unwanted genetic-traits and are thus suitable for further characterisation and potential application as PT or biocontrol agents.

2. Materials and Methods

The method presented is host-system independent and can thus be applied for screening of environmental samples for phages virulent to any culturable fast-growing aerobic or facultative anaerobic bacteria by adjusting host media, incubation temperature and time. The protocol enables a simple and fast (4 consecutive days), yet crude purification of single or a low number of distinctive phages from a small sample volume $(0.5-1.5 \mathrm{ml})$. The method allows for a high number of samples to be handled, with simultaneous investigation of diverse sample matrices or parallel screenings of the same sample-set with varying parameters e.g. host, pH , media, amendments and incubation conditions (Figure 1). This increases the likelihood of sequestering multiple distinctive phages from each sample. The method is suitable for both direct plaque sequencing (DPS) [17] and standard phage DNA extraction from lysate. The screening procedure entails four steps: 1. Phage amplification, 2. Liquid purification, 3. Spot-test and 4. Phage collection and DPS or optional: plating of dilution series.

2.1. Protocol

High-throughput Screening (HiTS) Method for Phages

The method, which is scalable for robotics, requires a centrifuge suitable for 96-well plates and a 96-pin replicator or a one μl multichannel pipette. Multichannel pipettes or a pipetting robot may ease many of the steps involved. Dry samples should be suspended prior to processing and preferably centrifuged and filtered. The maximum number of samples per plate is 94 . The sample volume can be adjusted as desired and as applicable to available well plates. By increasing the volume of raw sample input, the number of phages per incubation is also increased and thus the chance of isolating these. Initial sample volume only affects step 1. Phage amplification. Volumes and concentrations suggested in step 0 . and step 1. are suitable for screening 1.5 ml raw sample in deepwell plates with a working volume (wV) of 2.2 ml (e.g. 732-0612, VWR, Radnor PA US). All incubations should be performed under optimal host conditions (media and temperature) and hence adjusted as required. In step 4 there is the option to either collect the phages and sequence them by DPS or to do titers and aim for single plaques, and then do DPS or sequence phage-amplifications.

0. Preparation

a. Prepare all media, solutions and agar-plates.
b. Inoculate host cells in $2 \times 10 \mathrm{ml}$ liquid media and incubate overnight c. (ON).

1. Phage amplification (day 1)

a. Distribute a maximum of 94 samples, in suitable volumes $(1.5 \mathrm{ml})$ in a deep-well plate (\#1) with pierceable sealing tape (e.g. Z72252950EA, Excel Scientific, Victorville CA US). Sterilised water (1.5 ml) is added as negative amplification-controls to wells D6 and E6. To each of the 96 wells add: $90 \mu \mathrm{CaCl}_{2}(0.25 \mathrm{M})$ and MgCl_{2}. $(0.25 \mathrm{M})$, final conc. 10 mM $110 \mu \mathrm{ON}$ host culture, final conc. $5 \% \mathrm{~V} / \mathrm{V}$ $500 \mu \mathrm{l}$ Host media (conc. $\times 4.4$), final conc. $\times 1$
During addition of media, carefully pipette up and down a few times to mix. Close the well-plate and incubate ON on a shaker (200 rpm) .
b. Inoculate ON host culture in 10 ml liquid media for next day.

2. Liquid purification (day 2)

a. Filter to remove host bacteria by transferring $200 \mu \mathrm{l}$ (punch through pierceable tape) from each well to a 96-well filter Plate ($0.45 \mu \mathrm{~m}$) (e.g. MSHAS4510, Merck Millipore, Burlington MA US), pipette up and down a few times before extracting. Centrifuge filter plate on top of a new well-plate (\#2, wV 200 ul e.g. 269787, Nunc, Roskilde, DK) at $900 \times g$ for 2 minutes. Then add pierceable sealing tape to well-plate \#2. Discard the filter plate.
b. Prepare a third well-plate (\#3, wV $200 \mu \mathrm{l}$) with pierceable sealing tape and add:
$180 \mu \mathrm{l}$ host media (conc. x 1)
$10 \mu \mathrm{l}$ of host culture, final conc. $5 \% \mathrm{~V} / \mathrm{V}$
$10 \mu \mathrm{l} 0.2 \mathrm{M} \mathrm{CaCl}_{2}$ and $0.2 \mathrm{M} \mathrm{MgCl}_{2}$, final conc. 10 mM
Use the 96 -pin replicator to transfer $\sim 1 \mu l$ of each lysate (punch through pierceable tape) in well-plate \#2 to each well in well-plate \#3. Close well-plate \#3 and incubate ON on a shaker (200 rpm). If processing more than one set of samples, clean the 96-pin replicator by ethanol and flame three times in between and make sure to cool it down before re-use.

Figure 1 The four steps in the HiTS method. Illustration created with BioRender.
c. Inoculate ON host culture in 10 ml liquid media for next day.

3. Spot-test (day 3)

a. Filter to remove host bacteria as described in step 2a.
b. Prepare two large ($\varnothing 14 \mathrm{~cm}$ e.g. 82.1184.500, Sarstedt, Nürnbrecht DE or at least $12 \times 8 \mathrm{~cm}$ e.g. 242811, Nunc) soft-agar overlay plates (A and B) of 0.5% agarose amended with:
CaCl_{2} and MgCl_{2} (final conc. 10 mM)
Host culture (final conc. 2.5-5 \%)
c. While the plates solidify remove every second row of pipette-tips in a box of $200 \mu \mathrm{l}$ pipette-tips to facilitate the transfer of lysate from every second well in a chequered pattern into two new microtiter plates with pierceable sealing tape, number \#4 (A) and \#5 (B) (Figure S1).
d. Use the 96-pin replicator to carefully transfer $\sim 1 \mu l$ of lysates from well-plate $A(\# 5)$ to the softagar overlay plate A. Make sure to specify direction on the plate. The chequered pattern ensures a safe distance between spotted samples, a negative amplification-control (D6 or E6) on each plate and sterilisation-controls (every second tip) (Figure 1). Clean the 96-pin replicator by ethanol and flame and repeat the procedure with well-plate B (\#5) and soft-agar overlay plate B. Incubate soft-agar overlay plates upside down ON. Seal well-plates A (\#4) and B (\#5) and store at $4^{\circ} \mathrm{C}$.
e. Optional: Inoculate ON host culture in 10 ml liquid media for titre estimation next day.

4. Phage collection and DPS, or optional: plate dilution series (day 4)

a. The centre of clearing zones (agar-plate A and B) is collected for DPS. Additional clearing zone is dissolved in $100 \mu \mathrm{l}$ SM-buffer [18], filtered ($0.22-0.45 \mu \mathrm{~m}$) and stored for future purification and characterization. If clearing zones are too small for double collection make amplifications of the phage-SM solutions (inoculate host bacteria in 10 ml media, after $\sim 1 \mathrm{~h}$ add lysate, next day centrifuge and filtrate) and extract DNA for sequencing from these.
b. Optional: titre the lysates by transferring phage solutions from positive (plaque-forming) wells to new wells in column 1 of as many new well-plates (\#6+, wV $200 \mu \mathrm{l}$) as required. Eight-fold dilutions series are made within the well-plates by adding $180 \mu \mathrm{l}$ SM-buffer to all wells in column 2-9 and then transferring $20 \mu \mathrm{l}$ of the solution in column 1 to column 2 pipetting up and down to mix and repeating the procedure for the remaining columns. Spot $(\sim 1 \mu \mathrm{l})$ the dilution series on soft-agar overlay plates with a 96-pin replicator or multichannel pipette and incubate ON. Next day: Count plaques or clearing zones for approximate titre. Do DPS of single plaques if present and also collect clearing zone for phage storage. If single plaques are not present plate lysate dilution giving rise to 10-50 plaques on a full plate by the soft-agar overlay method (add the lysate to $4 \mathrm{ml} 0.5 \%$ agarose with $10 \mathrm{mM} \mathrm{CaCl}_{2}$ and MgCl_{2} and $2.5-5 \%(\mathrm{~V} / \mathrm{V}) \mathrm{ON}$ host culture, pour on standard petri dish with agar). Next day, pick diverting plaque morphologies for DPS or phage-amplification, lysate hereof can be used for DNA extraction and phage storage.

2.2. Phage screenings

Five screenings were performed as described in 2.1 Protocol, using Escherichia coli, Salmonella enterica, Enterococcus faecalis or Pseudomonas aeruginosa as hosts (Table 1). For the E. coli, E. faecalis and S. enterica screenings 188 distinct wastewater samples divided into two sets of 94 samples were used, for the P. aeruginosa screening 82 wastewater samples were used together with eight soil samples and four organic waste samples (Table S1). The S. enterica screenings were performed with both a small sample volume (SV) of 0.5 ml and a large sample volume (LV) of 1.5 ml , while the E. coli and E. faecalis screenings were only performed with $0.5 \mathrm{ml}(\mathrm{SV})$ and the P. aeruginosa screening only with 1.5 ml (LV). The SV screenings (E. coli, E. faecalis and S. enterica) followed the protocol, with the exception that instead of DPS, lysates from step 3. corresponding to positive wells (those instigating clearing zones) were used for DNA extraction and sequencing, while phages were stored by collecting topagar of clearing zones or plaques. In step 4 of the LV screenings (S. enterica and P. aeruginosa) lysates from positive wells were tittered in the 96 -well format and the most diluted lysates instigating single
plaques or clearing zones were used for making 10 ml amplification lysates for DNA extraction, library preparation, sequencing and phage storage. All incubations were performed at $37^{\circ} \mathrm{C}$.

2.2.1. Bacteria and growth media

The host bacteria used for phage screenings were E. coli (K-12, MG1655), S. enterica subsp. enterica serovar Enteritidis PT1, the vancomycin-resistant E. faecalis (strain ATCC 700802 / V583) and the chloramphenicol-resistant P. aeruginosa (PAO1). The media applied was LB (Alpha Biosciences, Baltimore MD US).

2.2.2. Samples

The 188 inlet wastewater samples ($40-50 \mathrm{ml}$) were collected in time-series of 2-4 days during July and August 2017, from 48 Danish wastewater treatment facilities geographically distributed in both rural and urban areas on Zealand, Funen and in Jutland. Upon receipt, the samples were centrifuged $\left(9000 \times \mathrm{g}, 4^{\circ} \mathrm{C}, 10 \mathrm{~min}\right)$, the supernatant filtered $(0.45 \mu \mathrm{~m})$ and then stored in aliquots at $-20^{\circ} \mathrm{C}$. The organic waste samples were collected from four different Danish facilities in February, May and November 2017. The 12 soil samples ($\sim 5 \mathrm{~g}$) were collected in Roskilde municipality, Denmark, in March 2019. Prior to screening the soil was suspended in 5 ml LB and slowly and continuously inverted for 1 h at room temperature, then the samples were centrifuged ($9000 \times \mathrm{g}, 5 \mathrm{~min}$) and the supernatant filtrated $(0.45 \mu \mathrm{~m})$. Refer to Table S 1 for a list of all samples and facilities.

2.2.3. DNA extraction, library preparation and sequencing

Phage DNA extractions were performed by an initial DNase treatment, 1 U of DNase 1 (New England Biolabs, Ipswich, MA US $)$ per $\sim 100 \mu l$ lysate $\left(37^{\circ} \mathrm{C}, 30 \mathrm{~min}\right.$, inactivated by $10 \mu \mathrm{l} 50 \mathrm{mM}$ EDTA), followed by addition of 3 U Proteinase K (A \& A Biotechnology, Gdynia, Poland) and 10\% (v/v) SDS solution $\left(55^{\circ} \mathrm{C}, 30 \mathrm{~min}\right.$, inactivated by $\left.70^{\circ} \mathrm{C}, 10 \mathrm{~min}\right)$. The extracted DNA was then purified in the well-plate format using the ZR-96 Clean and Concentrator kit (Zymo research, Irvine, CA US), following manufacturer's instructions and eluting in $6 \mu \mathrm{l}$ of the supplied elution buffer. Sequencing libraries were built according to manufacturer's instructions with minor modifications as described in Kot et al., (2014) [17] using the Nextera® XT DNA kit (Illumina, San Diego, CA USA), the libraries were sequenced as paired-end reads on Illumina NextSeq platform with the Mid Output Kit v2 (300 cycles).

2.2.4. Assembly, annotation, identification and phylogenomic analysis

The obtained reads were trimmed and assembled in CLC Genomics Workbench 10.1.1. (CLC BIO, DK), overlapping reads were merged with the following settings: mismatch cost: 2 , minimum score: 15, gap cost: 3 and maximum unaligned end mismatches: 0 , and then assembled de novo. Additional assemblies were constructed using SPAdes 3.12.0 [19]. Gene prediction and annotation was performed using a customized RASTtk version 2.0 [20] workflow with GeneMark [21], with manual curation and verification using BLASTP [22], HHpred [23] and Pfam version 32.0 [24], or de novo annotated using VIGA version 0.11 .0 [25] based on DIAMOND searches (RefSeq Viral protein database) and HMMer searches (pVOG HMM database). NT similarity was determined as percentage query cover multiplied by percentage NT identity. Novel phages were categorised according to ICTV taxonomy. The criterion of 95% DNA sequence similarity for demarcation of species was applied to identify novel species representatives and to determine species uniqueness within the dataset. All unique phage genomes were deposited in GenBank (Table 1). All genomes were assessed for antibiotic resistance genes (ARGs) and bacterial virulence genes using ResFinder 3.1 [26], [27] and VirulenceFinder 2.0 [28]. NT and amino acid (AA) similarities were calculated using tools recommended by the ICTV [29], i.e. BLAST [22] for identification of closest relatives (BLASTn when possible, discontinuous megaBLAST (word size 16) for larger genomes) and Gegenees version 2.2.1 [30] for assessing phylogenetic distances of multiple genomes, for both NTs (BLASTn algorithm) and AAs (tBLASTx algorithm) a fragment size of 200 bp and step size 100 bp was applied.

Evolutionary analyses for phylogenetic trees were conducted in MEGA7 version 2.1 (default settings) [31]. These were based on the large terminase subunit terL, a gene commonly applied for phylogenetic analysis [32], [33] and on the DNA encapsidation gene $g p A$ for the $<13 \mathrm{~kb}$ alleged Podoviridae. The NT sequences were aligned by MUSCLE [34] and the evolutionary history inferred by the Maximum Likelihood method based on the Tamura-Nei model [35]. The tree with the highest log likelihood is shown manually curated by adding color-codes and identifiers in Inkscape version 0.92.2. The R package iNEXT [36], [37] in R studio version 1.1.456 [38] was used for rarefaction analyses, species diversity ($q=0$, datatype: incidence_raw), extrapolation hereof (estimadeD) and estimation of sample coverage. Additional graphs were prepared in Excel version 16.31.

3. Results

3.1. Screening efficiency and resolution

Across all five screening between $3 \%(\mathrm{n}=5$ of 188$)$ and $81 \%(\mathrm{n}=153$ of 188$)$ of samples yielded clearing zones plausibly due to lysis by phages, the majority of these also gave rise to the identification of phages (Table 1). However, in some cases the DNA extraction was unsatisfactory or the sequencing failed. Between 61% (E. coli screening $n=94$ of 153) and 82% (S. enterica SV screening $n=42$ of 51) of clearing zones were successfully sequenced i.e. yielded reads assembling to phage contigs with an average coverage >x 20 (Table 1). Regardless of host, a single phage was identified from the vast majority of sequenced samples ($64-100 \%$ per screening), although in some instances two ($0-29 \%$ per screening), three ($0-6 \%$ per screening) or four ($0-1 \%$ per screening) phages were identified from a single sample (Figure 2a). The Escherichia phages were the most numerous (136 phages from 94 wells), they were more frequently (34 samples) isolated as more than one phage per sample and the only ones to be four phages in a sample [39] (Figure 2a, Table 1). The number of phages per sample did not differ considerably between phages of S. enterica (123 phages form 102 wells) and P. aeruginosa (43 phages from 38 wastewater wells), while only four phages lytic to E. faecalis were identified in four separate samples (Figure 2a). Escherichia phages were identified in samples from 43 different facilities out of the 48 , Enterococcus phages in samples from 4 facilities and Salmonella phages in samples from 22 of the 48 facilities included in these screenings. In the P. aeruginosa phage screening, phages were identified in wastewater samples from 95% of the 21 facilities included, (20 out of 21). Furthermore, P. aeruginosa phages were identified in three of the four organic waste samples, but in none of the 8 soil samples (Figure 2c).

Table 1. Number of samples screened, clearing zones detected and phages identified in the five HiTS screenings, using S. enterica, E. coli, E. faecalis or P. aeruginosa as host. Escherichia phage data from Olsen et al., (2020) [39].

Host	Sample (ml)	Samples (n)	Clearing zones (n)	Sequenced lysates ${ }^{1}$ (n)	Phages (n)	Unique species 2 (n)	Novel species $^{3}(\mathrm{n})$
S. enterica	0.5 SV	188	51	42	47	33	28
S. enterica	1.5 LV	188	74	60	76	45 (264)	$38\left(24^{4}\right)$
E. coli	0.5 SV	188	153	94	136	104	91
E. faecalis	0.5 SV	188	5	4	4	4	3
P.aeruginosa	1.5 LV	94^{5}	48	38	46	22	8

${ }^{1}$ Includes all lysates for which sequencing yielded reads assembling to contigs with a coverage $>\times 20$. ${ }^{2}$ Phages with $\leq 95 \%$ nucleotide similarity to the other phages in this dataset. ${ }^{3}$ Phages with $\leq 95 \%$ similarity to the other phages in this dataset and those deposited in the NCBI database. ${ }^{4}$ Excluding the phages with $>95 \%$ nucleotide similarity to phages in the S. enterica SV screening. 582 wastewater samples, 8 soil samples and 4 organic waste samples.

Of the 136 Escherichia phages, the majority (76\%) represent unique species [39]. The many Salmonella and P. aeruginosa phages are more homogeneous. The two S. enterica phage screenings identified 123 phages. Out of 47 SV phages 14 were shown to have $>95 \%$ NT similarity with other SV phages, while 31 of the 76 LV phages were shown to have $>95 \%$ NT similarity with other LV phages
and an additional 19 of the LV phages had $>95 \%$ NT similarity with SV phages. Hence, a total of 59 (48\%) Salmonella phages of distinct species are identified. Similarly, of the 46 P. aeruginosa phages 22 (48%) are unique, while all four E. faecalis phages represent distinctive species (Table 1).

Figure 2 (a) Number of phages per lysate (n) (x-axis) as occurring in percentage of all sequenced lysates (y -axis), presented according to individual screenings. (b). Average genome size (kb) of Gegenees based clusters, of unique phage species ($<95 \%$ nucleotide similarity to other phages in the dataset) organized by host, from all screenings. (c) Distribution of all 309 phages identified organised per facility, only the first 21 facilities were included in the Pseudomonas aeruginosa screening.

3.2. Novelty and diversity of HiTS-phages identifed compared to NCBI

The phages identified cover an impressive wide range of genome sizes (Figure 2b, 4), GC contents and predicted morphologies, representing five different families; the Ackermannviridae, Myoviridae, Podoviridae and Siphoviridae of the order Caudovirales and also the non-tailed Microviridae (Table 2) [39]. The Escherichia phages are indeed remarkably numerous and diverse and are consequently described separately in Olsen et. al. (2020) [39]. In summary, disregarding the jumbo phage Pseudomonas phage fnug (278.9 kb), the Escherichia phages cover the largest size range (5.3170.8 kb) and have an impressive GC content span (35.3-60.0\%) [39]. Members of the new family Ackermannviridae, were only detected among the Salmonella phages, just as members of the Microviridae, a family of small single stranded DNA phages, were only observed among the Escherichia phages [39]. The Salmonella and P. aeruginosa phages covered similar GC content spans of $36.9-56.5 \%$ and $39.0-59.5 \%$, respectively. The Salmonella phage genomes vary in sizes from 11.6 kb (Salmonella phage astrithr) to 159.1 kb (Salmonella phage maane), while the non-jumbo P. aeruginosa phages are more uniform having genome sizes of 44.9 kb (Pseudomonas phage clash) to 66.5 kb (Pseudomonas phage shane). The Enterococcus phages have genomes of 39.7-85.7 kb, Enterococcus phage heks and nattely, respectively (Figure 2b, Tables S2-S4).

An impressive number ($\mathrm{n}=154$) of novel phage species have so far been identified with the HiTS method. No less than $67 \%(n=91)$ of the Escherichia phages [39], 42\% $(n=52)$ of the Salmonella phages, $22 \%(\mathrm{n}=8)$ of the P. aeruginosa phages and three out of four Enterococcus phages represent novel phage species (Table 1, Figure 3). Whereas most of the Escherichia (69%) and all of the P. aeruginosa phage
species representatives have a high NT similarity (>89\%) with their closest relatives, a larger proportion of the Salmonella phages differ more from their closest relatives as only $54 \%(n=42)$ of the unique Salmonella phages species have $>89 \%$ NT similarity to their closest relative (Figure 3). Two of the Escherichia phages and three Salmonella phages share $<50 \%$ NT similarity with published phages. Likewise, two of the Enterococcus phages (Figure S3, Table S3) and Salmonella phage Akira (63% NT similarity) are only distantly related to any published phage ($62-65 \%$ NT similarity) (Figure 3). The 189 unique phages ($<95 \%$ NT similarity with other phages in the dataset) and their GenBank accession numbers are listed in supplementary materials (Table S2-S5).

Table 2 Predicted morphology of all the phages identified in screenings for Escherichia, Salmonella, P. aeruginosa and Enterococcus phages, based on taxonomy of closest relative. Escherichia phage data from Olsen et al., (2020) [39].

Phage taxonomy	Isolation hosts:	E. coli	S. enterica	P. aeruginosa	E. faecalis
Caudovirales; Ackermannviridae	-	21	-	-	
Caudovirales; Myoviridae	79	18	39	-	
Caudovirales; Siphoviridae	34	76	1	4	
Caudovirales; Podoviridae	10	8	6	-	
Microviridae; Bullavirinae	8	-	-	-	
Unclassified bacterial viruses	5	-	-	-	

No virulence factors or ARGs were detected in any of the 189 unique phages. Furthermore, no integrases were identified and though putative recombinases do occur it is uncertain if they are involved in DNA repair or integration.

Figure 3 Distribution of nucleotide similarity (\%) to closest relative (Blast) of all phages from all five screenings.

3.3 P. aeruginosa and Enterococcus phages from Danish wastewater

The P. aeruginosa phages group into two distinct clusters and two singletons (Figure S2). The vast majority $(\mathrm{n}=38)$ of the P. aeruginosa phages are closely related ($90.9-98.5 \%$ NT similarity) to phages of the genus Pbunavirus of the family Myoviridae, with genome sizes of $60.7-66.8 \mathrm{~kb}$ (89-95 CDSs, $54.8-55.7 \%$ GC, no tRNAs,). A smaller group of six P. aeruginosa phages ($44.9-45.3 \mathrm{~kb}, 68-69$ CDSs, $52.1-52.5 \%$ GC, $3-4$ tRNAs) are closely related ($94.1-96.3 \% \mathrm{NT}$ similarity) to phages of the genus Bruynoghevirus of the family Podoviridae. The jumbophage fnug is closely related (93% NT similarity) to phages of the genus Phikvirus, family Myoviridae. While the last Pseudomonas phage Iggy (60.7 kb , 90 CDSs, 56.5% GC, no tRNAs) is closely related (94.6%) to the unclassified Siphoviridae Pseudomonas phage PBPA162 (MK816297), none of them share $>8 \%$ NT similarity with any other published phages.

The Enterococcus phages are all predicted to have Siphoviridae morphology, but divide into two distinct clusters with NT inter-Gegenees scores of 0 (Figure S3). Phages heks and Nonaheksakonda ($39.7-41.9 \mathrm{~kb}, 64-74 \mathrm{CDSs}, 34.6-35.0 \% \mathrm{GC}$, no tRNAs) are related to efquatroviruses, but with only
59% NT similarity. The other two ($85.3-85.7 \mathrm{~kb}, 131-134 \mathrm{CDSs}, 30.2-30.3 \% \mathrm{GC}, 1 \mathrm{tRNA}$) are more closely related ($87-96 \%$ NT similarity) to unclassified Siphoviridae (Figure 2b, Tables S2-S5).

3.4 Salmonella phages from Danish wastewater

Based on NT similarity with closest relatives, 59 distinctive species of Salmonella phages were identified, of which 52 represent novel species. Estimations based on both the SV and LV screenings predicts species richness of easily culturable phages lytic to S. enterica subsp. enterica serovar Enteritidis PT1 in Danish wastewater to be nearby 80 (Figure S4), while Shannon diversity estimates 68 and 61 and Simpson diversity 51 and 38, for the SV and LV screenings, respectively (Figure S4). The estimates are however expected to be subject to large prediction bias due to the relatively small reference sample size, and a 95% confidence interval suggests a range for all diversity indices of 26173. Sample completeness is estimated to be achieved at ~ 1300 samples for a SV screening and at ~ 800 samples for a LV screening (Figure S4). The HiTS Salmonella phages belong to at least four different families, Ackermannviridae, Myoviridae, Podoviridae and Siphoviridae, covering a wide range of genome sizes and GC contents (Table S5). They group into five clusters and three singletons (inter-Gegenees scores $=0$) corresponding to their proposed taxonomy, excluding phage Akira (Figure 4). In spite of a NT similarity of 63% and a Gegenees score of $38-39$ with its closest relative the unclassified roufvirus Salmonella virus KFS_SE2 (MK112901) Akira does not group with neither KFS_SE2 or the type species of roufvirus Aeromonas phage pIS4-A (NC_042037) in the phylogenetic tree, resulting in a peculiar pattern in the Gegenees analysis (Figure 4). Furthermore, Akira shares limited NT similarity (39%) with pIS4-A and a Gegenees score of only 3-4 (Figure 4, Table 2).

All nine novel phages (143-159 kb, 187-209 CDSs, 44-45\% GC, 3-4 tRNAs) of the Ackermannviridae are related ($78-99 \%$ NT similarity) to phages of the genus Kuttervirus, subfamily Cvivirinae, defined by an average genome size of 158.1 kb , with and average GC content of 44.5% and averagely coding for 201 proteins and 4.3 tRNAs. These nine phages have an average NT intra-Gegenees score of just 60, but are more similar to one another and also to the type species of Kuttervirus, Escherichia virus CBA120 (JN593240) when comparing AAs (Gegenees score = 88-97).

Most of the Salmonella phages are predicted to belong to Siphoviridae ($\mathrm{n}=76,32$ species, 29 novel species). Twenty of the unique Siphoviridae phages (105-115 kb, 151-171 CDSs, 39.3-40.1 GC, 23-31 tRNAs) are related ($71-95 \%$ NT similarity) to phages of the genus Tequintavirus, the T5 like phages. However, whereas phage oldekolle has low NT Gegenees scores with the rest ($\mathrm{n}=27-32$) and is closely related to T5 (93% NT similarity), the remainder appear more distantly related to T5. Even though, these phages cluster together, they have relatively low NT inter-Gegenees scores ($\mathrm{n}=59-90$) and they also differ from published phage genomes by $6-29 \%$ NT similarity (Figure 4, S5, Table S5). An additional ten unique Siphoviridae phages ($41-44 \mathrm{~kb}, 56-70 \mathrm{CDSs}, 50 \% \mathrm{GC}, 0-1 \mathrm{tRNA}$) were found to be closely related to jerseyviruses, subfamily Guernseyvirinae. This genus is defined by genome sizes of $40-44 \mathrm{~kb}$, comparable morphology and a shared DNA identity of $\geq 60 \%$ and $>68 \%$ protein content [40]. The wastewater jerseyviruses-like phages are a heterogeneous group with varying NT intraGegenees scores of $38-91$, yet the AA intra-Gegenees scores are all >69. However, the Gegenees NT scores between the novel phages and the type species Salmonella phage Jersey (NC_021777) are all <33 though the AA scores are 65-71. The novel jerseyviruses-like phages are relatively abundant in the Danish wastewater samples and most of them were identified in several samples from different treatment facilities. Phages with $>95 \%$ NT similarity with phage wast were found eight times in samples from five distinct facilities and phages with $>95 \%$ NT similarity with phage demigod as many as 12 times, in samples from six different facilities (Table S5).

The last Siphoviridae within the Salmonella phages is the novel phage slyngel, related (92% NT similarity) to Escherichia phage vB_EcoS_G29-2 (MK373798) an unclassified Hanrivervirus, subfamily Tunavirinae. Furthermore, slyngel has 88% NT similarity with the type species Shigella phage pSf- 1 (NC_021331), with which a more distant relationship is also suggested by the phylogenetic analysis (Figure 4, S6).

Figure 4 Phylogenetic tree (Maximum log Likelihood: -4176.67, based on large terminase subunit or for the $<13 \mathrm{~kb}$ Podoviridae the DNA encapsidation protein, scalebar: substitutions per site) and phylogenomic nucleotide distances (Gegenees, BLASTn: fragment size: 200, step size: 100, threshold: 0\%). Predicted morphology is indicated by colorbars, \square Myoviridae, Siphoviridae, \square Podoviridae, \square Ackermannviridae, novel phages from this study are in italics, while close relatives are denoted by + and type species by $*$

Twelve of the Salmonella phages are based on NT similarity of the Myoviridae and though their closest relatives are all unclassified Myoviridae, they constitute the most homogeneous group. They have comparable genomes ($52-53 \mathrm{~kb}, 67-73$ CDSs, $45.7-46 \% \mathrm{GC}$, no tRNAs) and cluster together in both the Gegenees analyses and in the phylogenetic tree. Though phage brorfarstad has slightly lower NT Gegenees scores ($n=72-74$), than the rest, only a minor difference can be observed in the AA Gegenees analysis (Figure 4, S5, Table 3).

The eight Podoviridae divide into a cluster of three phage species representatives (astrid, assan and astrithr) with comparable (83-84 NT Gegenees score) small low GC genomes (11.6-11.7 kb, 15 CDSs, $39.7-39.8 \%$ GC, no tRNASs) and the singleton lumpael. Phages with $>95 \%$ NT similarity with phage Lumpael were observed in five samples from five distinct facilitates. Lumpael ($41.1 \mathrm{~kb}, 58$ CDSs, 59.9% GC, no tRNAs) has the highest GC content observed and shares only 76% NT similarity with its closest relative Enterobacteria phage IME_EC2 (KF591601). Astrid, assan and astrithr all share $<40 \%$ NT similarity with their closest relative Pectobacterium phage DU_PP_III (MF979562), and though they share NT Gegenees scores of only $0-1$ and AA of 45 , they do form a monophyletic clade (Figure 4, S5).

4. Discussion

When it comes to phage isolation three aspects are key; titre, sterility and purity. These features are a prerequisite for any phage work, regardless of aim. However, purity and sterility are not the main focus in a screening such as the HiTS method. This method does not intend to provide a final PT or biocontrol product, but instead offers crude isolation of highly diverse phages in sufficient titres. This is to provide a fast and crude acquisition of numerous and diverse phages and thereby a basis for further phage isolation and establishment or expansion of phage libraries. If a phage of interest is in a mixed lysate, sequencing enables primer design for PCR verification when isolating the individually plaquing phages.

The method is unique in its ability to identify numerous assorted phages while also facilitating crude isolation in a very short time span. This makes investigations of phage diversity easy and possible. The capacity of the HiTS method to uncover diverse phages is clearly illustrated by the impressive findings when screening for phages of PT relevance in wastewater, especially those infecting E. coli and S. enterica., as presented in Olsen et al. (2020) [39] and in this study, respectively. Even for less abundant phages diversity and novelty was uncovered, the P. aeruginosa phages represent three distinct families, and eight are novel phage species representatives, while all the Enterococcus phages are of the Siphoviridae two of them have limited NT similarity ($<60 \%$) with published phages. The reported five screenings yielded no less than 331 potential hits in the form of clearing zones resulting in the identification of 154 novel phage species. Furthermore, none of these phages code for known virulence factors or ARGs and none appear to be lysogenic, making them all potential candidates for PT and biocontrol applications.

Unlike metagenomic sequencing approaches, this method provides actual phages with a direct link to the pathogenic host or any host in interest. The HiTS method does not reveal the diversity of individual samples; hence many phages remain undetected, especially those which are not easily grown under laboratory conditions. The HiTS method is a competition-based method and clearly selects for lytic phages with traits preferable in PT and biocontrol applications i.e. a high burst size and a short latency period. Consequently, the HiTS method enables the capture of the most prevalent phage(s) of the day in any sample. Thus, when screening numerous distinct samples, it provides an estimate of species richness of this type of phages in the given sample matrix. Accordingly, the species richness of easily culturable phages, presumably with high burst-sizes and short latency times, lytic to the specific strains of Escherichia and Salmonella phages in Danish wastewater was estimated to be at least in the range of 160-420 and 49-173, respectively (Figure S4) [39]. This is likely an underestimation considering the relatively small sample sizes and the inherent bias in the method to only isolate a single or a few phages per sample combined with the many plaque-forming lysates for which DNA-extraction or sequencing was unsuccessful. If the aim of screening is to isolate phages
with PT or biocontrol potential or phages that are easy to study under laboratory-conditions, the targeting of lytic and highly reproductive phages is indeed an advantage. However, if the aim is to disclose true diversity or detect more difficult to culture specimen, other methods such as plaquing without amplification may be superior. Metagenomic sequencing approaches are constantly refined and now offers high detection levels of phageomes [41], but phages of interest detected may be near impossible to isolate in vitro. The key advantage of the HiTS method is indeed that it offers both identification through sequencing and also provides physical isolates of all phages targeting the specific host-species used as bait. Consequently, interesting discoveries such as rare and novel phages or the presence of remarkable genes with unexpected or desired functions can be investigated following a final isolation. It should however be noted that it is not recommended to sequence the lysate giving rise to plaques or clearing zones, while harvesting phages from the plaques, as was done by the authors in the SV screenings. This approach may result in sequencing of phages in lysate not present in the harvested soft-agar.

A 96-well setup carries a risk of cross-contamination, however the use of pierceable sealing-tape as recommended in the HiTS method, reduces this risk. The presence of a negative amplification control in each spot-test (agar-plates A and B) provides an indication of potential crosscontamination. No plaquing was observed in negative amplification controls in any of the screenings. Furthermore, the chequered-pattern with empty wells between all lysates used when performing the spot-tests ensures that in the case of improper sterilisation, still no phages will be transferred to other wells in use during spotting with a 96 -pin replicator, as opposite patterns are present in well-plate A and B. Finally, if the sterilisation of the 96-pin replicator is insufficient any contaminating phages will plaque in between purposely spotted phages. This was not observed in any of the screenings.

A high number of distinct samples, as required by the HiTS method, may be cumbersome to collect and prepare, but once they are collected, they can be aliquoted, stored $\left(-20^{\circ} \mathrm{C}\right)$ and used for numerous screenings of different target bacteria, as only very small sample volumes ($0.5-1.5 \mathrm{ml}$) are required. The small sample-volumes also permits for samples to be collected by sending out collection-kits and having them returned by mail or carrier, provided that the applicable law allows it. Any sample matrix with high quantities of the target host is applicable. Furthermore, the suitability of time-series of wastewater-samples eases the sample collection and makes the screening method more feasible as it limits the number of distinct sampling sites. In this study, no Enterococcus, only two P. aeruginosa (9\%), five Salmonella (8.5\%) and nine Escherichia phage species (8.6\%) [39] were detected more than once in samples from the same facility in any distinct screening. Wastewater treatment plants receive inlet wastewater in a constant yet changing flow thus the presence of diverse phages can be expected to fluctuate and be interchangeable.

Sequencing is continuously getting cheaper [42], and even though this is the major expenditure of the HiTS method, it is economically feasible. Spending weeks and months on thoroughly isolating hundreds of phages is also a costly affair in regards of time and workhours. And still, also by individual isolation resulting phages may end up being similar specimen.

With the HiTS method phage libraries can be build and sequenced after just four consecutive days of sample processing. The fast turnaround is of particular importance when screening for phages for PT, but not all phages are suitable for PT. Lysogenic phages should be avoided as they do not necessarily lyse their hosts and may also increase virulence of their hosts by lysogenic conversion [43]. Some phages, also those with a lytic lifestyle, code for genes with unwanted genetic traits such as toxins, superantigens, intracellular survival/host cell attachments proteins or ARGs which can be spread to bacterial communities through transduction [44], [45]. This is especially relevant to consider when isolating phages from wastewater, as treatments plants can be considered hotspots for ARGs [45]. Fortunately, ARGs and other unwanted genetic traits can, for a large part, be deduced by genetic analyses and thus phages coding for them can with decent confidence be excluded. Hence, the HiTS method allows selection of new candidate phages after a few weeks of screening, sequencing and analysing. The ability of the candidate phages to infect the target host is already verified and the absence of undesired genetic traits confirmed, consequently the phages are now ready for experimental validation and final isolation, if required.

In conclusion, the HiTS method presented here has the potential to efficiently detect the diversity of and crudely isolate phages relevant for PT and biocontrol which are abundant in the sample matrix explored. The HiTS method is simple, fast and cost-efficient. It can prove to be a valuable, scalable method in the case of urgent needs for PT suitable phages targeting specific clinical infections. With the HiTS method establishment of sizeable discovery phage banks becomes fast and efficient. Such phage discovery banks could be lifesavers eliminating the need to spend time on isolating new PT phages and would also facilitate important phage taxonomy and ecology studies and can be explored for industrially-relevant biotechnological applications.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Illustration of Checker plating, Table S1: List of samples, Table S2: List of unique P. aeruginosa phages, Table S3: List of unique Enterococcus phages, Table S4: List of unique Salmonella phages, Figure S2: Phylogenomic nucleotide distances of the 39 unique P. aeruginosa phages, Figure S3: Phylogenomic nucleotide distances of the four unique Enterococcus phages, Figure S4: Rarefaction curves and diversity indices, Figure S6: Phylogenomic amino acid distances of the 59 unique Salmonella phages.

Author Contributions: Conceptualization, N. S. O., W. K.: and L. H. H.; methodology, N. S. O., W. K. and L. H. H.; validation, N. S. O., W. K., N. B. H. and L. H. H.; formal analysis, N. S. O.; investigation, N. S. O.; resources, N. S. O. and L. H. H.; data curation, N. S. O.; writing-original draft preparation, N. S. O.; writing-review and editing, N. S. O., W. K., N. B. H. and L. H. H.; visualization, N. S. O.; supervision, N. S. O., W. K. and L. H. H.; project administration, N. S. O., W. K. and L. H. H.; funding acquisition, W. K. and L. H.H.

Funding: This research was funded by Villum Experiment Grant 17595, Aarhus University Research Foundation AUFF Grant E-2015-FLS-7-28 to Witold Kot and Lars Hestbjerg Hansen's Human Frontier Science Program Grant: RGP0024/2018.

Acknowledgments: This study had not been possible without the much-appreciated contribution by the many collaborating members of the Danish Water and Wastewater Association (DANVA), who kindly supplied us with time-series of wastewater samples from their treatment facilities. A special thanks to the Billund and Grindsted treatment facilities of Billund Vand \& Energi, Lynetten, Avedøre and Damhusåen treatment facilities of BIOFOS, Kolding treatment facility of BlueKolding, Esbjerg Øst, Esbjerg Vest, Ribe, Varde og Skovlund treatment facilities of DIN Forsyning, Drøsbro, Hadsten, Hammel, Hinnerup and Voldum treatment facilities of Favrskov Forsyning, Haerning treatment facility of Herning Vand, Hillerød treatment facility of Hillerød Forsyning,Lemvig treatment facility of Lemvig Vand og Spildevand, Bevtoft, Gram, Haderslev, Halk, Jegerup, Nustrup, Over Jerstal, Skovby, Skrydstrup, Sommersted, Vojens and Årøsund treatment facilities of Provas, Marselisborg, Egå and Viby treatment facilities of Aarhus vand, Hedensted, Juelsminde and Tørring treatment facilities of Hedensted Spildevand, Ejby Mølle, Bogense, Hofmansgave, Hårslev, Nordvest, Nordøst, Otterup and Søndersø treatment facilities of VandCenterSyd, Øst and Vest treatment facilities of Aalborg Forsyning and finally Helsingør treatment facility of Forsyning Helsingør.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

[1] F. L. Gordillo Altamirano and J. J. Barr, "Phage Therapy in the Postantibiotic Era.," Clin. Microbiol. Rev., vol. 32, no. 2, pp. e00066-18, Apr. 2019.
[2] J. Y. H. Lee et al., "Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis," Nat. Microbiol., vol. 3, no. 10, pp. 1175-1185, Oct. 2018.
[3] A.-P. Magiorakos et al., "Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance," Clin. Microbiol. Infect., vol. 18, no. 3, pp. 268-281, Mar. 2012.
[4] D. M. Lin, B. Koskella, and H. C. Lin, "Phage therapy: An alternative to antibiotics in the age of multi-
drug resistance," World J. Gastrointest. Pharmacol. Ther., vol. 8, no. 3, p. 162, 2017.
[5] K. M. Caflisch, G. A. Suh, and R. Patel, "Biological challenges of phage therapy and proposed solutions: a literature review," Expert Rev. Anti. Infect. Ther., vol. 17, no. 12, pp. 1011-1041, Dec. 2019.
[6] R. M. Dedrick et al., "Engineered bacteriophages for treatment of a patient with a disseminated drug resistant Mycobacterium abscessus," Nat. Med., vol. 25, no. 5, p. 730, 2019.
[7] R. T. Schooley et al., "Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection.," Antimicrob. Agents Chemother., vol. 61, no. 10, Oct. 2017.
[8] S. Aslam et al., "Early clinical experience of bacteriophage therapy in 3 lung transplant recipients," Am. J. Transplant., vol. 19, no. 9, pp. 2631-2639, Sep. 2019.
[9] A. B. Monk, C. D. Rees, P. Barrow, S. Hagens, and D. R. Harper, "Bacteriophage applications: Where are we now?," Letters in Applied Microbiology, vol. 51, no. 4. pp. 363-369, 2010.
[10] A. B. Carstens, A. M. Djurhuus, W. Kot, and L. H. Hansen, "A novel six-phage cocktail reduces Pectobacterium atrosepticum soft rot infection in potato tubers under simulated storage conditions," FEMS Microbiol. Lett., vol. 366, no. 9, May 2019.
[11] A. Svircev, D. Roach, and A. Castle, "Framing the future with bacteriophages in agriculture," Viruses, vol. 10, no. 5. MDPI AG, p. 218, 01-May-2018.
[12] H. Brüssow, "Hurdles for Phage Therapy to Become a Reality - An Editorial Comment," Viruses, vol. 11, no. 6, p. 557, Jun. 2019.
[13] A. Gratia, "Des relations numeriques entre bacteries lysogenes et particules de bacteriophage," Ann. Inst. Pasteur, vol. 57, no. 1936, pp. 652-676, 1936.
[14] K. M. Kauffman and M. F. Polz, "Streamlining standard bacteriophage methods for higher throughput," MethodsX, vol. 5, pp. 159-172, Jan. 2018.
[15] M. Henry et al., " Development of a high throughput assay for indirectly measuring phage growth using the OmniLog TM system ," Bacteriophage, vol. 2, no. 3, pp. 159-167, Jul. 2012.
[16] G. F. Hatfull, "Mycobacteriophages: Windows into Tuberculosis," PLoS Pathog., vol. 10, no. 3, p. e1003953, Mar. 2014.
[17] W. Kot, F. K. Vogensen, S. J. Sørensen, and L. H. Hansen, "DPS - A rapid method for genome sequencing of DNA-containing bacteriophages directly from a single plaque," J. Virol. Methods, vol. 196, pp. 152-156, Feb. 2014.
[18] E. Wood, "Molecular Cloning. A Laboratory Manual," Biochem. Educ., vol. 11, no. 2, p. 82, 2003.
[19] A. Bankevich et al., "SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.," J. Comput. Biol., vol. 19, no. 5, pp. 455-77, 2012.
[20] T. Brettin et al., "RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes," Sci. Rep., vol. 5, no. 1, p. 8365, Jul. 2015.
[21] J. Besemer and M. Borodovsky, "GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses," Nucleic Acids Res., vol. 33, no. Web Server, pp. W451-W454, Jul. 2005.
[22] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool," J. Mol. Biol., vol. 215, no. 3, pp. 403-410, Oct. 1990.
[23] J. Soding, A. Biegert, and A. N. Lupas, "The HHpred interactive server for protein homology detection and structure prediction," Nucleic Acids Res., vol. 33, no. Web Server, pp. W244-W248, Jul. 2005.
[24] R. D. Finn et al., "The Pfam protein families database: towards a more sustainable future," Nucleic Acids Res., vol. 44, no. D1, pp. D279-D285, Jan. 2016.
[25] 6 Enrique González-Tortuero1, Thomas David Sean Sutton1, Vimalkumar Velayudhan1, 4 Andrey Nikolaevich Shkoporov1, Lorraine Anne Draper1, Stephen Robert Stockdale1, 2, Reynolds 5 Paul Ross1, 3, Colin Hill1, 3, "VIGA: a sensitive, precise and automatic de novo VIral Genome Annotator," bioRxiv, p. 277509, Mar. 2018.
[26] E. Zankari et al., "Identification of acquired antimicrobial resistance genes.," J. Antimicrob. Chemother., vol. 67, no. 11, pp. 2640-4, Nov. 2012.
[27] K. A. Kleinheinz, K. G. Joensen, and M. V. Larsen, "Applying the ResFinder and VirulenceFinder webservices for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences.," Bacteriophage, vol. 4, no. 1, p. e27943, Jan. 2014.
[28] K. G. Joensen et al., "Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli," J. Clin. Microbiol., vol. 52, no. 5, pp. 1501-1510, May 2014.
[29] E. Adriaenssens and J. R. Brister, "How to Name and Classify Your Phage: An Informal Guide.," Viruses, vol. 9, no. 4, 2017.
[30] J. Ågren, A. Sundström, T. Håfström, and B. Segerman, "Gegenees: Fragmented Alignment of Multiple Genomes for Determining Phylogenomic Distances and Genetic Signatures Unique for Specified Target Groups," PLoS One, vol. 7, no. 6, p. e39107, Jun. 2012.
[31] S. Kumar, G. Stecher, and K. Tamura, "MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets," Mol. Biol. Evol., vol. 33, no. 7, pp. 1870-1874, Jul. 2016.
[32] A. Lopes, P. Tavares, M.-A. Petit, R. Guérois, and S. Zinn-Justin, "Automated classification of tailed bacteriophages according to their neck organization," BMC Genomics, vol. 15, no. 1, p. 1027, Nov. 2014.
[33] D. J. Mercanti et al., "Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei," Appl. Environ. Microbiol., vol. 82, no. 1, pp. 95-105, Jan. 2016.
[34] R. C. Edgar, "MUSCLE: multiple sequence alignment with high accuracy and high throughput.," Nucleic Acids Res., vol. 32, no. 5, pp. 1792-7, 2004.
[35] K. Tamura and M. Nei, "Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.," Mol. Biol. Evol., vol. 10, no. 3, pp. 512-26, May 1993.
[36] T. C. Hsieh, K. H. Ma, and A. Chao, "iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers)," Methods Ecol. Evol., vol. 7, no. 12, pp. 1451-1456, Dec. 2016.
[37] A. Chao et al., "Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies," Ecol. Monogr., vol. 84, no. 1, pp. 45-67, 2014.
[38] RStudio Team, "RStudio: Integrated Development for R." Boston, MA, 2016.
[39] N. S. Olsen, W. Kot, L. M. F. Junco, and L. H. Hansen, "Exploring the remarkable diversity of Escherichia coli Phages in the Danish Wastewater Environment, Including 91 Novel Phage Species," bioRxiv, p. 2020.01.19.911818, Jan. 2020.
[40] E. M. Adriaenssens et al., "Integration of genomic and proteomic analyses in the classification of the Siphoviridae family," Virology, vol. 477, pp. 144-154, Mar. 2015.
[41] C. d'Humières et al., "A simple, reproducible and cost-effective procedure to analyse gut phageome: from phage isolation to bioinformatic approach," Sci. Rep., vol. 9, no. 1, pp. 1-13, Dec. 2019.
[42] "DNA Sequencing Costs: Data I NHGRI." [Online]. Available: https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data. [Accessed: 23-Feb-2020].
[43] H. Brussow, C. Canchaya, and W.-D. Hardt, "Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion," Microbiol. Mol. Biol. Rev., vol. 68, no. 3, pp. 560602, Sep. 2004.
[44] R. Reindel and C. R. Fiore, "Phage therapy: Considerations and challenges for development," Clin. Infect. Dis., vol. 64, no. 11, pp. 1589-1590, 2017.
[45] W. Calero-Cáceres, M. Ye, and J. L. Balcázar, "Bacteriophages as Environmental Reservoirs of Antibiotic Resistance," Trends in Microbiology. 2019.

Supplementary Figures and Tables for:

A New High-throughput Screening (HiTS) Method for Phages - Enabling Crude Isolation and Fast Identification of Diverse Phages with Therapeutic Potential

Figure S1 Illustration of chequer plating, removing every second row of pipette-tips enables the easy transfer of lysate to every second well of a well-plate in a chequer patter ensuring a safe distance between clearing zones when plating. Illustration created in BioRender.

Table S1 List of samples used for phage screenings.

Sample type	Company/source	Facility/city	Samples
Wastewater	Billund	Billund	1A, 1B
Wastewater	Billund	Grindsted	2A, 2B
Wastewater	BIOFOS	Avedøre	3A, 3B, 3C, 3D
Wastewater	BIOFOS	Damhusåen	4A, 4B, 4C, 4D
Wastewater	BIOFOS	Lynetten	5A, 5B, 5C, 5D
Wastewater	BlueKolding	Kolding	6A, 6B, 6C, 6D
Wastewater	Din Forsyning	Esbjerg vest	7A, 7B, 7C, 7D
Wastewater	Din Forsyning	Esbjerg Øst	8A, 8B, 8C, 8D
Wastewater	Din Forsyning	Ribe	9A, 9B, 9C, 9D
Wastewater	Din Forsyning	Skovlund	10A, 10B, 10C, 10D
Wastewater	Din Forsyning	Drøsbro	12A, 12B, 12C, 12D
Wastewater	Favrskov Spildevand	Hadsten	13A, 13B, 13C, 13D
Wastewater	Favrskov Spildevand	Hammel	14A, 14B, 14C, 14D
Wastewater	Favrskov Spildevand	Hinnerup	15A, 15B, 15C, 15D
Wastewater	Favrskov Spildevand	Voldum	16A, 16B, 16C, 16D
Wastewater	Favrskov Spildevand	Hedensted	17A, 17B, 17C, 17D
Wastewater	Hedensted	Juelsminde	18A, 18B, 18C, 18D
Wastewater	Hedensted	Tørring	$19 \mathrm{~A}, 19 B, 19 \mathrm{C}, 19 \mathrm{D}$
Wastewater	Hedensted		

Wastewater	Helsingør Fors.	Helsingør	20A, 20B, 20C, 20D
Wastewater	Herning Vand	Herning	21A, 21B, 21C, 21D
Wastewater	Hillerød service	Hillerød	22A, 22B, 22C, 22D
Wastewater	Lemvig Fors.	Lemvig	23A, 23B, 23C, 23D
Wastewater	Provas Fors.	Bevtoft	24A, 24B, 24C, 24D
Wastewater	Provas Fors.	Gram	25A, 25B, 25C, 25D
Wastewater	Provas Fors.	Haderslev	26A, 26B, 26C, 26D
Wastewater	Provas Fors.	Halk	27A, 27B, 27C, 27D
Wastewater	Provas Fors.	Jegerup	28A, 28B, 28C, 28D
Wastewater	Provas Fors.	Nustrup	29A, 29B, 29C, 29D
Wastewater	Provas Fors.	Over Jerstal	30A, 30B, 30C, 30D
Wastewater	Provas Fors.	Skovby	31A, 31B, 31C, 31D
Wastewater	Provas Fors.	Skrydstrup	32A, 32B, 32C, 32D
Wastewater	Provas Fors.	Sommersted	33A, 33B, 33C, 33D
Wastewater	Provas Fors.	Vojens	34A, 34B, 34C, 34D
Wastewater	Provas Fors.	Årøsund	35A, 35B, 35C, 35D
Wastewater	VandCenter Syd	Ejby Mølle	36A, 36B, 36C, 36D
Wastewater	VandCenter Syd	Bogense	37A, 37B, 37C, 37D
Wastewater	VandCenter Syd	Hofmansgave	38A, 38B, 38C, 38D
Wastewater	VandCenter Syd	Hårslev	39A, 39B, 39C, 39D
Wastewater	VandCenter Syd	Nordvest	40A, 40B, 40C, 40D
Wastewater	VandCenter Syd	Nordøst	41A, 41B, 41C, 41D
Wastewater	VandCenter Syd	Otterup	42A, 42B, 42C, 42D
Wastewater	VandCenter Syd	Søndersø	43A, 43B, 43C, 43D
Wastewater	Aalborg Kloak	Vest	44A, 44B, 44C, 44D
Wastewater	Aalborg Kloak	Øst	45A, 45B, 45C, 45D
Wastewater	Aarhus Vand	Marselisborg	46A, 46B, 46C, 46D
Wastewater	Aarhus Vand	Egå	47A, 47B, 47C, 47D
Wastewater	Aarhus Vand	Viby	48A, 48B, 48C, 48D
Soil	Pondside	Roskilde	S1
Soil	Next to rotten tree trunk	Roskilde	S2
Soil	Parking lot	Roskilde	S3
Soil	Potted chives	Roskilde	S4
Soil	Lawn	Roskilde	S5
Soil	molehill	Roskilde	S6
Soil	Potted plant (Pelargonium graveolens)	Roskilde	S7
Soil	Flowerbed	Roskilde	S8
Organic waste		Svinninge	O1
Organic waste		Glostrup	O2
Organic waste		Holbæk	O3
Organic waste		Holsted	O4

Table S2 List of unique P. aeruginosa phages i.e. those which differ by $>5 \%$ from other phages in the dataset, identified in the LV screening of Danish wastewater, soil and organic waste.

phage	genome size (bp)	$\begin{aligned} & \text { GC } \\ & (\%) \end{aligned}$	CDS (n)	tRNAs (n)	Novel ${ }^{1}$	taxonomy	Sample	Accession
clash	44912	52.1	68	3	*	Podoviridae;	1A, 2B, 9A	MT119362
otherone	44930	52.1	68	3		Bruynoghevirus Podoviridae;	1B	MT119373
oldone	45313	52.5	69	4	*	Bruynoghevirus Podoviridae; Bruynoghevirus	4C	MT119371
Iggy	60769	56.5	90	-		Siphoviridae.	4D	MN029011
datas	60746	54.8	89	-		Myoviridae; Pbunavirus	21B	MT119378
goonie	64599	55.6	94	-		Myoviridae; Pbunavirus	8C	MT133561
elmo	65276	55.0	91	-		Myoviridae; Pbunavirus	4B	MT119364
willy	65355	55.6	92	-		Myoviridae; Pbunavirus	20C	MT133562
billy	65580	54.9	91	-		Myoviridae; Pbunavirus	6D	MT133563
steven	65632	54.9	92	-		Myoviridae; Pbunavirus	11D	MT119370
antinowhere	65852	55.2	91	-	*	Myoviridae; Pbunavirus	2B, 5D	MT119374
misfit	65887	54.9	93	-		Myoviridae; Pbunavirus	3B	MT119367
chumba	65852	55.0	92	-		Myoviridae; Pbunavirus	3D, 7D, 8D	MT119375
goodold	66226	55.6	95	-		Myoviridae; Pbunavirus	6A, 6B, 9A	MT119365
chunk	66231	55.6	93	-		Myoviridae; Pbunavirus	1B	MT119376
debbie	66259	55.7	93	-		Myoviridae; Pbunavirus	$\begin{aligned} & 7 \mathrm{~A}, 8 \mathrm{~B}, 10 \mathrm{~A}, 12 \mathrm{D}, \\ & 15 \mathrm{C}, 18 \mathrm{C}, 18 \mathrm{D}, \\ & 21 \mathrm{C}, \mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3 \end{aligned}$	MT119363
jett	66262	55.6	93	-	*	Myoviridae; Pbunavirus	8A, 11A, 13D	MT119366
crassa	66295	55.2	91	-	*	Myoviridae; Pbunavirus	4A	MT119377
cory	66395	55.2	91	-	*	Myoviridae; Pbunavirus	4C	MT119372
sortsol	66445	55.7	91	-	*	Myoviridae; Pbunavirus	4D, 13B, 19A	MT119369
shane	66467	55.6	95	-		Myoviridae; Pbunavirus	14D, 16B	MT119368
fnug	278899	36.9	360	6	*	Myoviridae; Phikzvirus	1B	MT133560

${ }^{1}$ Novel phage species classified by a 95% nucleotide similarity demarcation are indicated by an asterisk.

Table S3 List of unique Enterococcus phages i.e. those which differ by $>5 \%$ from other phages in the dataset, identified in the SV screening of Danish wastewater

Phage	genome size (bp)	$\begin{aligned} & \text { GC } \\ & (\%) \end{aligned}$	$\begin{gathered} \text { CDS } \\ \text { (n) } \end{gathered}$	tRNAs (n)	Novel ${ }^{1}$	Taxonomy	Sample	Accession
heks	39708	35,0	64	-	*	Siphoviridae; Efquatrovirus	4A	MT119359
Nonaheksakonda	41994	34.6	74	-	*	Siphoviridae; Efquatrovirus	45D	MK125140
vipetofem	85371	30.3	134	1		Siphoviridae	44D	MT119361
nattely	85669	30.2	131	1	*	Siphoviridae	46D	MT119360

${ }^{1}$ Novel phage species classified by a 95% nucleotide similarity demarcation are indicated by an asterisk.

Table S4 List of unique Salmonella phages i.e. those which differ by $>5 \%$ from other phages in the dataset, identified in the SV and LV screenings of Danish wastewater.

phage	genome size (bp)	$\begin{aligned} & \text { GC } \\ & (\%) \end{aligned}$	$\begin{gathered} \text { CDS } \\ \text { (n) } \end{gathered}$	tRNAs (n)	Novel ${ }^{1}$	taxonomy	Sample	Accession
astrid	11713	39.8	15	-	*	Podoviridae; Picovirinae	7D	MK080312
astrithr	11569	39.7	15	-	*	Podoviridae; Picovirinae	7C	MT074429
assan	11578	39.8	15	-	*	Podoviridae; Picovirinae	10D	MT074440
lumpael	41126	59.5	58	-	*	Podoviridae	$\begin{aligned} & 3 \mathrm{~A}, 15 \mathrm{D} \\ & 44 \mathrm{~A}, 46 \mathrm{~B}, \\ & 48 \mathrm{~A} \end{aligned}$	MK125141
wast	40748	49.8	59	1	*	Siphoviridae; Guernseyvirinae; Jerseyvirus	$\begin{aligned} & \text { 28C, 31B, } \\ & 31 \mathrm{C}, 31 \mathrm{D}, \\ & 32 \mathrm{C}, 34 \mathrm{~B} \\ & 34 \mathrm{D}, 36 \mathrm{~A} \end{aligned}$	MT074451
sidste	42124	50.0	56	-	*	Siphoviridae;	35B	MT074481
templet	41597	49.9	58	1	*	Siphoviridae; Guernseyvirinae; Jerseyvirus	$\begin{aligned} & \text { 6B, 7A, } \\ & \text { 10B, 10D, } \\ & 36 \mathrm{~B} \end{aligned}$	MT074462
blauehaus	41993	49.7	61	-	*	Siphoviridae; Guernseyvirinae; Jerseyvirus	$\begin{aligned} & 47 \mathrm{~B}, 48 \mathrm{~B} \\ & 48 \mathrm{C}, 48 \mathrm{D} \end{aligned}$	MT074473
Horsemountain	42375	49.8	58	1	*	Siphoviridae; Guernseyvirinae; Jerseyvirus	$\begin{aligned} & 21 \mathrm{~A}, 21 \mathrm{D}, \\ & 22 \mathrm{~A}, 22 \mathrm{C}, \\ & 45 \mathrm{D} \end{aligned}$	MT074482
skrot	42879	49.7	65	-	*	Siphoviridae; Guernseyvirinae; Jerseyvirus	34C	MT074483
dunkel	43985	49.7	64	-		Siphoviridae; Guernseyvirinae; Jerseyvirus	8D	MT074432
demigod	43605	50.1	56	1	*	Siphoviridae; Guernseyvirinae; Jerseyvirus	$\begin{aligned} & \text { 2A, 3A, } \\ & 3 \mathrm{C}, 3 \mathrm{D}, \\ & 4 \mathrm{~A}, 4 \mathrm{C}, \\ & 2 \text { x 4D, } \\ & \text { 25D, 26B, } \\ & 40 \mathrm{~A}, 40 \mathrm{D}, \\ & 41 \mathrm{~A}, 41 \mathrm{D}, \\ & 45 \mathrm{C} \end{aligned}$	MT074431
celemicas	43193	49.8	66	1	*	Siphoviridae; Guernseyvirinae; Jerseyvirus	2B	MT074484
pink	43203	49.7	70	-	*	Siphoviridae; Guernseyvirinae; Jerseyvirus	$\begin{aligned} & \text { 6D, 7C, } \\ & \text { 7D, 19D, } \\ & \text { 20C, 21B } \end{aligned}$	MT074430
akira	45367	46.0	85	1	*	Siphoviridae; Roufvirus	21B	MK599416
slyngel	51048	44.0	80	-	*	Siphoviridae; Tunavirinae; Hanrivervirus	36A	MT074433
emiel	52333	45.9	67	-	*	Myoviridae	6A, 24A	MT074434
brorfarstad	52392	45.7	72	-	*	Myoviridae	44D	MT074435
yarpen	52464	46.0	69	-	*	Myoviridae	1A	MT074436
rivia	52587	45.9	70	-	*	Myoviridae	6B, 47B,	MT074438
nenneke	52576	45.9	71	-	*	Myoviridae	44A, 46B	MT074437
birk	52767	45.8	73	-	*	Myoviridae	5 C	MT074439
brunost	52821	46.0	72	-		Myoviridae	5A, 10C,	MT074441
ciri	52916	45.9	71	-	*	Myoviridae	27A	MT074442
zoltan	52933	45.9	71	-	*	Myoviridae	41D	MT074443

emhyr	52948	45.9	71	-	*	Myoviridae	35C	MT074444
renfri	52952	45.9	71	-	*	Myoviridae	40B	MT074445
triss	53333	45.9	72	-	*	Myoviridae	39 D	MT074446
bombadil	109539	40.0	163	28	*	Siphoviridae; Tequintavirus	38D	MT074449
oldekolle	109372	39.3	157	23	*	Siphoviridae; Tequintavirus	20A	MT074448
phagemcphageface	105405	39.9	151	25	*	Siphoviridae; Tequintavirus	42D	MT074447
ende	111297	40.0	164	26	*	Siphoviridae; Tequintavirus	1B	MT074454
beppo	111322	40.1	167	27	*	Siphoviridae; Tequintavirus	46D, 48A	MT074455
rutana	114544	39.9	168	29	*	Siphoviridae; Tequintavirus	46B, 48A	MT074468
gmork	113259	39.9	166	29	*	Siphoviridae; Tequintavirus	43B, 47A	MT074463
vaffelhjerte	110831	40.0	160	28		Siphoviridae; Tequintavirus	$\begin{aligned} & 6 \mathrm{D}, 24 \mathrm{~A}, \\ & 47 \mathrm{C} \end{aligned}$	MT074452
polluks	111599	40.0	162	27	*	Siphoviridae; Tequintavirus	40D	MT074456
oselot	113503	39.9	171	28	*	Siphoviridae; Tequintavirus	46B	MT074465
faergetype	110183	40.0	161	25		Siphoviridae; Tequintavirus	42B	MT074450
bastian	112477	40.0	168	29	*	Siphoviridae; Tequintavirus	45A, 46A	MT074459
rokbiter	112006	39.9	163	29	*	Siphoviridae; Tequintavirus	39B	MT074457
fuchur	112117	40.0	166	31	*	Siphoviridae; Tequintavirus	39C, 39D	MT074458
bux	112486	40.0	160	29	*	Siphoviridae; Tequintavirus	46C	MT074460
falkor	114211	39.8	165	27	*	Siphoviridae; Tequintavirus	1A, 3A	MT074467
smaug	112590	39.8	161	24	*	Siphoviridae; Tequintavirus	42 A	MT074461
atrejo	114059	40.0	167	29	*	Siphoviridae; Tequintavirus	44A	MT074466
misterkot	110937	39.8	159	28	*	Siphoviridae; Tequintavirus	40C	MT074453
bobsandoy	113461	39.9	165	29	*	Siphoviridae; Tequintavirus	4B	MT074464
pertopsoe	158905	45.3	202	3	*	Ackermannviridae; Cvivirinae; Kuttervirus	$\begin{aligned} & 8 \mathrm{C}, 25 \mathrm{~A}, \\ & 25 \mathrm{C} \end{aligned}$	MT074479
dinky	157254	44.8	204	3	*	Ackermannviridae; Cvivirinae; Kuttervirus	$\begin{aligned} & 41 \mathrm{~A}, 2 \mathrm{x} \\ & 41 \mathrm{D} \end{aligned}$	MT074475
heyday	144232	44.5	187	3	*	Ackermannviridae; Cvivirinae; Kuttervirus	$\begin{aligned} & \text { 7D, 8B, } \\ & 25 B \end{aligned}$	MT074470
bering	156130	44.7	203	4	*	Ackermannviridae; Cvivirinae; Kuttervirus	23B	MT074472
barely	157920	44.6	197	3	*	Ackermannviridae; Cvivirinae; Kuttervirus	7A	MT074477
rabagast	143249	44.5	188	3		Ackermannviridae; Cvivirinae; Kuttervirus	5A, 5B	MT074469
kage	157658	44.5	205	3		Ackermannviridae; Cvivirinae; Kuttervirus	36C, 36D	MT074476
allotria	151015	45.1	202	4	*	Ackermannviridae; Cvivirinae; Kuttervirus	5C	MT074471
moki	158230	44.4	209	3	*	Ackermannviridae; Cvivirinae; Kuttervirus	44B	MT074478
aagejoakim	156801	44.5	205	-	*	Ackermannviridae; Cvivirinae; Kuttervirus	$\begin{aligned} & 43 \mathrm{~A}, 43 \mathrm{D}, \\ & 40 \mathrm{~B} \end{aligned}$	MT074474
maane	159128	45.2	204	4	*	Ackermannviridae; Cvivirinae; Kuttervirus	6A	MT074480

[^0]| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| :--- | :---: |
| 1 cory | 100 | 75 | 69 | 79 | 81 | 83 | 81 | 81 | 77 | 58 | 57 | 58 | 59 | 58 | 58 | 55 | 53 | 0 | 0 | 0 | 0 | 0 |
| 2 antinowhere | 75 | 100 | 68 | 74 | 75 | 79 | 77 | 78 | 72 | 62 | 61 | 61 | 60 | 59 | 61 | 60 | 59 | 0 | 0 | 0 | 0 | 0 |
| 3 crassa | 69 | 68 | 100 | 72 | 73 | 74 | 73 | 73 | 68 | 62 | 61 | 64 | 65 | 62 | 64 | 64 | 62 | 0 | 0 | 0 | 0 | 0 |
| 4 elmo | 80 | 74 | 73 | 100 | 86 | 85 | 87 | 84 | 81 | 53 | 51 | 51 | 51 | 52 | 52 | 50 | 49 | 0 | 0 | 0 | 0 | 0 |
| 5 steven | 83 | 76 | 73 | 86 | 100 | 86 | 85 | 86 | 80 | 50 | 50 | 49 | 50 | 49 | 51 | 49 | 46 | 0 | 0 | 0 | 0 | 0 |
| 6 chumba | 83 | 80 | 75 | 84 | 85 | 100 | 89 | 88 | 83 | 50 | 49 | 48 | 49 | 47 | 49 | 47 | 44 | 0 | 0 | 0 | 0 | 0 |
| 7 misfit | 82 | 76 | 74 | 86 | 85 | 89 | 100 | 92 | 82 | 49 | 48 | 46 | 47 | 46 | 49 | 47 | 45 | 0 | 0 | 0 | 0 | 0 |
| 8 billy | 81 | 78 | 74 | 84 | 85 | 89 | 92 | 100 | 85 | 48 | 47 | 46 | 46 | 45 | 47 | 47 | 44 | 0 | 0 | 0 | 0 | 0 |
| 9 datas | 84 | 79 | 74 | 88 | 87 | 90 | 89 | 92 | 100 | 48 | 48 | 49 | 48 | 48 | 49 | 47 | 44 | 0 | 0 | 0 | 0 | 0 |
| 10 jett | 58 | 63 | 63 | 52 | 51 | 50 | 49 | 48 | 45 | 100 | 87 | 83 | 84 | 81 | 85 | 84 | 83 | 0 | 0 | 0 | 0 | 0 |
| 11 sortsol | 57 | 61 | 61 | 50 | 49 | 48 | 47 | 46 | 44 | 87 | 100 | 83 | 83 | 80 | 83 | 83 | 83 | 0 | 0 | 0 | 0 | 0 |
| 12 willy | 59 | 62 | 65 | 50 | 49 | 49 | 47 | 46 | 45 | 84 | 83 | 100 | 94 | 87 | 86 | 86 | 85 | 0 | 0 | 0 | 0 | 0 |
| 13 shane | 59 | 61 | 66 | 50 | 50 | 48 | 47 | 46 | 43 | 83 | 83 | 93 | 100 | 88 | 87 | 87 | 86 | 0 | 0 | 0 | 0 | 0 |
| 14 goonie | 59 | 60 | 63 | 52 | 49 | 48 | 47 | 46 | 45 | 82 | 82 | 88 | 90 | 100 | 85 | 84 | 83 | 0 | 0 | 0 | 0 | 0 |
| 15 goodold | 58 | 61 | 65 | 51 | 50 | 50 | 50 | 47 | 45 | 85 | 84 | 85 | 87 | 84 | 100 | 88 | 87 | 0 | 0 | 0 | 0 | 0 |
| 16 debie | 56 | 60 | 64 | 50 | 48 | 47 | 48 | 46 | 43 | 84 | 83 | 85 | 87 | 83 | 88 | 100 | 90 | 0 | 0 | 0 | 0 | 0 |
| 17 chunk | 53 | 59 | 63 | 48 | 46 | 45 | 45 | 43 | 40 | 84 | 83 | 84 | 86 | 82 | 87 | 90 | 100 | 0 | 0 | 0 | 0 | 0 |
| 18 fnug | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 |
| 19 iggy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 |
| 20 oldone | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 23 | 23 |
| 21 clash | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24 | 100 | 100 |
| 22 otherone | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | 100 | 100 |

Figure S2 phylogenomic nucleotide distances of the 39 unique P. aeruginosa phages (Gegenees, BLASTn: fragment size: 200, step size: 100 , threshold: 0).

	1	2	3	4	1	2	3	4
1 heks	100	85	0	0	100	90	16	16
2 Nonaheksakonda	80	100	0	0	86	100	16	16
3 vipetofem	0	0	100	64	15	15	100	84
4 nattely	0	0	64	100	15	15	84	100

Figure S3 (a) Phylogenomic nucleotide distances of the 4 unique Enterococcus phages phages (Gegenees, BLASTn: fragment size: 200, step size: 100, threshold: 0\%). (b) Phylogenomic amino acid distances of the 4 unique Enterococcus phages (Gegenees, BLASTx: fragment size: 200, step size: 100, threshold: 0%).

-interpolated- 'extrapolated

(a)

\$iNextEst: diversity estimates with rarefied and extrapolated samples. t method order qD qD.LCL qD.UCL SC SC.LCL SC.UCL $1 \quad 1$ interpolated $\quad 0 \quad 0.250 \quad 0.174 \quad 0.3260 .005 \quad 0.000 \quad 0.010$ $\begin{array}{llllllllll}10 & 94 & \text { interpolated } & 0 & 19.264 & 14.225 & 24.303 & 0.326 & 0.157 & 0.495\end{array}$ $\begin{array}{lllllllllll}20 & 188 & \text { observed } & 0 & 33.000 & 24.358 & 41.642 & 0.491 & 0.290 & 0.692\end{array}$ $\begin{array}{lllllllllll}30 & 573 & \text { extrapolated } & & 0 & 63.666 & 40.176 & 87.156 & 0.818 & 0.599 & 1.000\end{array}$ $\begin{array}{llllllllllll}40 & 1000 \text { extrapolated } & 0 & 75.284 & 37.003 & 113.564 & 0.942 & 0.766 & 1.000\end{array}$
\$AsyEst: asymptotic diversity estimates along with related statistics.

| | Observed | Estimator | Est_s.e. | 95\% Lower | 95\% Upper |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Species Richness | 33.000 | 80.745 | 28.418 | 49.224 | 173.501 |
| Shannon diversity | 28.994 | 68.845 | 15.935 | 37.613 | 100.077 |
| Simpson diversity | 24.820 | 51.208 | 15.984 | 24.820 | 82.535 |

(b)

(b)

Figure S4 Rarefaction curves for the S. enterica screenings; (a) small volume (SV) screening and (b) large volume (LV) screening. (c) Diversity indices for the small volume (0.5 ml) screening based on identification of phages species in all 188 wastewater samples. (d) Diversity indices for the large volume (0.5 ml) screening based on identification of phages species in all 188 wastewater samples.

Figure S5 Phylogenomic amino acid distances of the 59 unique Salmonella phages, selected closest relatives and type species of respective genera (Gegenees, BLASTx: fragment size: 200, step size: 100, threshold: 0%). Type species are denoted by an asterisk (*), close relative by plus (+).

[^0]: ${ }^{1}$ Novel phage species classified by a 95% nucleotide similarity demarcation are indicated by an asterisk.

