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Abstract 

 

One life-threatening outcome of cardiovascular disease is myocardial infarction, where 

cardiomyocytes are deprived of oxygen. To study inter-individual differences in response to 

hypoxia, we established an in vitro model of induced pluripotent stem cell-derived cardiomyocytes 

from 15 individuals. We measured gene expression levels, chromatin accessibility, and methylation 

levels in four culturing conditions that correspond to normoxia, hypoxia and short or long-term re-

oxygenation. We characterized thousands of gene regulatory changes as the cells transition 

between conditions. Using available genotypes, we identified 1,573 genes with a cis expression 

quantitative locus (eQTL) in at least one condition, as well as 367 dynamic eQTLs, which are 

classified as eQTLs in at least one, but not in all conditions. A subset of genes with dynamic 

eQTLs is associated with complex traits and disease. Our data demonstrate how dynamic genetic 

effects on gene expression, which are likely relevant for disease, can be uncovered under stress. 

 

Introduction 

 

Cardiovascular disease (CVD), which ultimately damages heart muscle, is a leading cause of 

death worldwide (WHO, 2018). CVD encompasses a range of pathologies including myocardial 

infarction (MI), where ischemia or a lack of oxygen delivery to energy-demanding cardiomyocytes 

results in cellular stress, irreparable damage and cell death. Genome-wide association studies 

(GWAS) have identified hundreds of loci associated with coronary artery disease (Nikpay et al., 

2015), MI, and heart failure (Shah, 2019), indicating the potential contribution of specific genetic 

variants to disease risk. Most disease-associated loci do not localize within coding regions of the 

genome, often making inference about the molecular mechanisms of disease challenging. That 

said, because most GWAS loci fall within non-coding regions, these variants are thought to have a 

role in regulating gene expression. One of the main goals of the Genotype-Tissue Expression 

(GTEx) project has been to bridge the gap between genotype and organismal level phenotypes by 

identifying associations between genetic variants and intermediate molecular level phenotypes 

such as gene expression levels (Consortium et al., 2017). The GTEx project has identified tens of 

thousands of expression quantitative trait loci (eQTLs); namely, variants that are associated with 

changes in gene expression levels, across dozens of tissues including ventricular and atrial 

samples from the heart. However, the GTEx project has reported that most eQTLs are shared 

across tissues, suggesting that they probably do not contribute to disease in a tissue-specific 

manner.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.28.012823doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.28.012823
http://creativecommons.org/licenses/by/4.0/


	 3	

It is becoming increasingly evident that many genetic variants that are not associated with gene 

expression levels at steady state, may be found to impact dynamic programs of gene expression in 

specific contexts. This includes specific developmental stages (Strober et al., 2019), or specific 

exposure to an environmental stimulus such as endoplasmic reticulum stress (Dombroski et al., 

2010), hormone treatment (Maranville et al., 2011), radiation-induced cell death (Smirnov et al., 

2012), vitamin D exposure (Kariuki et al., 2016), drug-induced cardiotoxicity (Knowles et al., 2018), 

and response to infection (Alasoo et al., 2018; Barreiro et al., 2012; Caliskan et al., 2015; Kim-

Hellmuth et al., 2017; Manry et al., 2017; Nedelec et al., 2016). The studies of context-specific 

dynamic eQTLs highlight the need to determine the effects of genetic variants in the relevant 

environment. Therefore, if we are to fully understand the effects of genetic variation on disease, we 

must assay disease-relevant cell types and disease-relevant perturbations. Most of the 

aforementioned studies were performed in whole blood or immune cells, which means that there 

are many cell types and disease-relevant states that have yet to be explored. 

 

With advances in pluripotent stem cell technology, we can now generate otherwise largely 

inaccessible human cell types through directed differentiation of induced pluripotent stem cells 

(iPSCs) reprogrammed from easily accessible tissues such as fibroblasts or B-cells. One of the 

advantages of iPSC-derived cell types as a model system is that the environment can be 

controlled, and thus we can specifically test for genetic effects on molecular phenotypes in 

response to controlled perturbation. This is particularly useful for studies of complex diseases such 

as CVD, which result from a combination of both genetic and environmental factors.  

 

The heart is a complex tissue consisting of multiple cell types, yet the bulk of the volume of the 

heart is comprised of cardiomyocytes (Donovan, 2019; Pinto et al., 2016), which are particularly 

susceptible to oxygen deprivation given their high metabolic activity. iPSC-derived cardiomyocytes 

(iPSC-CMs) have been shown to be a useful model for studying genetic effects on various 

cardiovascular traits and diseases, as well for studying gene regulation (Banovich et al., 2018; 

Benaglio et al., 2019; Brodehl et al., 2019; Burridge et al., 2016; de la Roche et al., 2019; Ma et al., 

2018; McDermott-Roe et al., 2019; Panopoulos et al., 2017; Pavlovic et al., 2018; Ward and Gilad, 

2019).   

 

In humans, coronary artery disease can lead to MI (Dzau et al., 2006) which results in ischemia 

and a lack of oxygen delivery to energy-demanding cardiomyocytes. Given the inability of 

cardiomyocytes to regenerate, this cellular stress ultimately leads to tissue damage. Advances in 
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treatment for MI, such as surgery to restore blood flow and oxygen to occluded arteries, have 

improved clinical outcomes. However, a rapid increase in oxygen levels post-MI can generate 

reactive oxygen species leading to ischemia-reperfusion (I/R) injury (Giordano, 2005). Both MI and 

I/R injury can thus ultimately influence the amount of damage in the heart. iPSC-CMs allow us to 

mimic the I/R injury process in vitro by manipulating the oxygen levels that cardiomyocytes are 

exposed to in vivo. 

 

We thus designed a study aimed at developing an understanding of the genetic determinants of 

the response to a universal cellular stress, oxygen deprivation, in a disease-relevant cell type, 

mimicking a disease-relevant process. To do so, we established an in vitro model of oxygen 

deprivation (hypoxia) and re-oxygenation in a panel of iPSC-CMs from 15 genotyped individuals 

(Banovich et al., 2018). We collected data for three molecular level phenotypes: gene expression, 

chromatin accessibility and DNA methylation to understand both the genetic and regulatory 

responses to this cellular stress. This framework allowed us to identify eQTLs that are not evident 

at steady state, and assess their association with complex traits and disease.  

 

Results 

 

We differentiated iPSC-CMs from iPSCs of 15 Yoruba individuals that were part of the HapMap 

project (Banovich et al., 2018). To obtain a measure of variance associated with the differentiation 

process, and to more effectively account for batch effects, we replicated the iPSC-CM 

differentiation from three individuals three times, yielding 21 differentiation experiments in total. 

The proportion of iPSC-CMs in each cell culture was enriched by metabolic purification (see 

Methods). iPSC-CMs were matured by electrical pulsing and maintenance in cell culture for 30 

days. On Day 30, the median cardiomyocyte purity was 81% (40-97% range), determined by flow 

cytometry as the proportion of cells that were positive for the cardiac-specific marker, TNNT2 

(FigS1; STable; See methods).  

 

We studied the response of the iPSC-CMs to hypoxia and re-oxygenation (Fig1A). To do so, we 

first cultured the iPSC-CMs at oxygen levels that are close to physiological oxygen levels (10% 

oxygen - Condition A) for seven days. We then subjected the iPSC-CMs to six hours of hypoxia 

(1% oxygen - Condition B), followed by re-oxygenation for 6 hours (10% oxygen - Condition C), or 

24 hours (10% oxygen - Condition D) as previously described (Ward and Gilad, 2019). Oxygen 

levels were reproducibly controlled in cell culture (Fig1B, STable). In order to determine whether  
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Figure 1: iPSC-derived cardiomyocytes elicit a cellular response to hypoxia. (A) Experimental 
design of the study. Cardiomyocytes differentiated from iPSCs (iPSC-CMs) from 15 Yoruba 
individuals were cultured in normoxic conditions (10% oxygen - condition A) and subjected to 6 
hours of hypoxia (1% oxygen - condition B) followed by 6 and 24 hours of re-oxygenation (10% 
oxygen - conditions C and D). Immunocytochemistry of a representative cardiomyocyte culture 
where green: TNNT2; blue: nuclei. (B) Peri-cellular oxygen levels of each condition. Each point 
represents one individual undergoing the oxygen stress experiment. (C) Relative levels of BNP, a 
marker for cardiac stress, released into cell culture media. Asterisk denotes a statistically 
significant difference in BNP release (*p < 0.05, **p < 0.005). (D) Molecular phenotypes collected 
from each individual in each condition.  
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the cardiomyocytes were affected by the changes in oxygen levels, we measured the enzymatic 

activity of released lactate dehydrogenase throughout the experiment, as a proxy for cytotoxicity. 

We also measured released BNP, a clinical marker of heart failure (Maeda et al., 1998). As 

expected, both cytotoxicity (P = 0.01, FigS2) and BNP (P = 5x10-6, Fig1C) levels increased 

following hypoxia and long-term re-oxygenation. 

 

With this system established, we sought to understand the contribution of the global gene 

regulatory response to the molecular and cellular response to hypoxia and re-oxygenation. To do 

so, we collected global gene expression data (using RNA-seq; n=15), chromatin accessibility data 

(using ATAC-seq; n = 14), and DNA methylation data (using the EPIC arrays; n = 13; Fig1D) in 

each condition. With these data we studied both the gene regulatory response to oxygen 

perturbation, as well as the interaction of the response with the underlying genotype of the assayed 

individuals. 

 

Gene expression changes in response to hypoxia and re-oxygenation 

 

We first sought to identify those genes important for regulating the response by analyzing the gene 

expression (RNA-seq) data. We processed samples in batches as described in STable and 

mapped and filtered sequencing reads to prevent allelic mapping biases (FigS3; TableS1; See 

methods; (van de Geijn et al., 2015)). We observed that one sample (18852A) was a clear outlier 

when comparing read counts for 18,226 autosomal genes across all samples, and thus excluded it 

from further analysis (FigS4). We filtered out genes with low expression levels (See methods) to 

yield a final set with data from 12,347 expressed genes (See methods). We performed a number of 

correlation-based analyses using the data from the technical replicates (FigS5), and confirmed that 

the quality of the data is high and that, in line with our flow cytometry data, our iPSC-CMs express 

a range of cardiomyocyte marker genes including MYH7 and TNNT2 (FigS6). 

 

We took advantage of the fact that we have replicate experiments from three individuals to correct 

the data for unwanted variation (See methods; (Risso et al., 2014)). Following this procedure, our 

samples clustered both by oxygen level and individual (FigS7). To identify genes that respond to 

hypoxia and re-oxygenation, we first tested for differential expression between pairs of conditions 

using a linear model with a fixed effect for ‘condition’, a random effect for ‘individual’, and four 

unwanted factors of variation, learned from the data, as covariates. At an FDR of 10%, we 

identified thousands of genes that are differentially expressed between conditions (A vs. B = 4,983, 
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B vs. C = 6,311; B vs. D = 6,792; A vs. D = 2,835; FigS8A-B). We used Cormotif (Wei et al., 2015) 

to classify 2,113 genes (17% of all expressed genes) as responding to hypoxia (Fig2, FigS8C-D). 

Response genes are enriched for genes previously identified to respond to hypoxia in a Caucasian 

population of individuals (Chi-squared test; P < 2.2x10-16; (Ward and Gilad, 2019)), and are highly 

enriched for gene ontologies in transcription-related processes (See methods, modified Fisher’s 

exact test; P = 1x10-19).  

 

 

 
Figure 2: Hundreds of dynamic eQTLs are revealed following hypoxia and re-oxygenation. 
(A) Expression levels of Jun, a response gene, during the course of the experiment. (B) 
Expression levels of actinin, a non-response gene. (C) The proportion of all expressed genes that 
are classified as response genes (green), and non-response genes (magenta). (D) QQ plot 
illustrating an enrichment of associations between genetic variants and gene expression levels in 
each condition. Numbers represent the number of eGenes in each condition. (E) An example of a 
shared eQTL, HEPB2. (F) Heatmap illustrating the 367 SNPs that are classified as dynamic 
eQTLs. Each row represents a SNP that is an eQTL in at least one condition. Color represents the 
strength of the association p-value. (G) Examples of each of the two dynamic eQTL categories. 
Top panel: genes that become an eQTL following hypoxia e.g. ZNF845. Bottom panel: genes that 
are an eQTL at baseline but not following hypoxia e.g. RFC2. (H) The proportion of baseline 
eQTLs (all those identified in condition A), and dynamic eQTLs that are also response genes. 
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Dynamic eQTLs are revealed following hypoxia 

 

Having established that oxygen stress initiates a transcriptional response affecting thousands of 

genes, we sought to identify eQTLs, either before or after oxygen stress. Using the combined 

haplotype test (CHT), an approach that leverages allele-specific information in small sample sizes 

(See methods; (van de Geijn et al., 2015)), we identified 1,573 genes with eQTLs (eGenes) in at 

least one condition (q-value < 0.1; A: 613; B: 564; C: 564 and D: 464; Fig2D). We refer to the 613 

eGenes identified in condition A as baseline eGenes. We confirmed that genes whose expression 

levels are not significantly associated with a SNP in any condition show a largely uniform 

distribution of P-values in each condition (FigS9A), suggesting that, as expected given our study 

design, the overall power to detect eQTLs is similar across conditions.  

 

Our goal was to identify dynamic eQTLs, which are either revealed or suppressed as the cells 

transition between conditions. Due to the small sample size of our study, we have incomplete 

power to detect eQTLs in any condition; thus, a naïve comparison of eQTLs classified as 

‘significant’ across conditions will result in an over-estimation of the number of dynamic eQTLs. To 

address this challenge, we first considered eQTLs identified using a q-value < 0.1 in at least one 

condition, and visualized the P-value distributions of the corresponding eQTL associations in all 

other conditions. These P-value distributions are expected to be uniform if we had complete power 

to detect eQTLs in any condition (because in that theoretical case, even a naïve comparison of 

eQTLs classified as ‘significant’ across conditions will result in the identification of true condition-

specific eQTLs). Due to incomplete power, this is clearly not the case (FigS9B); however, this 

distribution allowed us to choose a lenient secondary P-value-based cutoff, where values deviate 

from the uniform distribution, to classify dynamic QTLs (FigS9B). 

 

We specifically focused on two dynamic scenarios. First, we defined suppressed eQTLs, as eQTLs 

that are identified in condition A at a q-value < 0.1 but not in any of the other conditions, with a P-

value greater than 0.15 (37 instances; Fig2F). Second, we defined induced eQTLs as eQTLs 

identified in conditions B, C or D at a q-value < 0.1, but not in A, with a P-value greater than 0.15 

(330 instances; Fig2G). This set of 367 dynamic eQTLs corresponds to 328 unique dynamic 

eGenes (See methods). While our choice of the particular statistical cutoffs is somewhat arbitrary, 

we can evaluate the false discovery rate associated with our chosen cutoff. Based on the P-value 

distributions of the corresponding eQTL associations in all other conditions, we estimate that our 

approach to classify dynamic eQTLs is associated with a false discovery rate of 48%. The 
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relatively high FDR associated with our choice of statistical cutoffs does not indicate that these loci 

are not eQTLs; rather it means that if we had a larger sample size, roughly half of our dynamic 

eQTLs should have been classified as eQTLs in more conditions, potentially in all of them.  

 

We next wanted to determine whether the dynamic eQTLs we identified in iPSC-CMs are also 

eQTLs in primary heart tissue. To do so, we compared our list of eGenes to eGenes identified in 

tissue from two locations in the primary heart - left ventricle (LV) and atrial appendage (AA) - from 

hundreds of individuals in the GTEx study (Consortium et al., 2017). We found that the majority of 

eGenes present in all conditions (‘shared’, n=61) in our study are also eGenes in heart tissue (60% 

in LV, and 67% in AA). A smaller proportion of dynamic eGenes were also classified as primary 

heart tissue eGenes (38% in both LV and AA). Indeed, shared eGenes are more likely to be 

eGenes in heart tissue than dynamic eGenes (Chi-squared test; P < 0.005; FigS10A-B). Overall, 

98% of dynamic eGenes are an eGene in at least one of 14 selected tissues assayed by the GTEx 

consortium, supporting our analysis indicating context-dependent inter-individual variation in 

expression (FigS10C). 

 

Dynamic eGenes are enriched for response genes and transcription factors 

 

To determine whether dynamic eGenes coincide with expression changes of the same genes 

following hypoxia, we integrated the results of our eQTL and differential expression analyses. In 

line with our previous findings, baseline eGenes, as well as LV and AA eGenes found in primary 

tissue (GTEx), are depleted for response genes (Chi-squared test; P < 0.02, (Ward and Gilad, 

2019)). However, we found a significant enrichment in response genes amongst dynamic eGenes  

(61 of 328 genes; Chi-squared test; P = 0.03) when compared to baseline eGenes, suggesting that 

dynamic eQTLs often impact the regulation of genes that respond to hypoxic stress. 

 

Given that thousands of genes are differentially expressed in response to hypoxia, and many of 

these genes correspond to transcription-related processes, we next investigated the role of 

transcription factors, which are likely to drive transcriptome differences in our system. We found a 

significant enrichment of annotated transcription factors amongst the genes responding to oxygen 

stress compared to non-response genes (327 of 1,639 annotated human TFs, chi-squared test; P 

< 2x10-16; FigS11). Given that stress affects transcription factor expression, we asked whether 

dynamic eGenes are also enriched for transcription factors. Indeed, transcription factors are 

enriched in dynamic eGenes compared to baseline eGenes (35 TFs; P = 0.004), including MITF 
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and PPARA, both of which are TFs that have been previously implicated in hypoxic response 

(Feige et al., 2011; Narravula and Colgan, 2001). 

 

Chromatin accessibility changes following hypoxia and re-oxygenation 

 

We next asked whether the hundreds of transcription factor expression changes following hypoxic 

stress are accompanied by global chromatin accessibility changes. To examine this, we performed 

ATAC-seq experiments to identify regions of open chromatin (we were only able to collect these 

data from 14 of the 15 individuals; STable). We filtered the ATAC-seq reads to include only those 

reads that map to the nuclear genome, and do not show allelic mapping biases (See methods, 

FigS12). We identified a set of open chromatin regions in each sample, and merged samples 

across individuals within each condition. Genomic regions identified as accessible in each 

condition were then merged to yield a set of 128,672 open chromatin regions across conditions 

(with a median length of 312 bp). Regions with low read counts were filtered out, resulting in a final 

set of 110,128 regions. Analysis of various metrics revealed the data to be of good quality (FigS13-

14). 

 

We sought to identify chromatin regions that are differentially accessible across pairs of conditions. 

Using a sensitive adaptive shrinkage based approach with a False Sign Rate of 10% (Stephens, 

2017) we could not detect changes in accessibility between baseline and hypoxia; however, we 

identified 831 differentially accessible regions (DARs) between hypoxia and short-term re-

oxygenation (BC-DARs; 429 regions with increased accessibility and 402 with decreased 

accessibility), and 71 DARs between hypoxia and long-term re-oxygenation (BD-DARs; Fig3A). 

There is a strong correlation in effect sizes between hypoxia and short-term re-oxygenation (BC-

DARs), and hypoxia and long-term re-oxygenation (BD-DARs; Spearman correlation = 0.74), and 

59 of the 71 BD-DARs are amongst the 831 BC-DARs, suggesting that most regions have returned 

to baseline levels of accessibility by the first re-oxygenation condition. We therefore considered the 

831 BC-DARs, henceforth DARs, in further analysis. Manual inspection of accessibility levels at 

individual DARs, identified between hypoxia and re-oxygenation, shows that many of these regions 

appear to have small changes in accessibility between the baseline and hypoxic conditions, which 

is opposite to the direction of the effect between hypoxia and re-oxygenation. This includes a 

region within the intron of the FOXO1 gene, a master regulator of the oxidative stress response 

(Fig3B). Global analysis reveals that there is a strong anti-correlation in the effect size between 
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these pairs of conditions across regions (Spearman correlation = -0.62; sign test P = 4.6 x10-14; 

FigS15A-C).  

 

 

Figure 3: Chromatin accessibility changes following hypoxia and re-oxygenation. (A) 
Numbers of chromatin regions that are differentially accessible (DARs) between pairs of 
conditions. (B) Chromatin accessibility levels at a chromatin region within a FOXO1 intron. (C) 
Expression levels of the hypoxia-responsive gene ADM following hypoxia. (D) Chromatin 
accessibility levels at a DAR, overlapping an induced HIF1α-bound region, close to the ADM gene. 
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Linking chromatin accessibility changes with gene expression changes 

 

Changes in chromatin accessibility likely cannot directly explain the thousands of gene expression 

changes that occur following hypoxia. However, we found that when considering a 50 kb window 

around the TSS of expressed genes, DARs are enriched near response genes compared to non-

response genes (Chi-squared test; P = 0.03). 113 of 2,113 response genes have a DAR within 50 

kb of the TSS. This set includes an accessible region, overlapping a HIF1α site, within 500 bp of 

the 3’ end of the classic hypoxia response gene, ADM (Fig3C-D). 

 

We asked whether the changes in chromatin accessibility coincide with the appearance of dynamic 

eQTLs. We found that DARs are no more likely to be near dynamic eGenes than shared or 

baseline eGenes. In line with previous estimates of the proportion of eQTLs in open chromatin 

regions, 24 baseline eQTL SNPs (613 total SNPs) and 19 dynamic eQTL SNPs (367 total SNPs) 

overlap with accessible chromatin regions (Consortium et al., 2017). One dynamic eQTL SNP 

overlaps a DAR, near the actin filament binding protein gene, FGD4. This gene was also shown to 

be differentially expressed between children with congenital heart defects where the defect leads 

to a chronic hypoxic state (cyanotic disease), and children with a similar defect but where oxygen 

levels are not affected (acyanotic disease; (Ghorbel et al., 2010)).  

 

To directly test whether there are genetic effects on chromatin accessibility, independent of gene 

expression, we sought to identify chromatin accessibility QTLs (caQTLs) i.e. genetic variants 

located within the 128,672 accessible regions, which coincide with different levels of accessibility 

based on genotype. We identified few caQTLs per condition (q-value < 0.1; A: 10, B: 1, C: 7, D: 6; 

FigS16A). Six of these caQTLs are classified as dynamic caQTLs i.e. induced or suppressed in 

response to hypoxia using the same definitions as used for the dynamic eQTLs, and include 

regions at the TSS of the mRNA decapping enzyme gene DCPS, and a region within 100 kb of the 

C1Orf99 gene (FigS16B-C). These results suggest that gene expression changes, which respond 

to stress in a genotype-dependent or independent manner, occur largely in the absence of 

chromatin accessibility changes. 

 

Genomic features associated with differentially accessible regions (DARs) 

 

We next wanted to determine what distinguishes DARs from constitutively accessible regions. To 

do so, we investigated three classes of genomic features: 1) promoter- and enhancer-associated 
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marks, 2) transcription factor binding locations, and 3) underlying DNA sequence features. We 

found that DARs are more likely to overlap TSS than constitutively accessible regions (43% 

overlap vs. 11% overlap; P < 2x10-16; Fig4A) suggesting that DARs may be involved in the gene 

regulatory response. Indeed, DARs are more likely to coincide with active histone marks in left 

ventricle heart tissue than constitutively accessible regions (H3K4me3: 57% overlap DARs vs. 24% 

overlap constitutively accessible regions; chi-squared test; P < 2.2x10-16; H3K4me1: 86% overlap 

DARs vs. 52% overlap constitutively accessible regions; P < 2.2x 10-16; Fig4B). 

 

To determine whether sequence-specific hypoxia-responsive transcription factors associate with 

differentially accessible chromatin, we integrated DARs with published chromatin 

immunoprecipitation followed by high-throughput sequencing (ChIP-seq) data for the well-studied 

hypoxia-inducible factors HIF1α and HIF2α (Schodel et al., 2011). Based on our inference, 234 of 

the 356 annotated HIF1α sites (66%), and 150 of the 301 HIF2α sites (50%) overlap with all 

accessible chromatin regions. We found that HIF1α- and HIF2α-bound regions are more likely to 

overlap the 831 differentially accessible regions than the 109,275 constitutively accessible regions 

(Fisher test; P = 0.03; Fig4C). 

 

We next took an unbiased approach to identify transcription factor binding motifs that are enriched 

in DARs compared to all accessible regions (See methods). We found two motifs to be enriched in 

DARs compared to all regions (Fig4D). Motif 1 (P = 2x10-2) is recognized by HTF4 and TFE2, both 

of which are non-response genes in our system. Motif 2 (P = 6.2x10-42) is posited to be recognized 

by ZN770, E2F3, and E2F4. Both ZN770 and E2F4 are response genes in our system. DARs arise 

between the hypoxia and re-oxygenation conditions, and E2F4 expression increases following re-

oxygenation, suggesting that it may be involved in the response. To test this hypothesis, we 

obtained a published ChIP-seq data set for E2F4 (Lee et al., 2011), and overlapped the 16,245 

E2F4-bound regions with DARs and constitutively accessible regions. E2F4-bound regions are 

significantly enriched in DARs compared to constitutively accessible regions (Chi-squared test; P < 

2.2x10-16; Fig4D). E2F4 is important for survival following ischemia in neurons, and has been 

suggested to be an anti-apoptotic factor in cardiomyocytes (Dingar et al., 2012; Iyirhiaro et al., 

2014).  

 

To identify additional sequence features that associate with DARs, we asked whether transposable 

elements (TE), a potential source of regulatory sequence subjected to chromatin-level regulation, 

are enriched in these sites (Du et al., 2016; He et al., 2019). We found that while three of the main  
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Figure 4: Differentially accessible regions are enriched for active chromatin features. (A) 
The proportion of differentially accessible regions (DARs) and constitutively accessible regions 
(CARs) that overlap with annotated TSS. (B) The proportion of DARs and CARs that overlap with 
the locations of histone marks determined by ChIP-seq in human heart tissue (Consortium, 2012). 
(C) The proportion of DARs and CARs that overlap with HIF1α and HIF2α binding locations 
determined by ChIP-seq in a breast cancer cell line (Schodel et al., 2011). (D) The most significant 
motif identified to be differentially enriched in DARs compared to all ARs that is putatively 
recognized by ZNF770, E2F3 and E2F4. We classify E2F4 as a response gene and therefore 
determined the proportion of DARs and CARs that overlap with E2F4 ChIP-seq binding locations 
identified in a human LCL line (Lee et al., 2011). (E) The proportion of DARs and CARs that 
overlap four major transposable element (TE) classes – LTR, LINE, SINE, DNA. The proportion of 
DARs and CARs that overlap with CpG islands (CGIs) that is proximal to the TSS (+/- 2 kb from 
the TSS), and distal to the TSS. Asterisk denotes a statistically significant difference between 
DARs and CARs (*p < 0.05, **p < 0.005, ***p<0.0005). 
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TE classes, LINEs, LTRs, and DNA elements are similarly enriched in DARs compared to 

constitutively accessible regions; SINEs are specifically enriched in DARs (P = 6.5 x10-6; Fig4E). 

There is an enrichment of both Alu and MIR SINE family members in DARs (P = 3x10-5 and P = 

0.006). AluS elements, and the AluSq and AluSp sub-families, are particularly enriched within the 

Alu family (P = 0.007 and P = 0.02 respectively). A different cellular stress, heat shock, has 

previously been shown to remodel chromatin accessibility at Alu elements in cervical cancer cells 

(Kim et al., 2001).  

 

As Alu and MIR TE sequences are notably CpG dense (Medstrand et al., 2002), we next asked 

about the enrichment of CpG-dense CpG islands (CGIs) in our differentially accessible regions. We 

found that CpG islands are enriched in DARs compared to constitutively accessible regions, 

whether these regions fall within 1 kb of TSS, which are typically enriched for CGIs, or not (P < 

2.2x10-16; Fig4F). 

 

DNA methylation state at stress-responsive genes and chromatin regions  

 

Genes with CGI promoters are thought to allow flexibility in TSS choice compared to genes without 

CGI promoters (Carninci et al., 2006), and to allow for the rapid induction of gene expression in 

response to stimuli (Ramirez-Carrozzi et al., 2009). We therefore asked whether this promoter 

feature is enriched in the stress response genes. Indeed, we find that response genes are more 

likely to have CGI promoters than non-response genes (Chi-squared test; P = 0.002).  

 

Given the enrichment of CpG islands in gene promoters and chromatin regions that are responsive 

to stress, we asked whether this feature corresponded to differences in CpG DNA methylation 

levels in these same regions. We measured global DNA methylation levels at 766,658 CpG sites in 

all conditions from 13 of our individuals (missing data from two of the individuals), together with 24 

replicate samples from three individuals (See methods, STable). We found the expected bimodal 

distribution of DNA methylation Beta-values across CpGs (Beta-values represent the ratio of 

intensities between the methylated and unmethylated alleles; FigS17A). Additional analyses 

indicated the data to be of good quality (FigS17-18).  

 

To determine whether steady-state DNA methylation levels mark genes or regions that will change 

their expression level in response to stress, we investigated baseline DNA methylation levels in the 

promoters of genes classified as response genes and non-response genes, as well as DARs and 
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constitutively accessible regions. To do so, we assessed the DNA methylation level at CpGs within 

200 bp upstream of the TSS in the baseline condition. The majority of the assayed CpGs were 

hypomethylated with a median Beta-value of less than 0.2 across genes and regions (Fig5A). 

While there is no difference in median DNA methylation levels between response and non-

response genes, we found that the median DNA methylation level is lower in DARs compared to all  

 

 

 

Figure 5: Minimal DNA methylation changes following hypoxia. (A) Mean DNA methylation 
levels (Beta-values) in the baseline condition (A) at CpGs within 200 bp upstream of the TSS of 
response genes and non-response genes, and within differentially accessible regions (DARs) and 
all accessible regions (ARs) (*p < 0.05, ***p < 0.0005).  (B) Numbers of differentially methylated 
CpGs within CpG islands across pairs of conditions. (C) DNA methylation levels at a differentially 
methylated CpG within an intron of the EGR2 response gene. (D) EGR2 expression during the 
course of the experiment. 
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accessible regions (P < 2.2x10-16). These data suggest that the underlying DNA sequence features 

of these regions can affect their epigenetic profile, and that responsive chromatin regions may 

have specific epigenetic profiles which poise them for rapid response to stress. 

 

DNA methylation levels are largely stable following hypoxia and re-oxygenation 

 

Given that DNA methylation levels can associate with gene expression levels, we asked whether 

any CpGs are differentially methylated during the course of the oxygen perturbation experiment, 

which induces thousands of gene expression changes. When considering all 766,658 CpGs we did 

not find any differentially methylated CpGs (DMCpGs) across any pair of conditions (10% FDR; 

FigS19A), and all p-values are estimated to be true null p-values (pi0=1 when estimated by q-value 

across all pairs of conditions; FigS19B). We found this to be the case when considering two 

estimates of DNA methylation levels as input: Beta-values or M-values (log2 ratio of intensities of 

methylated versus unmethylated alleles), or when only considering the 32,794 CpGs that are 

located 200 bp upstream of the TSS (data not shown). Because of the CpG island enrichment in 

our response gene promoters, we then selected only those 143,587 CpGs present within CpG 

islands. Although we found no difference in CpG methylation between baseline and hypoxia, and 

the short-term re-oxygenation conditions, we identified four DMCpGs between the baseline and 

long-term re-oxygenation conditions. This set includes a CpG in the intron of the EGR2 response 

gene, which shows increased DNA methylation levels over time (Fig4C-D). Methylation at CpG 

islands within the intron of EGR2 has been shown to confer enhancer activity in cancer cells (Unoki 

and Nakamura, 2003). If we only select CpGs located within the promoters of the 2,113 response 

genes, we find one DMCpG within the promoter of the FTSJ2 gene, a rRNA methyltransferase, 

that is differentially methylated between hypoxia and long-term re-oxygenation. Selecting CpGs 

located only within the 831 DARs reveals two DMCpGs between baseline and hypoxia, and one 

DMCpG between baseline and long-term re-oxygenation. Changes in DNA methylation are 

therefore not likely to be a major mechanism behind gene expression or chromatin accessibility 

changes following six hours of hypoxia. 

 

Dynamic eQTLs associate with traits and disease 

 

Finally, we wanted to determine whether any of the dynamic eQTL SNPs or genes that we 

identified are also associated with complex traits or disease. We first searched within a catalog of 

genetic variants associated with traits assayed in GWAS for overlap with our dynamic eQTL SNPs 
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(Buniello et al., 2019) and found an induced dynamic eQTL SNPs that is also associated with a 

measured phenotype - varicose veins (Table1A; Fig6A).  

 

 

 

 
Figure 6: Dynamic eQTLs associate with SNPs and genes implicated in complex disease. 
(A) Example of a GWAS-implicated SNP that is also a dynamic eQTL SNP. RNF166 is a dynamic 
eGene and the associated SNP is implicated in the presence of varicose veins. RNF166 
expression levels are stratified by genotype in each condition. (B) Expression levels of RNF166 
during the course of the experiment following aggregation of all individuals. (C) Example of a 
stroke and myocardial infarction (MI) GWAS-implicated gene that is also a dynamic eGene 
(ZC3HC1). (D) Expression levels of ZC3HC1 during the course of the experiment following 
aggregation of all individuals. 
 

 

We next took an orthogonal approach, using the same GWAS catalog, to specifically investigate 

three phenotypes that are associated with cardiovascular function or response to oxygen 

deprivation: MI, heart failure, and stroke (See methods). Six of our dynamic eGenes are also 

implicated in these disease states by GWAS (Table1B). This list includes the DNA damage and 

apoptosis factor ZC3HC1, which is implicated in MI and stroke (Fig6B). Importantly, ZC3HC1 is not 

an eGene in LV or AA, but the SNP-gene pair is an eQTL in other tissues. These results suggest 

that perturbation studies in relevant cell types can give insight into the molecular basis for the 

genetic association with complex traits and disease, which might not be gleaned from the study of 

post-mortem tissues. 
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Table 1: Dynamic eQTL SNPs and genes associated with GWAS traits. 
(A) Dynamic eQTL (deQTL) SNPs associated with GWAS traits. The eQTL SNP, associated gene, 
type of eQTL based on whether the eQTL is induced or suppressed in response to hypoxia, tested 
GWAS trait, whether the eQTL SNP is an eSNP in GTEx left ventricle or atrial appendage, and 
whether it is an eGene in GTEx ventricle or atrial appendage tissue. (B) Dynamic eGenes 
implicated in three relevant GWAS traits - heart failure, myocardial infarction (MI), and stroke. N.T: 
not tested. 
 

 

 

 

 

 

Discussion 

 

Studying gene expression across individuals in response to stress can reveal latent effects of 

genetic variation, which may contribute to higher-order phenotypes and disease. In order to 

understand the effects of genetic variation in a disease-relevant cell type and a disease-relevant 

process, we differentiated cardiomyocytes from a panel of genotyped individuals, and subjected 

them to hypoxia and re-oxygenation. We found hundreds of eQTLs that are revealed or 

suppressed following hypoxic stress (dynamic eQTLs), several of which have been associated with 

phenotypes measured in GWAS.  

 

Steady-state and dynamic eQTLs may help understand CVD  

 

Attempts have been made to identify genetic variants that associate with gene expression levels 

and CVD phenotypes in easily accessible biological samples such as blood. However, less than 

half of CVD/MI GWAS loci are associated with an eQTL in whole blood when thousands of 

individuals are tested (Joehanes et al., 2017). To determine the effects of genetic variation on gene 

expression specifically in the heart, more targeted studies have taken advantage of left ventricle 

tissue (Consortium et al., 2017; Koopmann et al., 2014), left atrium tissue (Lin et al., 2014; 

Sigurdsson et al., 2017), and right atrial appendage tissue (Consortium et al., 2017) obtained 

during cardiac surgeries or post-mortem. Using fewer than a hundred individuals, a handful of 

identified eQTL SNPs correspond to SNPs associated with cardiac traits, thus linking specific 

A) deQTL	SNP ENSGID deQTL	gene type trait eSNP eGene
rs8053350 ENSG00000158717 RNF166 induced Varicose	veins Yes Yes

B) deQTL	SNP ENSGID deQTL	gene type trait eSNP eGene
rs60026782 ENSG00000134317 GRHL1 suppressed Heart	failure No Yes
rs187463073 ENSG00000136111 TBC1D4 induced Heart	failure No Yes
rs201280042 ENSG00000186197 EDARADD induced Heart	failure N.T Yes
rs10242432 ENSG00000091732	 ZC3HC1 induced MI/Stroke No No
rs75401776 ENSG00000096401 CDC5L induced Stroke No Yes
rs11612275 ENSG00000171840 NINJ2 induced Stroke No Yes
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genes to organismal-level phenotypes. A compelling example is the association between MYOZ1 

expression and atrial fibrillation (Lin et al., 2014; Sigurdsson et al., 2017). Across tissues, the GTEx 

consortium reported that ~50% of eQTLs are also associated with variation in other measured 

complex traits (Consortium et al., 2017), and Heinig et al. have shown that 20% of left ventricle 

eQTLs relate to heart-associated loci (Heinig et al., 2017). However, these variants, identified in 

healthy individuals, are unlikely to represent all genetic variants that have consequences on 

disease. Indeed, Heinig et al. identified 100 dilated cardiomyopathy–specific eQTLs (not seen in 

healthy individuals) in a case-control study of 97 individuals with dilated cardiomyopathy and 108 

healthy donors (Heinig et al., 2017). Similarly, by collecting samples pre- and post-surgically-

induced ischemia, Stone et al. identified genetic associations that are only detected under stress 

(Stone et al., 2019). While these studies provide a set of gene targets for further investigation, 

there are many loci that remain unexplained. 

 

The heart is a complex tissue consisting of multiple cell types. The effects of some genetic variants 

in specific cell types might well be masked when considering heterogeneous tissue samples. As 

we are now able to direct iPSCs towards a cardiac fate, we can test for genetic effects on specific 

cell types such as cardiomyocytes (Panopoulos et al., 2017). As one would expect, iPSC-CMs are 

better suited to study cardiovascular traits than the immortalized B-cells or iPSCs from which they 

are derived (Banovich et al., 2018). However, given the high degree of eQTL sharing across 

diverse tissues (GTEx), identifying eQTLs in the disease-relevant terminal cell type at steady state 

may not give substantial insight into disease biology. A significant advantage of using iPSC-CMs is 

that these cells provide a system to interrogate gene expression dynamics. 

 

Cellular stressors that perturb gene expression levels and the cell state can unmask additional 

layers of regulatory variation (Alasoo et al., 2018; Barreiro et al., 2012; Caliskan et al., 2015; Kim-

Hellmuth et al., 2017; Knowles et al., 2018; Manry et al., 2017; Nedelec et al., 2016). Intermediate 

developmental cell states can similarly provide insight into GWAS loci where eQTL analysis in 

terminal cell types cannot (Strober et al., 2019). Further evidence for the notion that steady state 

eQTLs may have limited applicability to disease states comes from our previous work, where we 

used a comparative evolutionary approach to investigate the response to stress. We showed that 

genes that have a conserved response to oxygen stress in iPSC-CMs from both humans and 

chimpanzees, and are therefore likely relevant for disease, are depleted for eQTLs identified in 

heart tissue (Ward and Gilad, 2019). 
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In the current study, by subjecting iPSC-CMs from a panel of individuals to perturbation (oxygen 

deprivation), we were able to identify a dynamic eQTL SNP (rs8053350) that is associated with 

varicose veins, and the level of RNF166 expression (Fukaya et al., 2018). This SNP falls within an 

intron of the PIEZO1 gene. Varicose veins are associated with a risk for developing deep vein 

thrombosis and other vascular diseases (Chang et al., 2018). When we performed an analogous 

analysis focused on genes previously associated with three relevant traits – MI, heart failure and 

stroke, we identified a novel heart eGene, ZC3HC1, encoding the NIPA protein, which is implicated 

in MI, coronary artery disease and ischemic stroke (Consortium, 2011; Nikpay et al., 2015; 

Schunkert et al., 2011). This dynamic eQTL SNP is also associated with bronchodilator 

responsiveness in chronic obstructive pulmonary disease (Hardin et al., 2016).  

 

Mechanisms behind response genes and dynamic eQTLs 

 

Changes in gene expression can associate with other molecular-level phenotypes. The response 

to hypoxia is mediated by the HIF1α transcription factor (Samanta and Semenza, 2017), but given 

that there are hundreds of HIF1α binding locations and thousands of differentially expressed 

genes, regulation by this factor alone cannot directly explain all the transcriptional changes. We 

explored two additional molecular phenotypes in the context of oxygen deprivation - the locations 

and level of accessibility of open chromatin regions, and DNA methylation levels. We did not find 

either to contribute substantially to the gene expression response we observed. There are minimal 

changes in accessibility following hypoxia, which is in contrast to observations of studies that 

considered stimulation of immune cell types (Alasoo et al., 2018; Calderon et al., 2019; Pacis et al., 

2015). This could reflect cell type specificity in response to stress, or the specificity of the cellular 

response to different stressors. Indeed, despite large gene expression changes in response to 

various stimulants in endothelial cells, there are a relatively small number of differentially 

accessible regions (Findley et al., 2019). We speculate that the transcriptional response to oxygen 

stress could result in the induction of transcription factors, which bind already accessible regions of 

open chromatin, and that cells are primed for a quick response to this universal cellular stress. 

Indeed, it has been shown that chromatin contacts exist between HIF1α binding sites and hypoxia-

inducible genes in the normoxic state (Platt et al., 2016). Conversely, it has been suggested that 

hypoxia results in the induction of HIF1α, and significant changes in histone methylation (Batie et 

al., 2019). As we did not measure histone marks in our system, these changes may occur in the 

absence of chromatin accessibility changes, but we also cannot rule out the possibility that the 
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choice of a single timepoint following six hours of hypoxia, or insufficient statistical power in our 

sample size, contributed to the minimal differences in accessibility that we observed. 

 

Using an approach designed to measure small effect sizes between conditions, we did identify a 

set of 831 DARs between hypoxia and short-term re-oxygenation that are enriched for marks of 

active chromatin, CpG islands, and TEs. These regions do not appear to explain many of the gene 

expression differences we observed. Hypoxia and oxidative damage are likely to also affect the 

genome in ways that do not directly impact gene expression. Indeed, the distribution of oxidative 

DNA damage sites varies across the genome following stress such that TEs and active chromatin 

regions are enriched for DNA damage, while promoters are depleted (Poetsch et al., 2018). We 

found enrichment for TEs, specifically Alu SINE elements, in DARs. Interestingly, TEs, and DNA 

transposons in particular, are also enriched in regions that become accessible in macrophages in 

response to bacterial infection; suggesting sequence-specific effects of TEs in response to different 

cellular stressors (Bogdan, 2019). Alu elements have previously been found to associate with the 

response to stress in other contexts. Serum starvation induces binding of TFIIIC, which recruits 

RNA polymerase III, to Alu elements (Ferrari et al., 2019), and heat shock increases chromatin 

accessibility around Alu elements (Kim et al., 2001). 

 

There are several studies, which suggest that DNA methylation levels are dynamic and change in 

response to stressors such as hypoxia. We did not find any notable differences in DNA methylation 

levels pre- and post-hypoxia and re-oxygenation, which suggests that like chromatin accessibility, 

DNA methylation levels do not make large contributions to changes in gene expression levels or 

the appearance of dynamic eQTLs in our system. Many of the DNA methylation changes that have 

been described in response to hypoxia occur in chronic and intermittent hypoxia, and not acute 

hypoxia as investigated in our study (Hartley et al., 2013; Robinson et al., 2012; Watson et al., 

2014). DNA methylation levels are also altered in response to other stressors such as bacterial 

infection (Pacis et al., 2015); however, the importance of timing is highlighted by the fact that, in 

this system, gene expression responses precede DNA methylation changes (Pacis et al., 2019). It 

is also important to note that our study considers baseline oxygen levels to be 10% oxygen, which 

is closer to physiological oxygen levels (5-13%) than atmospheric oxygen levels (21%; (Brahimi-

Horn and Pouyssegur, 2007; Carreau et al., 2011; Jagannathan et al., 2016). Most studies define 

normoxia as 21% oxygen saturation, and while this likely leads to larger effect size differences in 

known hypoxia response genes following hypoxia, these comparisons may not give meaningful 

insight into the in vivo state. 
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One can speculate about different mechanisms that might lead to the appearance or 

disappearance of dynamic eQTLs. In the context of the immune response, it has been shown that 

the same response variants affect both gene expression and chromatin accessibility (Alasoo et al., 

2018). This is in line with the general notion that changing cellular environments results in 

differences in chromatin accessibility at transcription factor binding sites, which leads to gene 

expression changes. We found that this does not appear to be a major mechanism in our system 

as there are minimal changes in accessibility following hypoxia. We observed that there is an 

enrichment of response genes amongst dynamic eQTLs suggesting that the change in 

environment results in a change in expression levels that is dependent on the associated 

genotype. We also find enrichment for TFs amongst response genes and dynamic eQTLs, 

suggesting that dynamic eQTLs can appear through secondary trans effects. 

 

Potential limitations of our model 

 

To understand the effects of genetic variation on human heart tissue, and how this variation might 

contribute to the MI and I/R injury etiologies of CVD, we carefully perturbed oxygen levels that 

cardiomyocytes in culture are exposed to. This in vitro approach is by design a model system, and 

therefore will likely not fully recapitulate the in vivo state. However, we previously found that out of 

2,549 genes that respond to hypoxia in iPSC-CMs from humans and chimpanzees, only 16% are 

differentially expressed between iPSC-CMs and heart tissue (Pavlovic et al., 2018; Ward and 

Gilad, 2019). This suggests that our in vitro system is applicable to heart tissue. There is still a 

possibility that the dynamic eQTLs that we identify in our in vitro system are not physiologically 

relevant.  

 

Our study comprised a small number of individuals (15), far fewer than what is typical for 

identifying eQTLs. Our work is therefore a first step towards understanding the effects of genetic 

variation on gene expression in response to stress. Nevertheless, with a small number of 

individuals we were able to identify a couple of hundred of dynamic eQTLs that are revealed or 

suppressed under stress, suggesting that this paradigm is worth exploring further in larger cohorts. 

Under the simplifying assumption of a single causal variant, we determined that we have ~6% 

power to detect an effect which explains ~38% of the heritability, and an equal false positive rate to 

call it a dynamic eQTL (See methods; FigS20). This suggests that the impact of stress on 

genotype-dependent effects on gene expression will be even greater in studies which have higher 

power to detect smaller effects of genotype. For perspective, early eQTL studies were similarly 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.28.012823doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.28.012823
http://creativecommons.org/licenses/by/4.0/


	 24	

powered to our study, using 70 individuals; yet these studies still led to important insights opening 

an avenue of research focused on assaying the consequences of genetic variation by RNA-seq 

(Pickrell et al., 2010). 

 

In summary, there have been few studies assessing the effects of genetic variation in response to 

CVD-relevant perturbations in cardiomyocytes. Here we profiled the response to oxygen 

deprivation in cardiomyocytes from a panel of genotyped individuals. We find that eQTLs can 

appear and disappear in response to oxygen deprivation, and that some of these eQTLs have 

effects on relevant complex traits and disease. 

 

Materials and Methods 

 

Cardiomyocyte differentiation from iPSCs 

 

We used fifteen individuals from the Yoruba YRI HapMap population. iPSCs were reprogrammed 

from lymphoblastoid cell lines (Banovich et al., 2018). iPSCs were maintained in a feeder-

independent state in Essential 8 Medium (A1517001, ThermoFisher Scientific, Waltham, MA, USA) 

with Penicillin/Streptomycin (30002, Corning, NY, USA) on Matrigel hESC-qualified Matrix 

(354277, Corning, Bedford, MA, USA) at a 1:100 dilution. Cells were passaged at ~70% 

confluence every 3-4 days with dissociation reagent (0.5 mM EDTA, 300 mm NaCl in PBS), and 

seeded with ROCK inhibitor Y-27632 (ab12019, Abcam, Cambridge, MA, USA). 

 

Cardiomyocyte differentiations were performed largely as previously described (Ward and Gilad, 

2019), except the duration and concentration of the Wnt agonist and antagonist differed for this 

panel of individuals, which included only human samples. Briefly, on Day 0, iPSC lines at 70-100% 

confluence in 100 mm plates were treated with 12	µM GSK3 inhibitor CHIR99021 trihydrochloride 

(4953, Tocris Bioscience, Bristol, UK) in 12 ml Cardiomyocyte Differentiation Media [500 mL 

RPMI1640 (15-040-CM ThermoFisher Scientific), 10 mL B-27 Minus Insulin (A1895601, 

ThermoFisher Scientific), 5 mL Glutamax (35050-061, ThermoFisher Scientific), and 5 mL 

Penicillin/Streptomycin)], and a 1:100 dilution of Matrigel. 24 hours later, on Day 1, the media was 

replaced with Cardiomyocyte Differentiation Media. 48 hours later, on Day 3, 2 µM of the Wnt 

inhibitor Wnt-C59 (5148, Tocris Bioscience), diluted in Cardiomyocyte Differentiation Media, was 

added to the cultures. Cardiomyocyte Differentiation Media was replaced on Days 5,7,10, and 12. 

Cardiomyocytes were purified by metabolic purification by the addition of glucose-free, lactate-
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containing media (Purification Media) [500 mL RPMI without glucose (11879, ThermoFisher 

Scientific), 106.5 mg L-Ascorbic acid 2-phosphate sesquimagenesium salt (sc228390, Santa Cruz 

Biotechnology, Santa Cruz, CA, USA), 3.33 ml 75 mg/ml Human Recombinant Albumin (A0237, 

Sigma-Aldrich, St Louis, MO, USA), 2.5 mL 1 M lactate in 1 M HEPES (L(+)Lactic acid sodium 

(L7022, Sigma-Aldrich)), and 5 ml Penicillin/Streptomycin] on Days 14, 16 and 18. 1.5 million 

cardiomyocytes were re-plated per well of a 6-well plate on Day 20 in Cardiomyocyte Maintenance 

Media [500 mL DMEM without glucose (A14430-01, ThermoFisher Scientific), 50 mL FBS (S1200-

500, Genemate), 990 mg Galactose (G5388, Sigma-Aldrich), 5 mL 100 mM sodium pyruvate 

(11360-070, ThermoFisher Scientific), 2.5 mL 1 M HEPES (SH3023701, ThermoFisher Scientific), 

5 mL Glutamax (35050-061, ThermoFisher Scientific), 5 mL Penicillin/Streptomycin]. iPSC-CMs 

were matured in culture for a further 10 days with Cardiomyocyte Maintenance Media replaced on 

Days 23, 25, 27, 28 and 30. 

 

On Day 25, iPSC-CMs were transferred to a 10% oxygen environment (representative of in vivo 

levels) in an oxygen-controlled incubator (HERAcell 150i CO2 incubator, ThermoFisher Scientific). 

From Day 27 onwards, iPSC-CMs were pulsed at a voltage of 6.6 V/cm, frequency of 1 Hz, and 

pulse frequency of 2 ms using an IonOptix C-Dish & C-Pace EP Culture Pacer to further mature 

the cells and synchronize beating. 

 

Flow cytometry 

 

Purity of the cardiomyocyte cultures was assessed ~Day 30 as previously described (Ward and 

Gilad, 2019). Briefly, cells were stained with Zombie Violet Fixable Viability Kit (423113, 

BioLegend), and PE Mouse Anti-Cardiac Troponin T antibody (564767, clone 13-11, BD 

Biosciences, San Jose, CA, USA), and analyzed on a BD LSRFortessa Cell Analyzer together with 

negative control samples of iPSCs, and iPSC-CMs that are incubated without the troponin 

antibody, or without either the troponin antibody or viability stain. 

 

Hypoxia experiment 

 

On Day 31/32 iPSC-CMs were subjected to the hypoxia experiment. At time = 0, condition A 

samples remained at 10% O2 (normoxia), while samples for conditions B, C and D were transferred 

to an incubator set at 1% O2 (hypoxia). After 6 hours, conditions A and B were harvested while 

plates C and D were returned to normoxic oxygen conditions. Plate C was harvested 6 hours 
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following the hypoxic treatment, and Plate D was harvested 24 hours following the hypoxic 

treatment. Oxygen levels, experienced by the cells in culture, were measured in cultures from each 

experimental batch using an oxygen-sensitive sensor (SP-PSt3-NAU-D5-YOP, PreSens Precision 

Sensing GmbH, Regensburg, Germany), optical fiber (NWDV29, Coy, Grass Lake, MI, USA), and 

oxygen meter (Fibox 3 Transmitter NWDV16, Coy). 

 

Material collection 

 

Cell culture media for ELISA and cytotoxicity assays 

 

Aliquots of cell culture media from each experiment were centrifuged at 10 000 rpm for 10 min at 

4°C to remove cellular debris. The supernatant was stored at -80°C until further use.  

 

Nuclei for ATAC-seq 

 

Cardiomyocytes from each well of a 6-well plate were washed twice with cold PBS on ice before 

collection by manual scraping in 1.5 ml PBS. 200 µl of cells were pelleted by centrifugation at 500 

g for 5 min. Cell pellets were re-suspended in 50 µl cold ATAC-seq lysis buffer (10 mM Tris-HCl pH 

7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Igepal CA630, dH2O). Nuclei were pelleted by centrifugation 

at 500 g for 5 min at 4°C. Nuclei were re-suspended in 50 µl transposition mix (25 µl 2xTD buffer, 

2.5 µl Tn5 transposase, 22.5 µl nuclease-free dH2O) from the Nextera DNA sample kit (FC-121-

1031, Illumina). The transposition reaction was performed at 37°C for 30 min. Transposed DNA 

was purified with Qiagen MinElute Kit (28004, Qiagen, MD, USA), re-suspended in 12 µl elution 

buffer, and stored at -20°C. 

   

Cell pellets for RNA-seq & DNA methylation arrays 

 

Cells from each well of a 6-well plate were washed twice with cold PBS on ice before collection by 

manual scraping in 1.5 ml PBS. Cells were pelleted by centrifugation at 7 000 rpm for 8 min at 4°C, 

flash-frozen and stored at -80°C. 
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RNA/DNA extraction 

 

RNA and DNA were extracted from the same frozen cell pellets using the ZR-Duet DNA/RNA 

MiniPrep kit (D7001, Zymo, CA, USA) according to the manufacturer’s instructions. All four 

conditions from three or four individuals were extracted in the same batch. RNA samples had a 

median RIN score of 8.5 (STable). 

 

RNA-seq library prep 

 

500 ng of RNA were used to prepare sequencing libraries using the Illumina TruSeq RNA Sample 

Preparation Kit v2 (RS-122-2001 & -2002, Illumina). Libraries were pooled into five master mixes 

containing 12 or 16 samples. Each pool was sequenced 50 bp, single-end on the HiSeq2500 or 

HiSeq4000 according to the manufacturer’s instructions. 

 

DNA methylation array 

 

9 chips (8 samples per chip) with 60-1000 ng DNA were bisulfite-converted and processed on an 

Illumina Infinium MethylationEPIC array at the University of Chicago Functional Genomics facility. 

 

ATAC-seq 

 

We performed ATAC-seq in 14 of the 15 individuals we had gene expression data for (STable for 

details). ATAC-seq libraries were prepared using the Illumina Nextera DNA sample kit. Libraries 

were amplified for 10-16 cycles depending on the amplification rate of each library. Each library 

was amplified in a PCR reaction containing 10 µl DNA, 10 ul dH2O, 15 µl NMP (PCR master mix), 

5 µl PPC (PCR primer cocktail), and 5 µl index N5, 5 µl index N7). PCR conditions were set at 

72°C for 5 min, 98°C for 30 sec, 98°C for 10 sec, 63°C for 30 sec, 72°C for 1 min, repeat steps 3-5 

4x and hold at 4°C. The number of cycles per library was determined using a qPCR side reaction 

as described in Buenrostro et al. (Buenrostro et al., 2013). Libraries were purified using Agencourt 

AMPure XP beads (A63880, Beckman Coulter, IN, USA), and bioanalyzed to determine library 

quality. 12 or 16 samples were pooled together to generate four master mixes. Each master mix 

was sequenced 50 bp paired-end on the HiSeq4000 according to the manufacturer’s instructions. 
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Lactate dehydrogenase activity assay 

 

Lactate dehydrogenase activity (LDH) was measured in 5 µl cell culture media using the Lactate 

Dehydrogenase Activity Assay Kit (MAK066, MilliporeSigma, MO, USA) according to the 

manufacturer’s instructions. Each sample was assayed in triplicate. LDH activity was measured as 

the difference in absorbance prior to the addition of the substrate, and 10 min after the initiation of 

the enzymatic reaction, calculated relative to a standard curve. Measurements are standardized 

relative to A, and reported as A (A-A), B (B-A), C (C-B) and D (D-B). 

 

BNP ELISA 

 

125 µl of cell culture media was assayed to quantify the level of secreted BNP using the Brain 

Natriuretic Peptide EIA kit (RAB0386, MilliporeSigma).  Each sample was assayed in duplicate on 

two 96-well plates. BNP levels were quantified relative to a standard curve using 4- and 5-

parameter logistic models using the R package drc. Measurements are standardized relative to A, 

and reported as A (A-A), B (B-A), C (C-B) and D (D-B). 

 

RNA-seq analysis 

 

Reads were aligned to hg19 using subread align (Liao et al., 2013). The mapped reads were then 

reprocessed to reduce reference bias for downstream analyses using the WASP pipeline (van de 

Geijn et al., 2015). Briefly, reads overlapping polymorphisms segregating in our population were 

remapped to the genome using the true read, and a version of the read with the alternative allele. 

Only reads that mapped uniquely to the same locations with both possible alleles were kept. The 

median number of reads across conditions was similar (A: 34,353,716; B: 33,493,298; C: 

33,883,532; D: 38,147,083). The number of filtered reads mapping to genes was quantified using 

featureCounts within subread (Liao et al., 2014). We obtained measurements for 19,081 genes. 

Sample 18852A was an outlier when considering read count correlations between pairs of 

samples, and was therefore removed prior to subsequent analyses.  

 

Differential expression analysis 

 

We selected autosomal genes for downstream analysis (18,226). Log2-transformed counts per 

million were calculated (Robinson, 2010), and genes with a mean log2cpm < 0 were excluded. We 
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used the fact that we have replicate data from three individuals to remove unwanted variation in 

our data. We used the RUVs function in the RUVSeq package in R (Risso et al., 2014) to identify 

such factors. By manual inspection, our data segregated by individual or condition after correction 

with four factors. For the differential expression analysis, we excluded sample replicate one to 

avoid the outlier sample and randomly selected replicate two, instead of replicate three, for 

individuals with replicate samples. We used the RUV factors as covariates in our differential 

expression analysis using the TMM-voom-limma pipeline (Law et al., 2014; Robinson et al., 2010; 

Smyth, 2004). We used fixed effects for each condition (A, B, C, D), the RUVs factors as 

covariates, and a random effect for individual, which was implemented using duplicateCorrelation. 

Genes with a Benjamini and Hochberg FDR < 0.1 are classified as differentially expressed 

(Benjamini and Hochberg, 1995). 

 

-Gene expression trajectory analysis 

To identify response genes, we used the Cormotif package in R (Wei et al., 2015) to jointly model 

pairs of tests. We used TMM-normalized log2cpm values as input and considered the following 

pairs of tests: A vs B, B vs. C and B vs. D to determine which genes are changing their expression 

during the course of the experiment. The best fit was determined to correspond to two correlation 

motifs or clusters using BIC and AIC. We classified genes as response genes if the probability of 

differential expression between conditions was > 0.5 in all pairs of tests. 

 

eQTL identification 

 

To map eQTLs, we analyzed the same samples considered in the differential expression analysis. 

Given the sample size in this study, we utilized the combined haplotype test (CHT) to identify 

eQTLs (van de Geijn et al., 2015). This test models both allelic imbalance and total read depth at a 

region to identify QTLs. We require 50 total counts and 10 ten allele-specific counts for each gene, 

and tested variants 25 kb upstream and 25 kb downstream of the TSS, resulting in 1,040,874 

shared tests (A: 1,215,476; B: 1,211,099, C: 1,224,612, D: 1,201,078). As previously reported, we 

found that null p-values for the CHT were not calibrated in our data. To calibrate the p-values, we 

estimated the null distribution of the CHT by permuting the data 100 times and fitting a Beta 

distribution to the permuted p-values for each SNP-gene pair (previously proposed by (Delaneau et 

al., 2017; Ongen et al., 2016)). We then computed an adjusted p-value for each SNP-gene pair by 

taking the CDF of the fitted Beta distribution, evaluated at the reported CHT p-value. 
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To call significant eQTLs, we estimated q-values for the set of adjusted p-values for each 

phenotype, and took tests with q < 0.1. The number of eGenes in each condition was determined 

by taking the most significant SNP-gene association in each condition (i.e. the top SNP). We 

defined dynamic eQTLs as either: 1) significant only in A (q < 0.1 in A and permutation-adjusted p 

> 0.15 in B and C and D; suppressed eQTL); 2) significant in at least one of B, C, or D (q < 0.1) 

and not nominally significant in A (adjusted p > 0.15; induced eQTL). 

 

Power analysis 

 

For QTL mapping, we assume a linear model 

𝑦! = 𝑥!𝛽 + 𝜖!
𝜖! ∼𝒩(0,𝜎!)	

where 𝑦! denotes the phenotype of individual 𝑖 and 𝑥! denotes the genotype of individual 𝑖 at a 

single SNP of interest. We estimate an effect size 𝛽 

𝛽 ∼𝒩 𝛽,
𝜎!

𝑛 	

where 𝑛 is the sample size. Let 𝜆 = 𝛽/𝜎 be the standardized effect size. Then, 

𝜆 ∼𝒩 𝜆,
1
𝑛 	

and 

Power(𝜆,𝛼,𝑛) = 𝛷 𝛷−1(𝛼/2)+ 𝜆 𝑛 	

where 𝛼 denotes the significance level and 𝛷 denotes the standard Gaussian CDF. To simplify the 

analysis, we consider 𝛼 = 0.05/20000 = 2.5×10!! (i.e., Bonferroni correction; this is equivalent to 

controlling the FDR when all tests are null, and is conservative otherwise). Assume there is a 

single causal variant. Then, the phenotypic variance explained is: 

ℎ! =
𝜆!

𝜆! + 1	

We defined a dynamic eQTL as either significant only in A, or significant (after Bonferroni 

correction, in this analysis) in one of B, C, or D and not significant in A. To estimate the false 
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positive rate of dynamic eQTL calling, we asked what was the probability of a SNP passing this 

definition, assuming the standardized effect size 𝜆 was identical in all four conditions. We then 

computed phenotypic variance explained, power to detect an eQTL, and false positive rate to call a 

dynamic eQTL for every choice of standardized effect size 𝜆. 

 

Overlapping response genes and eGenes with existing gene sets 

 

-Gene ontology analysis 

Gene set enrichment analysis was performed on response genes, and a background set of all 

expressed genes using the DAVID genomic annotation tool (Huang da et al., 2009a, b). GO Terms 

related to Biological Processes were selected, and those with a Benjamini-Hochberg controlled 

FDR < 0.05 were designated as significantly enriched. Each of the five significantly enriched 

processes relates to transcription (“DNA-templated transcription”, “DNA-templated regulation of 

transcription”, “DNA-templated negative regulation of transcription”, “negative regulation of 

transcription from RNA polymerase II promoter”, “positive regulation of transcription from RNA 

polymerase II promoter”). The most significantly enriched GO terms related to Molecular Functions 

include “transcription factor activity, sequence-specific DNA binding”, “nucleic acid binding” and 

“DNA binding”. 

 

-Transcription factors 

A list of 1,637 annotated human TFs was obtained from (Lambert et al., 2018), and intersected 

with our gene sets. 

 

-GTEx eQTLs 

eQTLs in LV and AA, and twelve other randomly selected tissues (adipose, brain cortex, colon, 

lung, liver, muscle, pancreas, pituitary, skin, spleen, thyroid, whole blood) were downloaded from 

v7 in the GTEx portal (www.gtexportal.org). eGenes were selected at 5% FDR in each tissue, and 

intersected with our gene categories. 

 

ATAC-seq analysis 

 

Paired-end sequencing reads were aligned to hg19 using bowtie2 with default settings (Langmead 

and Salzberg, 2012). Reads were filtered using Picard Tools 

(https://broadinstitute.github.io/picard/) to remove duplicate reads, and reads mapping to the 
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mitochondrial genome. Reads were then remapped using the WASP pipeline as described above. 

We retained a similar median number of reads across conditions (A: 28,998,060; B: 33,662,261; C: 

30,161,640; D: 34,534,416). Across conditions, there is no significant difference in the number of 

mapped reads, number of regions identified, or fraction of reads mapped to open chromatin 

regions (FigS13A-C). All libraries, across conditions, show the expected fragment size distribution, 

enrichment of reads at transcription start sites (TSS), and footprints at well-defined CTCF motifs 

(FigS13D-F). Correlation analysis of read counts between pairs of samples revealed clustering by 

individual and condition (FigS14). As expected, the correlation of read counts between samples at 

the 10,633 regions overlapping the TSS is higher than the correlation across all regions (median 

rho = 0.83 vs. 0.56). Pairs of samples from the same condition are marginally more correlated in 

their accessibility profiles than pairs of samples across all conditions (median rho = 0.84 vs. 0.83 at 

the TSS). 

 

Identification of accessible chromatin regions 

 

To generate a unified list of regions with accessible chromatin across conditions and samples, we 

first used MACS2 (Zhang et al., 2008) to identify peaks within each sample independently. Next, 

we used BEDtools (Quinlan and Hall, 2010) with the multiIntersectBed function to identify 

overlapping peaks within each condition separately. Within each condition, we retained peaks with 

support from more than three individuals and used the mergeBed function to create a condition-

specific consensus. We then combined and merged the bed files across the four conditions to 

make a final consensus file containing all the filtered accessible regions. The number of reads 

mapping to accessible chromatin regions was quantified using featureCounts within subread (Liao 

et al., 2014). 

 

Identification of differentially accessible regions (DARs) 

 

The 128,673 open chromatin regions associated with count data were filtered to include only those 

regions on the autosomes, and those which had mean log2cpm values > 0 for each region. First, to 

identify differentially accessible regions we used the same limma framework described above for 

the RNA-seq data. To test for differences between conditions, a linear model with a fixed effect for 

condition was used together with a random effect for individual. We did not identify any significantly 

differentially accessible regions with a Benjamini and Hochberg FDR < 0.1. To identify regions with 

small effect size differences between conditions we used an adaptive shrinkage method 
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implemented in the ashr package in R (Stephens, 2017). We used the regression estimates 

(regression coefficients, posterior standard errors, and posterior degrees of freedom) generated by 

limma to calculate a posterior mean (shrunken regression coefficients), FDR, and False Sign Rate 

(FSR, probability that the sign of the effect size is wrong). We considered regions to be 

differentially accessible at FSR < 0.1. We denote regions that are not differentially accessible as 

constitutively accessible regions. 

 

Overlap of DARs with genomic features 

 

-TSS 

Transcription start sites were obtained from the UCSC Table Browser (http://genome.ucsc.edu/cgi-

bin/hgTables) using ‘txStart’ from Ensembl genes (Karolchik et al., 2004). TSS were defined based 

on the TSS of the 5’ most transcript on the sense strand and 3’ most transcript on the anti-sense 

strand. TSS regions, and subsequent genomic features, were intersected with DARs and 

constitutively accessible regions requiring a 1 bp overlap using bedtools intersect (Quinlan and 

Hall, 2010). 

 

-Histone marks 

We obtained histone mark data (.bed files) for human heart tissue from the ENCODE consortium 

(Consortium, 2012; Davis et al., 2018) ENCODE portal, (https://www.encodeproject.org). We 

selected H3K4me3 (Experiment ENCSR181ATL), H3K4me1 (Experiment ENCSR449FRQ), 

H3K36me3 (Experiment ENCSR799KLF), H3K27me3 (Experiment: ENCSR613PPL), and 

H3K9me3 (Experiment ENCSR803MVC) ChIP-seq data from heart left ventricle tissue from a 51-

year-old female individual (Biosample ENCBS684IAD). 

 

-Transcription factor binding locations 

We obtained ChIP-seq data for the hypoxia-responsive factors HIF1α and HIF2α assayed in the 

MCF-7 breast cancer cell line (Schodel et al., 2011), and E2F4 in the GM06990 lymphoblastoid cell 

line (Lee et al., 2011). Co-ordinates of the 356 HIF1α, 301 HIF2α and 16,245 E2F4 bound regions 

were converted from hg18 to hg19 using the liftOver tool in the Galaxy platform 

(http://galaxyproject.org/; (Afgan et al., 2018)). 
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-Motif enrichment analysis in DARs 

We obtained sequences for all accessible regions and differentially accessible regions using the 

Galaxy platform (Afgan et al., 2018). We used the MEME-ChIP tool within The MEME Suite (Bailey 

et al., 2009; Machanick and Bailey, 2011) in Differential Enrichment mode to identify motifs 

differentially enriched in DARs compared to all accessible regions. 

 

-TEs 

We obtained repeat annotations from the RepeatMasker track (Jurka, 2000; Smith, 2010) from the 

UCSC Table browser (Karolchik et al., 2004). We intersected the Repeatmasker track with our 

accessible regions and reported those elements where 50% of their length overlaps a DAR or 

constitutively accessible region. We stratified TEs by TE class: LINE, SINE, DNA and LTR, and 

then by TE family and type within the SINE class. 

 

-CpG islands 

We obtained CpG island annotations from the UCSC Table Browser, and overlapped these regions 

with DARs and constitutively accessible regions. 

 

caQTL identification 

 

The caQTLs were identified in the same manner as described for the eQTLs. However, in the 

caQTL analyses, we limited tested SNPs to those falling within the peak regions from our 

consensus file, as opposed to testing variants within 25 kb of the region. Dynamic caQTLs were 

identified as for dynamic eQTLs. 

 

DNA methylation analysis 

 

To allow for accurate quantification of DNA methylation levels we removed probes overlapping 

SNPs with a minor allele frequency of > 0.1, and only retained probes with a detection p-value of > 

0.75 across samples. Beta-values (ratio of methylated probe intensity and overall probe intensity, 

and bounded between 0-1) were quantile normalized using lumiN, and, when appropriate, 

converted to M-values (log2 ratio of intensities of methylated probe versus unmethylated probe) 

using lumi (Du et al., 2008). 
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The methylation level of CpGs coincides with the expected distribution based on their annotated 

genomic location i.e. low levels of DNA methylation in CpG islands, and higher levels in CpG island 

shores, and CpG island shelves respectively (FigS17B). Correlation analysis across all pairs of 

samples, including replicate samples, reveals clustering primarily by individual rather than 

condition (FigS18). 

 

To measure the DNA methylation level at gene set promoters, we selected CpGs 200 bp upstream 

of the TSS (TSS200 defined on the array). We considered all CpGs when overlapping with DARs. 

 

Identification of differentially methylated CpGs (DMCpGs) 

 

Differentially methylated CpGs were identified using the same limma framework as described for 

the RNA-seq data. Analysis was run using both Beta-values and M-values. 

 

Integration with GWAS-implicated genes 

 

We intersected the Reference SNP cluster ID of our dynamic QTLs with the 158,654 SNPs in the 

NHGRI-EBI GWAS Catalog available from the UCSC Table Browser (Buniello et al., 2019) in 

August 2019.  

 

We also considered the ‘mapped genes’ results from GWAS from thee relevant traits: myocardial 

infarction (EFO_0000612, 89 genes), heart failure (EFO_0003144, 164 genes) and stroke 

(EFO_0000712, 255 genes), downloaded from the NHGRI-EBI GWAS Catalog in August 2019. 

Gene lists were intersected with our response eGenes. 

 

Supplemental material 
 

Supplemental material: Document containing Supplemental Figures 1-20, and Table S1. 
 
Supplemental tables: Document containing Supplemental Tables listing experimental batches, 
oxygen levels, RIN scores, response genes, eGenes in A, B, C, D, dynamic eGenes, DARs, 
caQTLs in A, B, C, D, dynamic caQTLs and DMCpGs. 
 
Data Access 
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Omnibus (www.ncbi.nlm.nih.gov/geo/) under accession number GSE144426. 
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