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Abstract  57 

Background  58 

Accurate discrimination of benign and pathogenic rare variation remains a priority for clinical 59 

genome interpretation. State-of-the-art machine learning tools are useful for genome-wide 60 

variant prioritisation but remain imprecise. Since the relationship between molecular 61 

consequence and likelihood of pathogenicity varies between genes with distinct molecular 62 

mechanisms, we hypothesised that a disease-specific classifier may outperform existing 63 

genome-wide tools. 64 

 65 

Methods 66 

We present a novel disease-specific variant classification tool, CardioBoost, that estimates 67 

the probability of pathogenicity for rare missense variants in inherited cardiomyopathies and 68 

arrhythmias, trained with variants of known clinical effect. To benchmark against state-of-the-69 

art genome-wide pathogenicity classification tools, we assessed classification of hold-out test 70 

variants using both overall performance metrics, and metrics of high-confidence (>90%) 71 

classifications relevant to variant interpretation. We further evaluated the prioritisation of 72 

variants associated with disease and patient clinical outcomes, providing validations that are 73 

robust to potential mis-classification in gold-standard reference datasets.  74 

 75 

Results 76 

CardioBoost has higher discriminating power than published genome-wide variant 77 

classification tools in distinguishing between pathogenic and benign variants based on overall 78 

classification performance measures with the highest area under the Precision-Recall Curve 79 

as 91% for cardiomyopathies and as 96% for inherited arrhythmias. When assessed at high-80 

confidence (>90%) classification thresholds, prediction accuracy is improved by at least 120% 81 

over existing tools for both cardiomyopathies and arrhythmias, with significantly improved 82 

sensitivity and specificity. Finally, CardioBoost improves prioritisation of variants significantly 83 
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associated with disease, and stratifies survival of patients with cardiomyopathies, confirming 84 

biologically relevant variant classification.  85 

 86 

Conclusions 87 

We demonstrate that a disease-specific variant pathogenicity prediction tool outperforms 88 

state-of-the-art genome-wide tools for the classification of rare missense variants of uncertain 89 

significance for inherited cardiac conditions. To facilitate evaluation of CardioBoost, we 90 

provide pre-computed pathogenicity scores for all possible rare missense variants in genes 91 

associated with cardiomyopathies and arrhythmias (https://www.cardiodb.org/cardioboost/). 92 

Our results also highlight the need to develop and evaluate variant classification tools focused 93 

on specific diseases and clinical application contexts. Our proposed model for assessing 94 

variants in known disease genes, and the use of application-specific evaluations, is broadly 95 

applicable to improve variant interpretation across a wide range of Mendelian diseases. 96 

 97 
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Background 140 

The accurate prediction of the effect of a previously unseen genetic variant on disease risk is 141 

an unmet need in clinical genetics. According to guidelines developed by the American 142 

College of Medical Genetics and Genomics/Association for Molecular Pathology 143 

(ACMG/AMP)1, computational prediction of variant pathogenicity is integrated as one line of 144 

supporting evidence to assess the clinical significance of human genetic variation. Several 145 

tools have been developed to predict the effects of rare variants given multiple functional 146 

annotations, such as evolutionary conservation scores and biochemical properties, and to 147 

derive scores describing the likelihood of pathogenicity2–6. Recent efforts have employed 148 

state-of-the-art machine learning classification methods including ensemble learning7,8 and 149 

deep learning9 to improve predictions.  150 

 151 

While existing genome-wide variant classification tools learn from large-scale data over the 152 

entire genome, they might also compromise the prediction accuracy for specific sets of genes 153 

and diseases10 in the following ways. First, variation in a single gene can cause distinct clinical 154 

phenotypes via different allelic mechanisms. Genome-wide machine learning tools that 155 

classify variants as deleterious or not, without reference to a specific disease or mechanism, 156 

may not perform as well as those that separate gene-disease relations since, for example, 157 

they do not distinguish between gain- and loss-of-function variants. Second, genome-wide 158 

classification tools may not benefit from specific lines of evidence only available for a subset 159 

of well-characterised genes or diseases. We have previously shown11 that the addition of 160 

gene- and disease-specific evidence into a transparent Bayesian model improves variant 161 

interpretation in inherited cardiac diseases. Finally, most genome-wide prediction tools are 162 

reported to have low specificity1.  163 

                                                                                                                                                                                                                                             164 

Furthermore, the measures used in the evaluation of existing machine learning variant 165 

classification tools are not always well defined or the most clinically-relevant. The performance 166 

of variant classification is routinely evaluated using conventional classification performance 167 
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measures such as the receiver operating characteristic (ROC) curve, that assesses diagnostic 168 

performance across a range of discrimination thresholds, or metrics such as sensitivity and 169 

specificity derived from the confusion matrix at a single, specified threshold. We argue that 170 

these measures should be tailored to the specific application at hand. In particular, it is 171 

necessary to consider the relative cost of decisions based on the Type I and Type II errors in 172 

any specific application, as different contexts may favour the control of Type I error (limiting 173 

false positive assertions) or Type II error (limiting false negative assertions). For example, 174 

when classifying a variant for predictive genetic testing, control of the Type I error is usually 175 

prioritised: familial cascade testing on a variant falsely reported as pathogenic can be 176 

extremely harmful12. Conversely, if considering whether to offer a patient a therapy proven to 177 

be effective in a subgroup of patients with a particular molecular aetiology (e.g., Sulfonylureas 178 

in some types of monogenic diabetes13), one might prioritise the control of Type II error, since 179 

it is important to identify all who might benefit from targeted treatment when its benefits 180 

outweigh the side-effects. Most current variant classifier tools favour sensitivity over control of 181 

the Type I error with over-prediction of pathogenic variants1. The inappropriate use of 182 

performance measures not only affects the construction of the best classifier, but also the 183 

evaluation of its utility in clinical applications.  184 

 185 

To address the disadvantages of using genome-wide classification tools, we sought to develop 186 

an accurate variant classifier considering gene-disease relations by taking inherited cardiac 187 

conditions (ICCs) as examples. The resulting disease-specific variant classification tool, 188 

CardioBoost, includes two disease-specific variant classifiers for two groups of closely related 189 

syndromes: one classifier for familial cardiomyopathies (CM) that include hypertrophic 190 

cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), and the other for inherited 191 

arrythmia syndromes (IAS) that include long QT syndrome (LQTS) and Brugada syndrome.  192 

 193 

While optimally it may be desirable to train a specific model for every gene-disease pair, this 194 

is not feasible due to current limitations in the number of variants with well-characterised 195 
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disease consequences for training (and testing).  Moreover we have previously demonstrated 196 

benefit from jointly-fitting some parameters across closely-related genes or diseases11.We 197 

therefore constructed models that aggregate related genes as described above, hypothesising 198 

that these disease-specific models are biologically plausible since the relevance of 199 

computational evidence types to interpret variant effect is more likely transferable within 200 

closely related syndromes. 201 

 202 

Trained on well-curated disease-specific data, CardioBoost integrates multiple variant 203 

annotations and pathogenicity scores obtained from previously published computational tools, 204 

and predicts the probability that rare missense variants are pathogenic for monogenic 205 

inherited cardiac conditions, based on the Adaptive Boosting (AdaBoost) algorithm13. Our tool 206 

has improved performances over state-of-the-art genome-wide tools in a variety of tasks 207 

including separation of pathogenic from benign variants and prioritisation of variants highly 208 

associated with disease and adverse clinical outcomes.  209 

 210 

Methods 211 

Building CardioBoost 212 

A full description of data collection, model development and validation is given in the 213 

Supplementary Methods. In brief, we constructed two classifiers, one for inherited 214 

cardiomyopathies, and one for inherited arrhythmia syndromes, to output the estimated 215 

probability of pathogenicity for rare missense variants in genes robustly associated with these 216 

diseases. The CM classifier is applicable for 16 genes associated with hypertrophic and 217 

dilated cardiomyopathies. To obtain training and test sets, we collected 356 unique rare 218 

(gnomAD minor allele frequency < 0.1%) missense variants in established cardiomyopathy-219 

associated genes (Supplementary Table 1) identified in 9,007 individuals either with a 220 

confirmed clinical diagnosis of CM, or referred for genetic testing with a diagnosis of CM, and 221 

interpreted as Pathogenic or Likely Pathogenic. For the inherited arrhythmia classifier, we 222 

consider genes associated with long QT syndrome and Brugada syndrome. 252 unique rare 223 
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missense variants reported to be Pathogenic or Likely Pathogenic with no conflicting 224 

interpretations (Benign or Likely benign) in established arrhythmia-associated genes 225 

(Supplementary Table 2) were collected from NCBI ClinVar Database14. As a benign variant 226 

set, 302 unique rare missense variants in cardiomyopathy genes, and 237 unique rare 227 

missense variants in arrhythmia genes were collected from the targeted sequencing of 2,090 228 

healthy volunteers. Since these volunteers have no family history of ICCs and confirmed 229 

without ICCs on ECG or cardiac MRI, this cohort provides a lower disease prevalence than a 230 

general population thus the rare missense variants carried by them shall be considered as 231 

highly likely benign to inherited cardiac conditions. To avoid over-fitting, for each condition the 232 

data set were randomly split, with two-thirds used for training and one-third reserved as a hold-233 

out test set (Supplementary Table 3-5). 234 

 235 

For each variant, we collected 76 functional annotations (Supplementary Table 6 and 236 

Supplementary Methods) as features in our disease-specific variant classification tool, 237 

including intra- and inter-species conservation scores, amino acid substitution scores, and 238 

pathogenicity predictions from published genome-wide variant classifiers. We selected nine 239 

classification algorithms including best-in-class representatives of all of the major families of 240 

machine learning algorithms, and applied a nested cross-validation15 to select the optimal 241 

algorithm for our tool. In the inner 5-fold cross-validation loop, a candidate classification 242 

algorithm was trained in order to optimise its hyper-parameters. In the outer 10-fold cross-243 

validation loop, the optimised candidate algorithms were compared and the best-performing 244 

one was selected (see Figure 1 and Supplementary Methods). 245 

 246 

For both conditions, AdaBoost13 was selected with the best cross-validated out-of-sample 247 

performance (see Supplementary Methods and Supplementary Table 7-8). AdaBoost is a 248 

boosting tree classification algorithm combining many decision trees. Each decision tree is 249 

learned sequentially to assign more weight to samples misclassified by the previous decision 250 

tree, and weighted by its classification accuracy. Having selected AdaBoost as the basis for 251 
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our disease-specific classifier, a predictive model was constructed by training AdaBoost on 252 

the whole training set, to produce a final variant classification model for each disease, named 253 

CardioBoost. 254 

 255 

CardioBoost was benchmarked against genome-wide classification tools using an unseen 256 

hold-out test set. We applied conventional global classification performance measures, as well 257 

as specific measures focusing on high-confidence thresholds. To ensure robustness, we 258 

further assessed for prioritisation of variants associated with disease in independent cohorts 259 

and associated with patients’ survival measures. These two approaches are relatively 260 

independent of the gold-standard classification from human experts’ interpretation, and 261 

directly assess the relationship between the clinical phenotype and the prioritised variants (for 262 

the descriptions of the benchmarking methods see Supplementary Methods). 263 

 264 

Results 265 

CardioBoost outperforms state-of-the-art genome-wide prediction tools based on 266 

conventional classification performance measures 267 

The hold-out test sets were used to evaluate the classifiers’ performance on unseen data. 268 

CardioBoost was compared against two recently developed genome-wide variant 269 

classification algorithms, M-CAP and REVEL, reported to have leading performance in 270 

pathogenicity prediction of rare missense variants. Classification performance was first 271 

summarised using the area under the Precision-Recall Curve16 (PR-AUC), the area under the 272 

Receiver Operating Characteristic Curve (ROC-AUC) and Brier Score17, without relying on a 273 

single pre-defined classification threshold to discriminate pathogenic and benign variants. 274 

 275 

In both inherited cardiac conditions, CardioBoost achieved the best values in all the three 276 

measures (Figure 2). The difference in performance was statistically significant for 277 

cardiomyopathies, with significantly increased PR-AUC (maximum P-value = 0.005 between 278 

the pairwise statistical comparisons of CardioBoost vs. M-CAP and CardioBoost vs. REVEL 279 
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via permutation test), ROC-AUC (maximum P-value = 5×10-6 between the pairwise statistical 280 

comparisons using Delong test18), and Brier Score (maximum P-value = 0.005 between the 281 

pairwise comparisons via permutation test). CardioBoost also has significantly improved the 282 

Brier Score for arrhythmia syndromes (maximum P-value = 0.02 between the pairwise 283 

comparisons via permutation test).  284 

 285 

While CardioBoost was trained and tested on independent datasets, some variants had been 286 

used previously in the training of M-CAP and REVEL, whose pathogenicity scores were used 287 

as input features for CardioBoost (Supplementary Table 6). Thus, CardioBoost has been 288 

indirectly exposed to these variants. This may worsen classification performance if the variants 289 

were erroneously labelled during upstream training, or lead to artificially inflated performance 290 

estimates through concealed overfitting. To estimate the extent to which these potential 291 

limitations affect the prediction performance, we performed a stratification analysis to compare 292 

the performance of CardioBoost on variants used to train upstream genome-wide learners 293 

(indirectly “seen”), and variants that were completely novel (“unseen”) in the hold-out test data 294 

set. CardioBoost improved on cardiomyopathy- and arrhythmia-specific prediction over 295 

existing genome-wide classification tools both on indirectly “seen” (used in the training of M-296 

CAP and REVEL) and “unseen” data. The overall accuracy of CardioBoost between the 297 

unseen and seen data sets is not significantly different for either CM or IAS. (Supplementary 298 

Table 9-10 and Supplementary Methods). 299 

 300 

CardioBoost outperforms existing genome-wide prediction tools on high-confidence 301 

classification measures 302 

In addition to estimating conventional classification performance, we evaluated performance 303 

at thresholds corresponding to accepted levels of certainty required for clinical decision 304 

making1 (90%; see definitions on Figure 1b, Figure 1c and Supplementary Methods). Using 305 

these thresholds (Pathogenic/Likely Pathogenic: probability of pathogenicity (Pr) ≥ 0.9; 306 

Benign/Likely Benign: Pr ≤ 0.1; Indeterminate: 0.1 < Pr < 0.9), CardioBoost again outperforms 307 
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existing genome-wide machine learning variant classification tools when assessed using hold-308 

out test data (Table 1). 309 

 310 

CardioBoost also maximises the identification of both pathogenic and benign variants. In both 311 

conditions, the proposed variant classification model had the highest true positive rate (TPR) 312 

(CM 69.5%; IAS 83.3%) and true negative rate (TNR) (CM 56%; IAS 78.6%) (P-value < 0.001). 313 

In total, CardioBoost correctly classified 63.3% of cardiomyopathy test variants and 81.2% of 314 

arrhythmia test variants with 90% or greater confidence-level. Such proportions of correctly 315 

classified variants are significantly higher (P-value < 0.001) than those obtained with M-CAP 316 

(CM 28.4%; IAS 30.5%) and REVEL (CM 17.4%; IAS 37%). In addition, CardioBoost 317 

minimises the number of indeterminate variants. Only 29.8% of cardiomyopathy test variants 318 

and 11.7% of arrhythmia test variants achieved indeterminate scores between 0.1 and 0.9, 319 

which were significantly fewer (P-value < 0.001) than those obtained with M-CAP (CM 66.1%; 320 

IAS 66.2%) or REVEL (CM 78%; IAS 59.7%) (Table 1). 321 

 322 

Overall, using these thresholds CardioBoost assigned high-confidence classifications to 70.2% 323 

of cardiomyopathy test variants, among which 90.2% were correct. For arrhythmias, 324 

CardioBoost reported 88.3% of test variants with high confidence, with 91.9% prediction 325 

accuracy. The reported results are robust to the choice of classification thresholds. While 326 

guidelines propose 90% confidence as appropriate thresholds for likely pathogenic or likely 327 

benign classifications, some may advocate a higher confidence threshold. When assessed at 328 

a 95%-certainty classification threshold, CardioBoost continues to consistently outperform 329 

genome-wide tools with significantly (P-value < 0.001) higher accuracies (Supplementary 330 

Table 11). 331 

 332 

CardioBoost is not intended to replace a full expert variant assessment in clinical practice, but 333 

for comparative purposes it is informative to consider how classification performance changes 334 

under application in different contexts. PPV and NPV are both dependent on the proportion of 335 
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pathogenic variants in the variant set being tested, and so it is important to consider how our 336 

benchmarking translates to real-world application. Here we used the TPR and TNR calculated 337 

on our hold-out benchmarking test set to derive estimates of PPV and NPV for CardioBoost 338 

applied in different contexts where the true proportion of pathogenic variants might differ. Our 339 

estimation provides a lower bound of PPV and NPV under the assumption that pathogenic 340 

variants are fully penetrant. In the context of predictive genetic testing, the limitation of false 341 

positive prediction is prioritised, necessitating conservative estimates of PPV. Here we 342 

estimate reasonably conservative PPVs and corresponding NPVs of CardioBoost applied in 343 

two scenarios: in a diagnostic referral series and in samples from a general population. In a 344 

diagnostic laboratory cardiomyopathy referral series, where we estimate approximately 60% 345 

rare missense variants found in cardiomyopathy-associated genes to be pathogenic, the PPV 346 

and NPV of CardioBoost were estimated at 89% and 96% respectively. By contrast, if applied 347 

to variants in the same genes in a general population, where we estimate the proportion of 348 

rare variants that are pathogenic as ~ 1%, the PPV and NPV reach 5% and 99.9%. Similarly, 349 

we estimated the performance of CardioBoost in an arrhythmia cohort (PPV: 95%; NPV: 87%) 350 

and a general population (PPV:3%; NPV: 99.9%). This suggests that the predictions of 351 

pathogenicity by CardioBoost are calibrated for high confidence only when applied in a 352 

diagnostic context, as would be expected. Classifications are appropriate for variants found in 353 

individuals with disease, with a reasonable prior probability of pathogenicity (the estimation 354 

details are described in Supplementary Methods). 355 

 356 

Finally, as novel pathogenic variants are more likely to be ultra-rare (Minor allele frequency < 357 

0.01%), we also tested CardioBoost performance on a hold-out set of only ultra-rare variants 358 

and confirmed that it consistently outperforms existing genome-wide tools (Supplementary 359 

Table 12). Its performance on ultra-rare variants is comparable with that on rare variants.  360 

 361 

Replication on additional independent test data confirms that CardioBoost improves 362 

prediction of pathogenic and benign variants 363 
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We collected four additional sets of independent test data to further assess the CardioBoost 364 

performance, using variants reported as pathogenic in ClinVar and HGMD19 (both databases 365 

of aggregated classified variants), a diagnostic laboratory referral series from the Oxford 366 

Molecular Genetics Laboratory (OMGL), and a large registry of HCM patients, SHaRe20. 367 

CardioBoost consistently achieved the highest TPRs: predicting the most pathogenic variants 368 

with over 90% certainty (Table 2). On a set of rare variants found in the gnomAD reference 369 

dataset, which is not enriched for inherited cardiac conditions and hence where the prevalence 370 

of disease should be equivalent to the general population, CardioBoost consistently predicts 371 

the most variants as benign (Table 2). CardioBoost also performed best when assessed at a 372 

higher 95%-certainty classification threshold (Supplementary Table 13) and on sets of ultra-373 

rare variants (Supplementary Table 14).  374 

 375 

CardioBoost discriminates variants that are highly disease associated 376 

Since benchmarking against a gold-standard test set may be susceptible to errors present in 377 

the benchmark data set, we employed two additional approaches to evaluate CardioBoost 378 

predictions directly against patient characteristics, to confirm biological and clinical relevance. 379 

 380 

First, we directly assessed the strength of the association between the specified disease and 381 

rare variants stratified by the different tools. We compared the proportions of rare missense 382 

variants in a cohort of 6,327 genetically-characterised patients with HCM, from the SHaRe 383 

registry20, with 138,632 reference samples from gnomAD v2.0 (Table 3). We calculated the 384 

Odds Ratio (OR) of each sarcomere gene for all rare variants observed, and for variants 385 

stratified by CardioBoost, M-CAP, and REVEL after excluding variants seen in our training 386 

data.  387 

 388 

For six out of eight CM-associated genes encoding sarcomere components (TNNI3, TPM1, 389 

ACTC1, TNNT2, MYBPC3 and MYL3), the OR for variants prioritised by CardioBoost (i.e. 390 

predicted pathogenic with Pr ≥ 0.9) was significantly greater (P-value < 0.05) than the baseline 391 
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OR (including all observed variants without discriminating pathogenic and benign variants), 392 

indicating that the tool is discriminating a set of pathogenic variants more strongly associated 393 

with the disease. Concordantly, variants in all the eight sarcomere genes predicted as benign 394 

have significantly decreased association with disease compared with the baseline OR (P-395 

value < 0.05). By contrast, M-CAP or REVEL did not show any demonstrable difference in 396 

disease ORs between predicted pathogenic and predicted benign variants (Table 3). 397 

 398 

CardioBoost variant classification significantly associates with adverse clinical 399 

outcome 400 

As a further assessment independent of gold-standard classification, we tested the 401 

association of variants stratified by CardioBoost with clinical outcomes in the same cohort of 402 

patients. Patients with HCM who carry known pathogenic variants in genes encoding 403 

sarcomeric proteins have been shown to follow an adverse clinical course compared with 404 

“genotype-negative” individuals (no rare pathogenic variant or VUS in a sarcomere-encoding 405 

gene, and no other pathogenic variant identified) 20–22, with a higher burden of adverse events. 406 

Patients carrying benign variants in HCM-associated genes would be expected to follow a 407 

similar trajectory to those genotype-negative patients. 408 

 409 

We evaluated clinical outcomes in a subset of the SHaRe cohort comprising of 803 HCM 410 

patients each with a rare missense pathogenic variant or missense VUS in a sarcomere-411 

encoding gene, and 1,927 genotype-negative HCM patients, after excluding all patients 412 

carrying variants that were seen in the CardioBoost training set. We compared event-free 413 

survival (i.e. age until the first occurrence of a composite adverse clinical outcome including 414 

heart failure events, arrhythmic events, stroke and death) of these patients, stratified by 415 

CardioBoost-predicted pathogenicity (the full definition of a composite adverse clinical 416 

outcome is described in Supplementary Methods). 417 

 418 

CardioBoost classification stratifies novel variants with significantly different patient-survival 419 
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curves (Figure 3). Patients carrying variants predicted as pathogenic (CardioBoost 420 

Pathogenic) were likely to have earlier onset and a higher adverse event rate than those 421 

without identified rare variants (CardioBoost Pathogenic vs Genotype negative: P-value < 422 

2×10-16; Hazard Ratio (HR) = 1.9), or those with variants predicted to be benign (CardioBoost 423 

Pathogenic vs CardioBoost Benign: P-value = 0.03; HR = 1.7). The probability of developing 424 

the overall composite outcome by age 60 is 84% for CardioBoost Pathogenic patients, versus 425 

60% for Genotype-negative patients. By contrast, groups stratified by M-CAP or REVEL 426 

variant classification did not show significantly different event-free survival time (M-CAP 427 

Pathogenic vs M-CAP Benign: P-value = 0.31; REVEL Pathogenic vs REVEL Benign: P-value 428 

= 0.30). 429 

 430 

Discussion 431 

Our results show that in silico prediction of variant pathogenicity for inherited cardiac 432 

conditions is improved within a disease-specific framework trained using expert-curated 433 

interpreted variants. This is demonstrated through improved classification performance, 434 

stronger disease-association, and significantly improved stratification of patient outcomes 435 

over published genome-wide variant classification tools. 436 

 437 

There are several factors that may contribute to improved performance for a gene- and 438 

disease-specific classifier like CardioBoost over genome-wide tools. First, the use of disease-439 

specific labels could decrease the false prediction of benign variants as pathogenic. A variant 440 

causative of one Mendelian dominant disorder may be benign with respect to a different 441 

disorder (associated with the same gene), if the conditions result from distinct molecular 442 

pathways. Since genome-wide tools are trained on universal labels (i.e. whether a variant ever 443 

causes any diseases), they would be expected to yield some false positive predictions in the 444 

context of specific diseases. Second, while the representative genome-wide tools M-CAP and 445 

REVEL are trained on variants from HGMD curated from literature, CardioBoost is trained on 446 

high-quality expert-curated variants, thus reducing label bias and increasing the prediction 447 
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performances. Thirdly, as the genome-wide tools are trained across the genome, the learning 448 

function that maps the input features into the pathogenicity score is fitted using the training 449 

samples from all genes in the genome. However, different genes may have different mapping 450 

functions, for example related to different molecular mechanisms or the relevance of different 451 

features. Restricting to a set of well-defined disease-related genes may exclude influences 452 

from other unrelated genes. 453 

 454 

We might expect a gene-disease-specific model would most accurately represent the 455 

genotype-phenotype relationship. However, there is a trade-off between the size of available 456 

training data and the specialization of prediction tasks. Here, CardioBoost groups together 457 

genes for two sets of closely related disorders, including three genes in which variants with 458 

different functional consequences lead to distinct phenotypes in our training set (i.e. SCN5A, 459 

TNNI3, MYH7).  This is a potential limitation, since we hypothesise that distinct functional 460 

consequences might optimally be modelled separately. We explored alternative models for 461 

cardiomyopathy classifiers, for which our training data set is larger than for arrhythmias. Two 462 

disease-specific models (HCM-specific and DCM-specific) and three gene-syndrome-specific 463 

models (MYH7-HCM-specific, MYH7-DCM-specific, and MYBPC3-HCM-specific) with the 464 

largest training data size were built and compared (see Supplementary Table 15). None of 465 

the alternative models had comparable performance to the combined-cardiomyopathy model. 466 

We therefore conclude that given the current availability of training data, a cardiomyopathy-467 

specific predictive model provides the best empirical balance between grouping variants with 468 

similar molecular or phenotypic effects and making use of relatively large training data set. It 469 

improves prediction both over genome-wide models that entirely ignore variants’ phenotypic 470 

effects, and over gene-disease-specific models for which there is insufficient training data. We 471 

therefore adopted the broadly disease-specific models as our final classifier, but anticipate 472 

that complete separation of distinct phenotypes may be advantageous when more training 473 

data becomes available in the future. 474 

 475 
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CardioBoost natively outputs a continuous probability of pathogenicity that is directly and 476 

intuitively interpretable. Users may therefore define their own confidence thresholds according 477 

to intended application. The posterior probability can also be updated by incorporating further 478 

evidence, such as linkage scores calculated from the evaluation of segregation in a family, to 479 

generate an updated posterior probability. 480 

 481 

There are several further potential limitations and avenues for future refinement. First, we have 482 

only considered the prediction of pathogenicity for missense variants thus far. The inclusion 483 

of different classes of variants in disease-specific model is challenging since the available 484 

computational features or evidences for other types of variant are limited, and there is limited 485 

high-confidence training data for non-missense variants. 486 

 487 

A second key limitation of CardioBoost is that it does not consider all relevant lines of evidence, 488 

and therefore it is not intended to serve as a tool for comprehensive assessment of variant 489 

pathogenicity. Some evidence types are limited by availability such as population allele 490 

frequency data and segregation data. Others could not be systematically included into a 491 

machine learning framework either because they are not well structured as in the case of 492 

functional data, de novo data and allelic data, or they are too sparse. For example, many 493 

variants lack experimental data, and the precise population allele frequency of many variants 494 

is unknown, though this implies significant rarity. In our training data, 45% of variants in 495 

cardiomyopathies and 44% of variants in arrhythmias were not seen in the gnomAD control 496 

population. Here, we do not model the imputation of absent allele frequencies in gnomAD for 497 

rare variants since the relation between variant pathogenicity and allele frequency scale 498 

beyond current observation is not clearly known. 499 

 500 

For these reasons, while we show benefits of the proposed model for variant classification in 501 

known disease genes, and its superiority over existing genome-wide machine learning tools, 502 

we emphasize that CardioBoost is not intended for use as a standalone clinical decision tool, 503 
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or as a replacement for the existing ACMG/AMP guidelines for clinical variant interpretation. 504 

Rather, in its current form it could provide a numerical value for evidence PP3 (“Multiple lines 505 

of computational evidence support a deleterious effect on the gene/gene product”) and BP4 506 

(“Multiple lines of computational evidence suggest no impact on gene /gene product”) that is 507 

more reliable and accurate than existing genome-wide variant classifiers in the context of 508 

inherited cardiac conditions. We suggest that CardioBoost high-confidence classifications 509 

might appropriately activate PP3 (Pr>0.9) and BP4 (Pr<0.1). It is interpreted as the supporting 510 

evidence being activated with at least 90% confidence. 511 

 512 

The widely-adopted ACMG/AMP framework is semi-quantitative, and the framework is largely 513 

internally consistent with a quantitative Bayesian framework23,  but one limitation is that the 514 

weightings applied to different rules are not all evidence-based or proven to be mathematically 515 

well-calibrated. We do anticipate that, with more training data and robust validation, 516 

quantitative tools like CardioBoost will prove informative for variant interpretation, and will 517 

carry more weight in a quantitative decision framework than the current ACMG/AMP PP3 and 518 

BP4 rule affords. 519 

 520 

As exemplified in two inherited cardiac conditions, we have substantiated that a disease-521 

specific variant classifier improves the in silico prediction of variant pathogenicity over the 522 

best-performing genome-wide tools. We also demonstrate that development of a bioinformatic 523 

variant classifier represents a trade-off between biological specificity (i.e. a gene-disease-524 

specific model) and practical availability of training data (i.e. a genome-wide model). For 525 

specific Mendelian disorders, it is important to understand the limitations of current genome-526 

wide tools, and consider that a targeted gene-specific or disease-specific model may be 527 

advantageous given sufficient training data.  528 

 529 

Conclusions 530 
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We developed a machine-learning based variant classifier, CardioBoost, that is trained 531 

particularly on disease-specific variants to interpret rare missense variant pathogenicity on 532 

familial cardiomyopathies and inherited arrhythmias. In benchmarking with the existing 533 

genome-wide variant classification tools, CardioBoost significantly distinguishes more 534 

pathogenic and benign variants accurately with high confidence. Variants prioritised by 535 

CardioBoost with high confidence are also validated to be significantly associated disease 536 

state and predictive of patient survival in independent cohorts of cardiomyopathies. Our study 537 

also emphasizes the pitfalls of relying on genome-wide variant classification tools and the 538 

necessity to develop disease-specific variant classification tools to accurately interpret variant 539 

pathogenicity on specific phenotypes and diseases. We also highlight the need to evaluate 540 

variant classification tools in clinical settings including accuracies on high confidence 541 

classification thresholds equivalent to accepted certainty required for clinical decision making, 542 

variant association with disease and patients’ clinical outcomes. To support accurate variant 543 

interpretation in inherited cardiac conditions, we provide pre-computed pathogenicity scores 544 

for all possible rare missense variants in genes associated with inherited cardiomyopathies 545 

and arrhythmias (https://www.cardiodb.org/cardioboost/). The demonstrated development 546 

and evaluation framework could be applicable to develop accurate disease-specific variant 547 

classifiers and improve variant interpretation in a wide range of Mendelian disorders. 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 
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List of Abbreviations 559 

CM: (Inherited) Cardiomyopathy 560 

FNR: False Negative Rate 561 

FPR: False Positive Rate 562 

gnomAD: Genome Aggregation Database release 2.0 563 

HGMD: Human Genetics Mutation Database Pro version 201712 564 

HR: Hazard Ratio 565 

IAS: Inherited Arrhythmia Syndrome 566 

ICC: Inherited Cardiac Condition 567 

NPV: Negative Predictive Value 568 

OMGL: Oxford Medical Genetics Laboratory 569 

OR: Odds Ratio  570 

PPV: Positive Predictive Value 571 

PR-AUC: Area under the Precision-Recall Curve 572 

Pr: Probability of pathogenicity 573 

ROC-AUC: Area under the Receiver Operating Characteristic Curve 574 

SHaRe: Sarcomeric Human Cardiomyopathy Registry version 2019Q3 575 

TNR: True Negative Rate 576 

TPR: True Positive Rate 577 

VUS: Variant of Uncertain Significance 578 

DM: Disease Mutation 579 

ExAC: Exome Aggregation Consortium release 0.3 580 

LMM: Laboratory of Molecular Medicine 581 

MCC: Matthews Correlation Coefficient 582 

RBH: Royal Brompton & Harefield Hospitals NHS Trust 583 
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Training and test data used in the development of the tool were either already in the 586 

public domain, or do not constitute personal data, or were obtained with patient consent 587 

and/or approval of the relevant research ethics committee or institutional review board. 588 

 589 

Availability of data and materials 590 

The source code and data to reproduce our model development and validation analyses can 591 

be found on github at https://github.com/ImperialCardioGenetics/CardioBoost_manuscript. 592 

The pre-computed pathogenicity scores for all possible rare missense variants in genes 593 

associated with inherited cardiomyopathies and arrhythmias can be found at: 594 

https://www.cardiodb.org/cardioboost/. 595 
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List of Figures with Legends 686 

Figure 1. Training, and testing of CardioBoost, and definition of high-confidence variant 687 

classification thresholds for performance assessment. (a) Construction of CardioBoost: (1) 688 

After defining gold-standard data, (2) the dataset was split with a 2:1 proportion into training 689 

and test tests. The training set was used for two rounds of cross-validation: first to optimise 690 

individually a number of possible machine learning algorithms, and second to select the best 691 

performing tool. (3) AdaBoost was the best performing algorithm, and forms the basis of 692 

CardioBoost. (4) CardioBoost was benchmarked against existing best-in-class tools using the 693 

hold-out test data, (5) a number of additional independent test sets, and (6) approaches based 694 
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on association with clinical characteristics of variant carriers that do not rely on a gold-standard 695 

classification. (b) Illustrative distributions of predicted pathogenicity scores for a set of 696 

pathogenic and benign variants obtained by a hypothetical binary classifier. In a clinical 697 

context (based on ACMG/AMP guidelines), variants are classified into the following categories 698 

according to the probability of pathogenicity: Pathogenic/Likely Pathogenic (Probability of 699 

pathogenicity (Pr) >=0.9), Benign/Likely Benign (Pr <=0.1) and a clinically indeterminate group 700 

of Variants of Uncertain Significance with low interpretative confidence (0.1 < Pr < 0.9). (c)The 701 

corresponding confusion matrix with the defined double classification thresholds Pr >=0.9 and 702 

Pr <=0.1. 703 

 704 

Figure 2. CardioBoost outperforms genome-wide prediction tools on hold-out test data. (a-c) 705 

Precision-Recall Curves, ROC Curves and Brier Scores for cardiomyopathy variant 706 

pathogenicity prediction. (d-f) Precision-Recall Curves, ROC Curves and Brier Score for 707 

inherited arrhythmia variant pathogenicity prediction. In (a) and (d), the marked point (●) 708 

indicates the precision (positive predictive value) and recall (true positive rate) at the 90% 709 

confidence level defined as clinically reportable in international guidelines. The dashed lines 710 

demonstrate the performance of a random classifier. 711 

 712 

Figure 3. CardioBoost variant classification stratifies key clinical outcomes in patients with 713 

HCM. Clinical outcomes provide an opportunity to assess classifier performance independent 714 

of the labels used in the gold-standard training data. (a) Kaplan-Meier event-free survival 715 

curves are shown for patients in the SHaRe cardiomyopathy registry, stratified by genotype 716 

as interpreted by CardioBoost. The patients carrying variants seen in the CardioBoost training 717 

set were excluded in this analysis. Patients with pathogenic variants in sarcomere-encoding 718 

genes have more adverse clinical events compared with patients without sarcomere-encoding 719 

variants (“genotype-negative”), and compared with patients with sarcomere-encoding variants 720 

classified as benign. Survival curves stratified by variants as adjudicated by experts (marked 721 

in figure with prefix “SHaRe”) are shown for comparison. The composite endpoint comprised 722 
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the first incidence of any component of the ventricular arrhythmic or heart failure composite 723 

endpoint, atrial fibrillation, stroke or death. (b) P-values of the log-rank test in the pairwise 724 

comparisons of Kaplan-Meier survival curves. (c) Forest plot displays the hazard ratio (with 725 

confidence interval) and P-value of tests comparing patients' survival stratified by CardioBoost 726 

classification and SHaRe experts’ classification based on Cox proportional hazards models. 727 

(d) Kaplan-Meier event-free survival curves for patients in the SHaRe cardiomyopathy registry, 728 

stratified by genotype as interpreted by M-CAP. The patients with variants predicted 729 

pathogenic by M-CAP did not have significantly different survival time compared to those with 730 

predicted benign variants (log-rank test P-value = 0.31). (e) Kaplan-Meier event-free survival 731 

curves for patients in the SHaRe cardiomyopathy registry, stratified by genotype as interpreted 732 

by REVEL. Patients with predicted pathogenic variants by REVEL did not have significantly 733 

different survival time compared to those with predicted benign variants (log-rank test P-value 734 

= 0.30). 735 
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744 

Figure 1. Training, and testing of CardioBoost, and definition of high-confidence variant 745 

classification thresholds for performance assessment.  746 
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 747 

Figure 2. CardioBoost outperforms genome-wide prediction tools on hold-out test data. 748 
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 749 

Figure 3. CardioBoost variant classification stratifies key clinical outcomes in patients 750 

with HCM. 751 
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Table 1 CardioBoost outperforms existing genome-wide tools for the classification of 758 

hold-out test variants. The performance of each tool is reported using the clinically relevant 759 

variant classification thresholds: high-confidence pathogenic (Pr ≥ 0.9), high-confidence 760 

benign (Pr ≤ 0.1), and indeterminate. For each predictive performance measure (see 761 

Supplementary Methods for details) the best algorithm is highlighted in bold. Permutation 762 

tests were performed to evaluate whether the performance of CardioBoost was significantly 763 

different from the best value obtained by M-CAP or REVEL (significance levels: ***P-value ≤ 764 

0.001, **P-value ≤ 0.01, *P-value ≤ 0.05). 765 

(%)  Cardiomyopathies  Arrhythmias 

  CardioBoost M-CAP REVEL  CardioBoost M-CAP REVEL 

Overall 
accuracy  63.3*** 28.4 17.4  81.2*** 30.5 37 

Proportion of 
variants 

classified with 
high confidence  

 70.2*** 33.9 22  88.3*** 33.8 40.3 

Accuracy of 
high-confidence 
classifications 

 90.2*** 83.8 79.2  91.9 90.4 91.9 

Proportion of 
variants with 
indeterminate 
classification 

 29.8*** 66.1 78  11.7*** 66.2 59.7 

TPR  69.5*** 41.5* 28  83.3****** 48.8 65.5 

PPV  86.3*** 81.7 76.7  90.9*** 91.1 91.7 

TNR  56*** 13 5  78.6*** 8.6 2.9 

NPV  96.6*** 92.9 100  93.2*** 85.7 100 
 766 

 767 

 768 

 769 
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Table 2 Evaluation of performances on additional test sets. CardioBoost performance 770 

was evaluated against additional variant sets. Four resources provided known pathogenic 771 

variants (SHaRe cardiomyopathy registry, ClinVar (two-star submissions), a UK regional 772 

genetic laboratory (Oxford Medical Genetics Laboratory – OMGL) and the Human Gene 773 

Mutation Database – HGMD). Variants found in gnomAD population controls were expected 774 

to be predominantly benign. Since gnomAD includes variants seen in the previous ExAC 775 

dataset that was partially used to train M-CAP and REVEL, we tested against the subset of 776 

variants in gnomAD that were not in ExAC. The number of variants in each set is shown in 777 

brackets. The TPR is reported for pathogenic variant test sets (with threshold Pr ≥ 0.9), and 778 

the TNR for benign variant test sets (with threshold Pr ≤ 0.1). For each performance 779 

measure the best algorithm is highlighted in bold. Permutation tests were carried out to 780 

evaluate whether the performance of CardioBoost was significantly different from the best 781 

value obtained by M-CAP or REVEL (significance levels: ***P-value ≤ 0.001, **P-value ≤ 782 

0.01, *P-value ≤ 0.05) 783 

 784 

 785 

 786 

 787 

 788 
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 790 
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  Cardiomyopathies 

  Pathogenic test variants 
(TPR)  

Benign/population 
test variants 

(TNR) 

  SHaRe 
(N = 129) 

ClinVar 
(N = 15) 

HGMD 
(N = 145)  

gnomAD 
 (N = 2,003) 

CardioBoost  62.0*** 66.7 41.4***  51.5*** 

M-CAP      37.2** 40.0 22.1***  20.3*** 

REVEL      24.0** 53.3 22.8***  5.6*** 

  Arrhythmias 

  Pathogenic test variants 
(TPR)  Benign test variants 

(TNR) 

  OMGL 
(N = 77)  HGMD 

(N = 138)  
gnomAD 

 (N = 1,237) 

CardioBoost  88.3***  72.5***  64.3*** 

M-CAP  59.7***  39.9***  9.8*** 

REVEL  68.8***  52.9***  2.8*** 

 798 
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Table 3. CardioBoost variant classification stratifies variants with increased disease Odds Ratio for sarcomere-encoding genes. Odd 809 

Ratios (ORs) and their confidence intervals were calculated for rare variants observed in sarcomere-encoding genes using SHaRe HCM cohorts 810 

and gnomAD. We compared the ORs for three groups of variants: (i) all rare variants, (ii) rare variants predicted pathogenic by CardioBoost (Pr 811 

≥ 0.9, and excluding those seen in our training data), and (iii) rare variants predicted as benign by CardioBoost (Pr £ 0.1, and excluding those 812 

seen in our training data). The ORs of variants classified by M-CAP and REVEL were also calculated. For most of the sarcomere-encoding genes, 813 

variants classified as pathogenic by CardioBoost are enriched for disease-association, and those classified as benign are depleted, compared 814 

with unstratified rare missense variants. 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 
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Gene 
symbol 

all observed rare 
variants 
(95% CI) 

CardioBoost 
pathogenic variants 

(95% CI) 

CardioBoost 
benign variants 

(95% CI) 

M-CAP 
pathogenic 

variants 
(95% CI) 

M-CAP 
benign 
variants 
(95% CI) 

REVEL 
pathogenic 

variants 
(95% CI) 

REVEL 
benign 
variants 
(95% CI) 

MYH7 14.5 
(14.4-14.6) 

14.7 
(14.5-14.8) 

1.2 
(0.7-1.7) 

14.8 
(14.7-14.9) 

-* 
15.9 

(15.7-16.1) 
-* 

TNNI3 12.6 
(12.4-12.9) 

14.0 
(13.1-14.8) 

3.3 
(2.6-4.0) 

1.0 
(1 -1.1) 

4.7 
(3.7 – 5.8) 

12.1 
(11-13.2) 

1.0 
(0.9-1.1) 

TPM1 11.2 
(10.7-11.7) 

33.7 
(33.1 – 34.3)  

1.4 
(0.4-2.4) 

1.0 
(0.9 - 1.1) 

0.5 
(0 - 2.5) 

38.9 
(37-40.8) 

-* 

ACTC1 11.2 
(10.9-11.5) 

15.2 
(14.6-15.8) 

1.0 
(0.9-1.1) 

1.0 
(0.9 - 1.1) 

1.0 
(0.9 - 1.1)  

19.8 
(19.1-20.6) 

-* 

TNNT2 6.0 
(5.8-6.2) 

17.7 
(17.2-18.3) 

2.8 
(2.2-3.4) 

1.0 
(0.9 - 1.1) 

1.0 
(0 - 3) 

25.8 
(23.7-27.8) 

28.9 
(27.1-30.6) 

MYBPC3 5.6 
(5.5-5.6) 

55.1 
(54.8-55.4) 

1.2 
(0.9-1.4) 

1.0 
(0.9-1.1) 

0.7 
(0.2-1.2) 

12.8 
(12.3-13.4) 

1.2 
(0.8-1.6) 

MYL2 5.2 
(5.0-5.5) 

3.8 
(3.2-4.5) 

1.0 
(0.9-1.0) 

1.0 
(0.9-1.1) 

0.2 
(0-2.2) 

1.7 
(0.2-3.1) 

1.0 
(0.9-1.1) 

MYL3 2.7 
(2.3-3.0) 

7.9 
(7.1-8.8) 

0.8 
(0-1.7) 

1.0 
(0.9-1.1) 

0.3 
(0-2.3) 

19.4 
(18.5-20.2) 

-* 

*OR not calculated since the number of missense variants predicted as benign is zero in the gnomAD population. 825 
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