bioRxiv preprint doi: https://doi.org/10.1101/2020.03.29.015073; this version posted March 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 The names of the authors

- 2 Aru Toyoda^{1,2}, Kazunari Matsudaira³, Tamaki Maruhashi⁴, Suchinda Malaivijitnond^{3,5} and Yoshi
- 3 Kawamoto⁶
- 4
- 5 Title
- 6 Highly Versatile, Non-Invasive Method for Collecting Buccal DNA from Free-Ranging Non-Human
- 7 Primates
- 8

9 The affiliations and addresses of the authors

- ¹ Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
- 11 ² Chubu University Academy of Emerging Sciences, Kasugai, Aichi, Japan
- ³ Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- ⁴ Department of Human Cultures, Musashi University, Tokyo, Japan
- ⁵ National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, Thailand
- ⁶ Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science
- 16 University, Tokyo, Japan
- 17

18 The e-mail address, and telephone number of the corresponding author

- 19 Aru Toyoda : atoyoda.pri.kyoto-u@outlook.com
- 20

21 ABSTRACT

22 Non-invasive techniques for collection of DNA samples of suitable quality and quantity are important for

- 23 improving the efficiency of genetic wildlife research. The development of a non-invasive method for
- 24 collection of DNA samples from wild stump-tailed macaques (Macaca arctoides) is described herein.
- 25 Polyester rope was cut into 10 cm pieces, which were then soaked in a 20% sugar solution to bait

26	individuals. Rope swabs were immediately collected and transferred to a lysis buffer solution after
27	subjects had picked up, chewed, and discarded them. DNA was later extracted from the buffer.
28	Quantitative real-time PCR and both allelic dropout and genotype failure rates were used to compare the
29	quantity and quality of the buccal DNA samples to those of intestinal slough cell DNA samples collected
30	from freshly dropped feces. The buccal samples yielded significantly more DNA (27.1 \pm 33.8 ng/µL) than
31	did the fecal samples (11.4 \pm 15.4 ng/µL) and exhibited lower allelic dropout and genotyping failure rates
32	for the 10 autosomal microsatellites investigated. Buccal cell collection was also simple, inexpensive,
33	reliable, and less time-consuming compared to fecal sampling. Thus, this method should facilitate
34	genome-wide studies of non-human primates and other wildlife species.
35	
36	Keywords
37	Non-invasive DNA collection, Microsatellite markers, Quantitative real-time PCR, Allelic dropout
38	
39	Acknowledgments
40	We are grateful to Warayut Nilpaung, Chuchat Choklap, the superintendent of the Khao Krapuk Khao
41	Taomor Non-Hunting Area. Phanlerd Inprasoet, Wanchai Inprasoet, and Napatchaya Techaatiwatkun for
42	providing a great deal of support in the continued success of this fieldwork; Dr. Yuzuru Hamada, Dr.
43	Hiroki Koda, Dr. Ikuma Adachi, and Dr. Takeshi Nishimura for their supports in our research. This study
44	
	was funded by the Japan Society for the Promotion of Science KAKENHI (#16J0098 to AT), a Young
45	was funded by the Japan Society for the Promotion of Science KAKENHI (#16J0098 to AT), a Young Science Explorer Grant from the National Geographic Foundation for Science and Exploration - Asia
45 46	
	Science Explorer Grant from the National Geographic Foundation for Science and Exploration - Asia

49 Introduction

50	Wildlife, including non-human primates, has been subject to genetic analyses
51	in a wide variety of research fields, such as evolutionary biology (e.g., Blancher et al.
52	2008, Osada et al. 2015, Tosi et al. 2002), population genetics (e.g., Evans et al. 2001,
53	Kanthaswamy et al. 2013, Trask et al. 2013), phylogeography (e.g., Bunlungsup et al.
54	2016), pedigree analysis (e.g., Barelli et al. 2013), and conservation biology (e.g.,
55	Minhós et al. 2013), using a variety of DNA markers. Mitochondrial DNA (mtDNA),
56	for example, is generally used for investigating maternal relationships and
57	phylogeography (Avise 2004), whereas Y-chromosome genes of mammals are used to
58	investigate paternal relationships and male dispersal (Tosi et al. 2000, Tosi et al. 2002).
59	Meanwhile, autosomal markers, such as microsatellite and single-nucleotide
60	polymorphism (SNP) markers, are often used to investigate population genetics and
61	genomic diversity (Bruford and Wayne 1993, Brumfield et al. 2003).
62	As a result of recent advances in DNA analysis technology and growing
63	concerns over animal welfare (Russell and Burch 1959), genetic studies of wildlife
64	frequently use DNA samples that have been collected by non-invasive means (e.g.
65	Woodruff 1993, Taberlet et al. 1999). For example, DNA samples have been collected
66	from egg shells (herring gull, Larus argentatus; Egloff et al. 2009), blood-fed mosquitos

67	(Ejiri et al. 2011), koala feces (Phascolarctos cinereus; Wedrowicz et al. 2013), and
68	bug-bite blood (Sumatran rhinoceros, Dicerorhinus sumatrensis; Rovie-Ryan et al.
69	2013). DNA has similarly been collected non-invasively in genetic studies of wild,
70	non-human primates, for example, from trapped hairs (white-headed langur,
71	Trachypithecus leucocephalus; Wang et al. 2016), semen (Japanese macaques, Macaca
72	fuscata; Domingo-Roura et al. 2004), urine (Japanese macaques; Hayakawa and
73	Takenaka 1999), and saliva (mountain gorillas, Gorilla beringei beringei, and Grauer's
74	gorillas, Gorilla beringei graueri; Smiley et al. 2010, Chimpanzee, Pan troglodytes,
75	Inoue et al. 2007). Among these DNA resources, fecal samples have been most
76	commonly used (Blair and Melnick 2011, Buchan et al. 2003, Nietlisbach et al. 2012,
77	Städele et al. 2015, Vigilant et al. 2001). However, fecal samples generally yield low
78	quantities of low-quality DNA, and even though the markers used in some studies (e.g.,
79	mtDNA markers) can be amplified successfully owing to their high copy numbers
80	(Bunlungsup et al. 2016), enormous efforts are required when examining nuclear markers
81	(Navidi et al. 1992, Taberlet et al. 1996). One major problem with using fecal DNA
82	samples for nuclear genotyping is allelic dropout, a phenomenon in which one of two
83	autosomal alleles is not amplified by PCR, causing heterozygous genotypes to be
84	misinterpreted as homozygous (Pompanon et al. 2005, Tebbutt and Ruan 2008). Allelic

dropout is problematic in paternity and kinship analyses using autosomal microsatellites
(Vigilant et al. 2001).

87	As such, development of non-invasive DNA sampling methods that allow
88	researchers to obtain large quantities of high-quality DNA samples with low levels of
89	contamination is needed. Buccal cell collection methods, such as collecting sugarcane
90	wedges or pith of terrestrial herbaceous vegetation after their chewing by wild bonobos
91	(Pan paniscus, Hashimoto et al. 1996, Ishizuka et al. 2018), taking oral swabs from
92	anesthetized mountain and Grauer's gorillas (Smiley et al. 2010), and attaching ropes to
93	saliva-collecting devices near free-ranging Tibetan macaques (Macaca thibetana,
94	Simons et al. 2012), have been reported previously. Collecting DNA from wedges of
95	sugar cane or other plants is a non-invasive method that does not require manipulation
96	of animals and is thus applicable to other study sites with appropriate modification
97	according to certain factors, such as the environment of the study and the feeding
98	patterns of the subjects. However, methods that require anesthesia are impossible in
99	most of field studies, and methods that require specialized equipment takes time and
100	cost to produce the device. Especially, in the wild condition, using specific devices is
101	less flexible to collect multiple samples from several monkeys at once due to mobilities.
102	Such methods were inapplicable to the stump-tailed macaques at our study site because

103 of the difficulty in preparation and storage of the bite materials. Thus, we designed104 another method for collecting buccal cells reporting here.

105Herein, a non-invasive method for collecting buccal DNA samples using rope 106 swabs is described as simple, reliable, inexpensive, and less time-consuming than other commonly used methods. To test the effectiveness of this method, two experiments 107 108were conducted. The first was a quantitative comparative test of host DNA in 41 fecal 109and 41 buccal DNA samples randomly selected using real-time PCR. In addition, gel 110electrophoresis ("gel tests") were also used to quantitatively test DNA samples cheaply and conveniently, and their results were compared with those of costlier real-time PCR 111112to verify their accuracy. The second experiment was a qualitative comparison based on 113 allelic dropout and genotype failure rates in 30 fecal and 30 buccal DNA samples selected using gel tests. 114

115

116 Materials and methods

117 Study site

The present study was conducted at the Khao Krapuk Khao Taomor Non-Hunting Area, Phetchaburi Province, Thailand (12°47′59.2″ N, 99°44′31.1″ E), which harbors five free-ranging groups of stump-tailed macaques (*Macaca arctoides*). There are five

121	groups: Ting group, 115 individuals; Nadam group, 91 individuals; Third group, 71
122	individuals; Fourth group, 75 individuals; Wngklm group, 43 individuals (Toyoda and
123	Malaivijitnond 2018). This survey area is mainly a mountainous area composed of
124	secondary forests and bamboo forests, and open areas coexist including temple and
125	houses of local people. The moving area of monkeys was divided between north and
126	south by large roads, and food provisioning by locals or visitors was occasionally
127	observed along the road or at temple ground. As information on environmental
128	conditions, mean annual temperature and annual rainfall are 27°C and 1070 mm,
129	respectively, in the data of the nearby national park, named Keang Krachan National
130	Park, about 30km far from this study site (Wijitkosum 2012). This site consists
131	primarily of secondary forest, including stands of bamboo and agricultural areas. Food
132	provisioning by locals or visitors was occasionally observed.

134 Collection and extraction of DNA samples

Buccal cells were collected using baited ropes (hereafter *rope swabs*). Polyester ropes (6 mm in diameter; Takagi Corporation, Kagawa, Japan, JAN code: 4943 956 261 513) were cut into approximately 10 cm pieces, autoclaved, and dried (Figure 1). To bait individuals, the rope swabs were soaked in a 20% sugar solution (70 g cane sugar

139	dissolved in 350 mL distilled water) for at least 30 min, and then scattered on the open
140	ground where the monkeys were found. After being chewed (Figure 2) and discarded by
141	a monkey, the rope swab was quickly collected and transferred to a 5 mL carrying tube
142	containing 3 mL lysis buffer (0.5 % (w/v) in SDS, 100 mM EDTA pH 8.0, 100 mM
143	Tris-HCl pH 8.0, and 10 mM NaCl) (Hayaishi and Kawamoto 2006). To compare the
144	quantity and quality of the buccal DNA with that of other commonly used DNA sources,
145	intestinal slough cells from freshly dropped fecal samples were also collected. A sterile
146	cotton bud, which was soaked in 2 mL lysis buffer, was used to swab the surfaces of
147	feces, following the protocol of Bunlungsup et al. (2016). To increase DNA yields, the
148	surfaces of the feces were swabbed at least three times.
148 149	surfaces of the feces were swabbed at least three times. The buccal and intestinal cells that were transferred to the lysis buffer were
149	The buccal and intestinal cells that were transferred to the lysis buffer were
149 150	The buccal and intestinal cells that were transferred to the lysis buffer were kept at room temperature for at least five months until DNA extraction. DNA was
149 150 151	The buccal and intestinal cells that were transferred to the lysis buffer were kept at room temperature for at least five months until DNA extraction. DNA was extracted following the procedure of Kawamoto et al. (2013). Potential PCR inhibitors
149 150 151 152	The buccal and intestinal cells that were transferred to the lysis buffer were kept at room temperature for at least five months until DNA extraction. DNA was extracted following the procedure of Kawamoto et al. (2013). Potential PCR inhibitors were removed by adding 600 mg of hydrolyzed starch (Wako, Osaka, Japan) to 1.5 mL
 149 150 151 152 153 	The buccal and intestinal cells that were transferred to the lysis buffer were kept at room temperature for at least five months until DNA extraction. DNA was extracted following the procedure of Kawamoto et al. (2013). Potential PCR inhibitors were removed by adding 600 mg of hydrolyzed starch (Wako, Osaka, Japan) to 1.5 mL of lysis buffer per sample. The samples were incubated at 36 °C for 10 min, and then

- 157 50 μL pure water. Study had been conducted from September 25th, 2015 to June 15th,
- 158 2017, and 74 fecal samples and 579 buccal samples were collected.
- 159
- 160 DNA quantification

161	The amount of host DNA was quantified by quantitative real-time PCR (Morin
162	et al. 2001). Forty-one DNA samples extracted from buccal and 41 from fecal samples
163	were selected randomly from all of the extracted DNA samples. The real-time PCR
164	method was used because both the buccal and intestinal DNA samples were
165	contaminated with other exotic DNA sources, such as bacteria, eukaryotic parasites, and
166	dietary materials (e.g., plants, insects, or small animals), which could not be
167	differentiated using conventional spectrophotometry. The sequences of the real-time
168	PCR primers and c-myc probe were 5'-GCCAGAGGAGGAACGAGCT-3'
169	(CMYC_E3_F1U1), 5'-GGGCCTTTTCATTGTTTTCCA-3' (CMYC_E3_R1U1), and
170	5'-FAM-TGCCCTGCGTGACCAGATCC-TAMRA-3' (CMYC_E3_TMV),
171	respectively (Morin et al. 2001). Real-time PCR was performed using a StepOnePlus
172	real-time PCR System (Thermo Fisher Scientific, Waltham, MA, USA), and each 20 μL
173	reaction contained 2 μL DNA template, 1× TaqMan Fast Advanced Master Mix
174	(Thermo Fisher Scientific), 250 nM probe, and 900 nM of each primer. In addition, the

175	PCR amplification conditions included an initial denaturation step of 95 °C for 20 s,
176	followed by 45 cycles of 95 °C for 1 s and 60 °C for 20 s. Host DNA quantity
177	(concentration) was determined using a standard curve made by a duplicate set of DNA
178	with known quantity. The standard set was made from DNA extracted from the blood of
179	a northern pig-tailed macaque (Macaca leonina) reared in the Primate Research Unit,
180	Chulalongkorn University (Bangkok, Thailand). The DNA was quantified using a
181	spectrophotometer and diluted to 10 ng/µL, 2.5 ng/µL, 625 pg/µL, 156 pg/µL, 39.1
182	$pg/\mu L,$ and 9.8 $pg/\mu L$ with deionized water. The mean DNA yields obtained from the
183	buccal and fecal samples were compared using the Wilcoxon rank sum test in R Ver.
184	3.4.2 (R Core Team 2016).
185	Real-time PCR provides an accurate host DNA concentration for each DNA
196	sample, and thus was appropriate for comparing the DNA yields of the buccel and facel

186 sample, and thus was appropriate for comparing the DNA yields of the buccal and fecal 187 samples. However, real-time PCR analysis is expensive. Therefore, to select suitable 188 samples for microsatellite genotyping, the usability of the 82 DNA samples was roughly 189 screened using conventional PCR and agarose gel electrophoresis following the 190 procedure of Kawamoto et al. (2013) and Ball et al. (2007) (gel electrophoresis). For the 191 gel test, the *c-myc* gene was PCR-amplified in 12.5 μ L reactions of 1 μ L template DNA, 1× PCR Buffer for KOD FX, 400 μ M dNTPs, 0.25 U KOD FX (Toyobo, Osaka, Japan),

193	and 0.015 pM of both the forward and reverse real-time PCR primers, using the
194	following conditions: initial denaturation step of 94 °C for 2 min, 45 cycles of 98 °C for
195	10 s, 58 °C for 30 s, and 68 °C for 30 s. The resulting amplicons were electrophoresed
196	on 2% agarose-TAE gels, stained with SYBR Safe DNA Gel Stain (Thermo Fisher
197	Scientific), and visualized using UV transilluminators to determine the intensity of the
198	target band. To estimate the amount of buccal and intestinal DNA, a series of human
199	placental DNA (Sigma-Aldrich, St. Louis, MO, USA) at concentrations of 500, 300, and
200	100 pg/ μL were used as reference controls. When the luminous intensity of a PCR
201	product was > 300 pg/ μ L of the control, the sample was considered to have sufficient
202	yield and was used in the next step for microsatellite amplification. We used human
203	placental DNA as a reference as following Kawamoto et al. (2013), that was different
204	from the Macaca leonina's DNA used in the real-time PCR. This was because of the
205	difference of availability of the DNA standard in Japan and Thailand, and the difference
206	of the species was considered not to affect the substantial results (Smith et al. 2002).
207	The accuracy of the real-time PCR analysis and gel test screening were compared using
208	the Wilcoxon rank sum test with continuity correction.
200	

210 DNA quality analysis

211	To determine DNA quality, the 30 paired buccal and intestinal DNA samples that passed
212	the gel test were randomly selected for microsatellite genotyping. Ten microsatellite loci
213	(D3S1768, D6S2793, D7S2004, D8S1106, D11S2002, D13S765, D14S306, D17S1290,
214	D18S537, and D19S582; Aarnink et al. 2011, Barelli et al. 2013, Kawamoto et al. 2008,
215	Nair et al. 2000, Smith et al. 2000) were amplified using a modified version of the
216	two-step multiplex method described by Arandjelovic et al. (2009). During the first step
217	of PCR, all microsatellite loci were amplified in a single 20 μ L reaction that included 1
218	μ L template DNA. During the second step, the 10 loci were divided into three subsets
219	and were amplified in 12.5 μL multiplex PCR reactions that each included 1 μL of
220	non-diluted amplicon from the first multiplex PCR reaction. The PCR thermocycling
221	conditions were the same as those from the gel test, except that 35 cycles were used for
222	the first PCR, and 45 for the second PCR. Allelic dropout rates and false allele rates
223	were calculated using PEDANT Ver.1 (Johnson and Haydon 2007, available from
224	http://sites.google.com/site/pcdjohnson/home/pedant). In the program, the results of two
225	independent PCR products per sample per locus were used to estimate the allelic
226	dropout and false allele rates. The allelic dropout and false allele rates of the buccal and
227	fecal sample DNA were compared using the Wilcoxon signed-rank test ($p < 0.05$) in R.
228	In addition, the genotype failure rate (a phenomenon in which the peak of an allele is

229	detected at extremely low levels or is not detected) of each locus was calculated based
230	on the duplicated PCR results, and the genotype failure rates of the buccal and fecal
231	DNA samples were compared using the Wilcoxon signed-rank test ($p < 0.05$) in R.
232	
233	Results
234	DNA quantity
235	Analysis of the 82 DNA samples (41 buccal and 41 intestinal DNA samples) revealed
236	that the buccal samples yielded significantly more host DNA (27.1 \pm 33.8 ng/µL) than
237	did the fecal samples (11.4 \pm 15.4 ng/µL; $W = 473$, $P < 0.001$). Although 68% (28/41)
238	of intestinal samples yielded concentrations less than 10 ng/ μ L, only 29% of buccal
239	samples produced such low concentrations (12/41) (Figure 3).
240	The determination by the gel test was possibly made the presence/absence of
241	the band (Figure 5, as an example of gel-test judgment). Of the 41 fecal and buccal
242	DNA samples tested, 22 (53.7%) and 35 (85.4%) met the criterion for sufficient yield (\geq
243	300 pg/µl), respectively. The concentration of host DNA that passed and failed the gel
244	tests as measured by real-time PCR was a significant difference (W = 991, $p < 0.01$),
245	indicating that either real-time PCR or the gel test can be used for DNA quantification.
246	

247 DNA quality

248	For the 30 monkeys whose samples passed the gel test, the allelic dropout rate of the 10
249	microsatellite loci was significantly lower for the buccal (0.00%, range: 0.00 – 6 \times
250	10^{-6} %) than for the fecal DNA samples (18.12 ± 16.12%, range: 0.00–55.96%;
251	Wilcoxon signed-rank test, $V = 44$, $p < 0.01$; Table 1). Estimated dropout rates were
252	used to calculate the amount of repetition necessary for accurate results at the 99.99%
253	certainty level (Morin et al. 2001). At least 6 repetitions were needed for fecal sample
254	analysis to produce reliable genotype data, whereas one repetition was sufficient for
255	buccal samples.
256	Similarly, the genotyping failure rate was significantly lower for buccal DNA
257	samples (2.70% \pm 3.88, range: 0.0–13.3 %) than for fecal DNA samples (35.67% \pm
258	15.35, range: 18.3–65.0%; Wilcoxon signed-rank test, $V = 55$, $p < 0.01$), although the
259	rate was variable among the loci examined (Table 1).
260	

261 Discussion

262 Advantages from sampling point of view

When fecal sample are used as genetic resources, the success depends largely on the skill of the collector, the state of the feces, and other factors. Using the rope swab

265	method in our study, the collection of high-quantity and quality DNA samples would be
266	possible without much training, providing a more versatile option that is not dependent
267	heavily on the level of experience of the sample collector. Our rope swab method may
268	also be useful for collecting samples from infants. Indeed, our method was capable of
269	collecting samples from infants aged 2-3 weeks, even though the feces of infants were
270	often soft, diarrhea-like or very small and often difficult or almost impossible to collect.
271	Thus, we strongly believe that our method would be a powerful alternative to overcome
272	the difficulty of collecting fecal samples from infants which are indispensable for
273	genetic analysis such as paternity test. The rope swab method is also less time
274	consuming than fecal collection. Since the quality of DNA samples cannot be checked
275	in-situ study, multiple fecal samples must be collected to ensure collection of an
276	adequate sample from the target animals. On the other hand, most of buccal samples
277	provided usable DNA, and thus, fewer specimens need to be collected from each animal.
278	Additionally, to collect fecal samples, researchers must patiently follow the targeted
279	animals until they defecate, which is time-consuming. Therefore, the rope swab method
280	presented in this study has great potential to save time and mitigate these factors.
001	

282 Advantages from analysis point of view

283	Our study showed that the rope swab method is more effective, in terms of both
284	quantity and quality of recovered DNA, compared to extraction from fecal samples. The
285	rope swab method yielded up to 2.4 times more host DNA than did fecal samples and
286	exhibited much lower allelic dropout and genotype failure rates, indicating that our
287	method possibly facilitates genotyping analyses with fewer repetitive PCR trials, which
288	could save time, labor, and money. This is because low DNA quantity increases
289	genotyping errors that affect the reliability of genotyping in microsatellite analysis
290	(Taberlet et al. 1999), and thus repeating experiments for each locus and extract is
291	recommended (Goossens et al. 1998).

293 Important notice using rope swab method

Although our method would be useful, there are several cautionary notes while collecting samples. Firstly, in the initial phase, monkeys may not chew on the rope swabs. In this case, a habituation period using fruit juice instead of sugar water to increase the attractiveness of the swab rope is recommended. From experience, however, it seems better to switch to sugar water during the sample-collection phase. Genotyping results were not stable when using DNA samples collected with orange juice, probably due to the acid or other chemical compounds present in the fruit juice.

301	Secondly, the collection of samples shortly after monkeys have consumed food
302	should be avoided, especially at provisioned sites or when targeting captive animals, as
303	fruits are the main food items given and contain acids or other chemical compounds that
304	may inhibit PCR. Complex polysaccharides possibly originating from vegetable
305	material in the diet are also considered potential PCR inhibitors (Monteiro et al. 1997).
306	Thus, time of sampling may affect the quality of the sample rather than the duration for
307	which the monkey chews the rope.
308	Thirdly, adjustments to the soaking time of the rope swab in the sugar-water
309	solution and the concentration of sugar according to the condition of the subject animals
310	or study site may be needed. Extended soaking times or high sugar concentrations could
311	encourage monkeys to chew the rope swabs for longer periods, which may lead to
312	greater DNA yields. However, the potential downside of a longer chewing period is that
313	the target monkeys may move while chewing, making retrieval of the rope swabs more
314	difficult for the researcher. Although some individuals spent significant time chewing
315	the swabs and occasionally broke them into small fragments, no monkeys accidentally
316	ate the rope swabs during this study period, demonstrating their safety in application.
317	Fourth, the rope swabs should be well-distributed among the troop, otherwise
318	higher-ranking males will take multiple ropes at once. When samples from subordinate

individuals are needed, spreading the rope swabs over a wide area to attract
high-ranking individuals, and then casting some swabs to the target individual may be
an effective strategy.

322Lastly, because this method requires that the rope swabs be provided to the 323 animals, it may not be suitable for use with non-habituated, wild animals. This method 324also cannot be used in research sites where access to wildlife or provisioning is prohibited. Since this method involves material once contained in the mouths of animals, 325326researchers must be aware of the possibility of touching saliva to prevent zoonosis (e.g., 327Kelesidis and Tsiodras 2010). When conducting behavioral observation at the same time, 328 the possibility of influencing the behavior of the target animals must also be considered. 329 Ultimately, the applicability of this method will depend on the specific needs and conditions of the research. 330

Furthermore, we must note about the standard range of quantitative real-time PCR. In this study, the standard range of quantitative real-time PCR could not cover the sample concentration range due to the fact that the quantity of DNA was extracted at a higher concentration than our assumption. We followed the protocol of Wizard SV Gel and PCR Clean-Up System and used 50 μ L of water for the final elution step, though 200 μ L is used in Morin et al. (2001). This difference of the final elution volume should have resulted in the higher concentration of DNA both from buccal and fecal samples inour study.

339

340 Future possibility of application

The successful DNA collection and genotyping of *M. arctoides* using our method can be 341342 further applied to different conditions, for example, for populations kept in captive conditions at research institutions or individuals kept in cages in laboratories but also 343 344for provisioned or well-habituated free-ranging primates such as populations living near temples which are widely seen in most Southeast Asian countries, as long as researchers 345pay attention to risks and take precautions. This is a very useful method for researchers 346 347 who have to obtain samples from specific individuals in a limited research period in the wild. Furthermore, with some modifications, this method can be applied for hormone 348 and veterinary analysis (e.g., detecting a specific virus in the saliva; Musso et al. 2015, 349 350Huff et al. 2003). The non-invasive buccal cell collection method described by this study may further facilitate animal population genomic studies in both captive and field 351environments. Further integration of genetic information with behavioral and ecological 352353 data is expected to provide more insights into *M. arctoides*, including genetic structure and socioecological characteristics such as reproductive strategy and kinship structure. 354

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.29.015073; this version posted March 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

356	References
356	Reference

	357	Aarnink A.	Dereuddre-Bosque	t N.	Vaslin	B.	Le	Grand	R.	Winterton	P.	Apoil	PA
--	-----	------------	------------------	------	--------	----	----	-------	----	-----------	----	-------	----

- Blancher A (2011) Influence of the MHC genotype on the progression of
- 359 experimental SIV infection in the Mauritian cynomolgus macaque. Immunogenetics
- 360 63:267-274
- 361 Arandjelovic M, Guschanski K, Schubert G, Harris TR Thalmann O, Siedel H, Vigilant
- 362 L (2009) Two-step multiplex polymerase chain reaction improves the speed and
- accuracy of genotyping using DNA from noninvasive and museum samples.
- 364 Molecular Ecology Resources 9:28-36
- 365 Avise JC (2004) Molecular markers, natural history, and evolution, Second Edition.
- 366 Sinauer Associates, Inc., MA, USA.
- 367 Ball MC, Pither R, Manseau M, Clark J, Petersen SD, Kingston S, Morrill N, and
- 368 Wilson P (2007) Characterization of target nuclear DNA from faeces reduces
- technical issues associated with the assumptions of low-quality and quantity
- template. Conservation Genetics 8:577-586
- Barelli C, Matsudaira K, Wolf T, Roos C, Heistermann M, Hodges K, Ishida T,
- 372 Malaivijitnond S, Reichard UH (2013) Extra-pair paternity confirmed in wild

white-hand	ed gibbons. Ame	erican Journal of Prir	natology 75:1185-1195
------------	-----------------	------------------------	-----------------------

374	Blair ME, Melnick DJ (2011) Genetic evidence for dispersal by both sexes in the central
375	American squirrel monkey, Saimiri oerstedii citrinellus. American Journal of
376	Primatology 74:37-47
377	Blancher A, Bonhomme M, Crouau-Roy B, Terao K, Kitano T, Saitou N (2008)
378	Mitochondrial DNA sequence phylogeny of 4 populations of the widely distributed
379	cynomolgus macaque (Macaca fascicularis fascicularis). Journal of Heredity
380	99:254-264
381	Bruford MW, Wayne RK (1993) Microsatellites and their application to population
382	genetic studies. Current Opinion in Genetics and Development 3:939-943
383	Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single
384	nucleotide polymorphisms in inferences of population history. Trends in
385	Ecology and Evolution 18:249-256
386	Buchan JC, Alberts SC, Silk JB, Altmann J (2003) True paternal care in a multi-male
387	primate society. Nature 425:179-181
388	Bunlungsup S, Imai H, Hamada Y, Gumert MD, San AM, Malaivijitnond S (2016)
389	Morphological characteristics and genetic diversity of Burmese longtailed

390	macaques (Macaca fascicularis aurea). American Journal of Primatology
391	74:441-455
392	Domingo-Roura X, Marmi J, Andrés O, Yamagiwa J, Terradas J (2004) Genotyping
393	from semen of wild Japanese macaques (Macaca fuscata). American Journal of
394	Primatology 62:31-42
395	Egloff C, Labrosse A, Hebert C, Crump D (2009) A nondestructive method for obtaining
396	maternal DNA from avian eggshells and its application to embryonic viability
397	determination in herring gulls (Larus argentatus). Molecular Ecology Resources
398	9:19-27
399	Ejiri H, Sato Y, Kim KS, Hara T, Tsuda Y, Imura T, Murata K, Yukawa M (2011)
400	Entomological study on transmission of avian malaria parasites in a zoological garden
401	in Japan: bloodmeal identification and detection of avian malaria parasite DNA from
402	blood-fed mosquitoes. Journal of Medical Entomology. 48:600-607
403	Evans BJ, Supriatna J, Melnick DJ (2001) Hybridization and population genetics of two
404	macaque species in Sulawesi, Indonesia. Evolution 55:1686-1702
405	Goossens B, Waits LP, Taberlet P (1998) Plucked hair samples as a source of DNA:
406	reliability of dinucleotide microsatellite genotyping. Molecular Ecology
407	7:1237-1241

408	Hashimoto C, Furuichi T, Takenaka O (1996) Matrilineal kin relationship and social
409	behavior of wild bonobos (Pan paniscus): sequencing the D-loop region of
410	mitochondrial DNA. Primates 37:305-318
411	Hayakawa S, Takenaka O (1999) Urine as another potential source for template DNA in
412	polymerase chain reaction (PCR). American Journal of Primatology 48:299-304
413	Hayaishi H, Kawamoto Y (2006) Low genetic diversity and biased distribution of
414	mitochondrial DNA haplotypes in the Japanese macaque (Macaca fuscata yakui) on
415	Yakushima Island. Primates 47:158-164
416	Huff JL, Eberle R, Capitanio J, Zhou SS, Barry PS (2003) Differential detection of B
417	virus and rhesus cytomegalovirus in rhesus macaques. Journal of General Virology
418	84:83-92
419	Inoue E, Inoue-Murayama M, Takenaka O, Nishida T (2007) Wild chimpanzee infant
420	urine and saliva sampled noninvasively usable for DNA analyses. Primates
421	48:156-159
422	Ishizuka S, Kawamoto Y, Toda K, Furuichi T (2018) Bonobos' saliva remaining on the
423	pith of terrestrial herbaceous vegetation can serve as non-invasive wild genetic
424	resources. Primates 60:7-13

425 Johnson PCD, Haydon DT (2007) Maximum-likelihood estimation of allelic dropout

426	and false allele error rates from microsatellite genotypes in the absence of reference
427	data. Genetics 175:827-842

- 428 Kanthaswarry S, Ng J, Trask JS, George DA, Kou AJ, Hoffman LN, Doherty TB,
- 429 Houghton P, Smith DG (2013) The genetic composition of populations of
- 430 cynomolgus macaques (Macaca fascicularis) used in biomedical research. Journal
- 431 of Medical Primatology 42:120-131
- 432 Kawamoto Y, Kawamoto S, Matsubayashi K, Nozawa K, Watanabe T, Stanley MA,
- 433 Perwitasari-Farajallah D (2008) Genetic diversity of longtail macaques (Macaca
- 434 *fascicularis*) on the island of Mauritius: an assessment of nuclear and mitochondrial
- 435 DNA polymorphisms. Journal of Medical Primatology 37:45-54
- 436 Kawamoto Y, Takemoto H, Higuchi S, Sakamaki Tart JA, Hart TB, Tokuyama N,
- 437 Reinartz GE, Guislain P, Dupain J, Cobden AK, Mulavwa MN, Yangozene K,
- 438 Darroze S, Devos C, Furuichi T (2013) Genetic structure of wild bonobo
- 439 populations: diversity of mitochondrial DNA and geographical distribution. PLoS
- 440 ONE 8:e59660
- 441 Kelesidis T, Tsiodras S (2010) Staphylococcus intermedius is not only a zoonotic
- 442 pathogen, but may also cause skin abscesses in humans after exposure to saliva.
- 443 International Journal of Infectious Diseases 14:838-841

444	Minhós T, Wallace E, Ferreira da Silva MJ, Sa RM, Carmo M, Barata A, Bruford MW
445	(2013) DNA identification of primate bushmeat from urban markets in Guinea-Bissau
446	and its implications for conservation. Biological Conservation 167:43-49
447	Monteiro L, Bonnemaison D, Vekris A, Petry KG, Bonnet J, Vidal R, Cabrita J,
448	Mégraud F (1997) Complex polysaccharides as PCR inhibitors in feces Helicobacter
449	pylori model. Journal of Clinical Microbiology 35:995-998
450	Morin PA, Chambers KE, Boesch C, Vigilant L (2001) Quantitative polymerase chain
451	reaction analysis of DNA from noninvasive samples for accurate microsatellite
452	genotyping of wild chimpanzees (Pan troglodytes verus). Molecular Ecology
453	10:1835-1844
454	Musso D, Roche C, Nhan TX, Robin E, Teissier A, Cao-Lormeau VM (2015) Detection
455	of Zika virus in saliva. Journal of Clinical Virology 68:53-55
456	Nair S, Ha J, Rogers J (2000) Nineteen new microsatellite DNA polymorphisms in
457	pigtailed macaques (Macaca nemestrina). Primates 41:343-350
458	Navidi W, Arnheim N, Waterman MS (1992) A multiple-tubes approach for accurate
458 459	Navidi W, Arnheim N, Waterman MS (1992) A multiple-tubes approach for accurate genotyping of very small DNA samples by using PCR: statistical considerations.

462	Heavily male-biased long-distance dispersal of orang-utans (genus: Pongo), as
463	revealed by Y-chromosomal and mitochondrial genetic markers. Molecular Ecology
464	21:3173-3186
465	Osada N, Hettiarachchi N, Babarinde IA, Saitou N, Blancher A (2015) Whole-genome
466	sequencing of six Mauritian cynomolgus macaques (Macaca fascicularis) reveals a
467	genome-wide pattern of polymorphisms under extreme population bottleneck.
468	Genome Biology and Evolution 7:821-830
469	Pidancier N, Miquel C, Miaud C (2003) Buccal swabs as a non-destructive tissue
470	sampling method for DNA analysis in amphibians. Herpetological Journal
471	13:175-178
472	Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes,
473	consequences and solutions. Nature Reviews Genetics 6:847-846
474	R Core Team (2016) R: a language and environment for statistical computing. R
475	Foundation for Statistical Computing, Vienna, Austria. URL
476	htpps://ww,R-project.org/.
477	Rovie-Ryan JJ, Zainuddin ZZ, Marni W, Ahmad AH, Ambu LN, Payne J (2013) Blood
478	meal analysis of tabanid fly after it biting the rare Sumatran rhinoceros. Asian
479	Pacific Journal of Tropical Biomedicine 3:95-99

480	Russell WMS, Burch RL (1959) The Principles of Humane Experimental Technique.									
481	Methuen, London. ((http://altweb.jhsph.edu/pubs/books/humane_exp/het-toc)									
482	Accessed December 18, 2017)									
483	Simons ND, Lorenz JG, Sheeran LK, Li JH, Xia DP, Wargner RS (2012) Noninvasive									
484	saliva collection for DNA analyses from free-ranging Tibetan macaques (Macaca									
485	thibetana). American Journal of Primatology 74:1064-1070									
486	Smiley T, Spelman L, Lukasik-Braum M, Mukherjee J, Kaufman G, Akiyoshi DE,									
487	Cranfield M (2010) Noninvasive saliva collection techniques for free-ranging									
488	mountain gorillas and captive eastern gorillas. Journal of Zoo and Wildlife Medicine									
489	1:201-209									
490	Smith DG, Kanthaswamy S, Viray J, Cody L (2000) Additional highly polymorphic									
491	microsatellite (STR) loci for estimating kinship in rhesus macaques (Macaca									
492	mulatta). American Journal of Primatology 50:1-7									
493	Smith S, Vigilant L, Morin PA (2002) The effect of sequence length and oligonucleotide									
494	mismatches on 5' exonuclease assay efficiency. Nucleic Acids Research 30:e111									
495	Städele V, van Doren V, Pines M, Swedell L, Vigilant L (2015) Fine-scale genetic									
496	assessment of sex-specific dispersal patterns in a multilevel primate society. Journal									
497	of Human Evolution 78:103-113									

498	Taberlet P.	Griffin S.	Goossens B	. C	Duestiau S	S.	Manceau	V.	Escaravage	N.	Waits	LP

- 499 Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities
- 500 using PCR. Nucleic Acids Research 24:3189-3194
- 501 Taberlet P, Waits L.P., Luikart G (1999) Noninvasive genetic sampling: look before you
- 502 leap. Trends in Ecology and Evolution 14:323-327.
- 503 Tebbutt S, Ruan J (2008) Combining multiple PCR primer pairs for each amplicon can
- 504 improve SNP genotyping accuracy by reducing allelic drop-out. Biotechniques

505 45:637-646

- 506 Tosi AJ, Morales JC, Melnick DJ (2000) Comparison of Y-chromosome and mtDNA
- 507 phylogenies leads to unique inferences of macaque evolutionary history. Molecular
- 508 Phylogenetics and Evolution 17:133-144
- 509 Tosi AJ, Morales JC, Melnick DJ (2002) Y-chromosome and mitochondrial markers in
- 510 Macaca fascicularis indicate introgression with Indochinese M. mulatta and a
- 511 biogeographic barrier in the Isthmus of Kra. International Journal of Primatology
- 512 23:161-178
- 513 Trask JS, George D, Houghton P, Kanthaswarry S, Smith DG (2013) Population and
- 514 landscape genetics of an introduced species (*M. fascicularis*) on the island of
- 515 Mauritius. PLoS One 8:e53001-10.1371/journal.pone.0053001

516 Vigilant L, Hofreiter M, Siedel H, Boesch C (2001) Paternity and relatedness i	16	Vigilant L, Hofreiter N	A. Siedel H.	Boesch C	(2001)) Paternity	and	relatedness	ın	W1l
--	----	-------------------------	--------------	----------	--------	-------------	-----	-------------	----	-----

- 517 chimpanzee communities. Proceedings of the National Academy of Sciences of the
- 518 United States of America 98:12890-12895
- 519 Wang W, Qiao Y, Zheng Y, Yao M (2016) Isolation of microsatellite loci and reliable
- 520 genotyping using noninvasive samples of a critically endangered primate,
- 521 *Trachypithecus leucocephalus*. Integrative Zoology 11:250-262
- 522 Wedrowicz F, Karsa M, Mosse J, Hogan FE (2013) Reliable genotyping of the koala
- 523 (Phascolarctos cinereus) using DNA isolated from a single faecal pellet. Molecular
- 524 Ecology Resources 13:634-641
- 525 Woodruff DS (1993) Non-invasive genotyping of primates. Primates 33:333-346
- 526

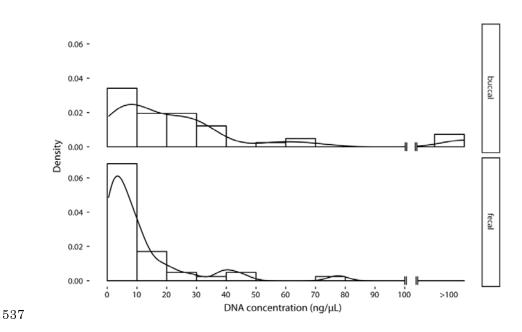
Logi	Allelic drop	oout rate (%)	Genotype fai	Genotype failure rate (%)			
Loci –	Fecal	Buccal	Fecal	Buccal			
D3S1768	10.54	0.00	38.33	0.00			
D6S2793	25.00	0.00	58.33	2.00			
D7S2204	8.80	0.00	31.67	13.33			
D8S1106	13.04	0.00	45.00	0.00			
D11S2002	0.00	0.00	65.00	1.67			
D13S765	29.20	0.00	23.33	0.00			
D14S306	0.00	0.00	18.33	1.67			
D17S1290	28.45	0.00	33.33	5.00			
D18S537	55.97	0.00	25.00	3.33			
D198582	10.21	0.00	18.33	0.00			

Table 1. Allelic dropout and genotype failure rates of 10 microsatellite loci for fecal and buccal DNA samples of stump-tailed macaques in Khao Krapuk Khao Taomor.

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.29.015073; this version posted March 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

530 Figure

531



532 **Fig 1** Rope swabs cut into 10cm length and 3ml of lysis buffer in 5ml tube

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.29.015073; this version posted March 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig 2 Monkey chewing a rope swab

Fig 3 Frequency of buccal and fecal DNA in each DNA concentration zone. Although many fecal samples are dense in the low concentration zone, meaning that the sampling efficiency is not good, buccal samples shows a gentle peak overall, indicating that samples with high concentration can be more easily obtained.