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 2 

Abstract: Forest disturbance shape ecosystem composition and structure, and changes in 15 

forest disturbances can have strong consequences for carbon storage and biodiversity. Yet we 16 

currently lack consistent quantitative data on Europe’s forest disturbance regimes and their 17 

changes over time. Here we used satellite data to map three decades (1986-2016) of forest 18 

disturbances across continental Europe, covering 35 countries and a forest area of 210 Mill. 19 

ha at a spatial grain of 30 m, and analyzed the patterns and trends in disturbance size, 20 

frequency and severity. Between 1986 and 2016, 17% of Europe’s forest area was disturbed 21 

by anthropogenic or natural causes, totaling to 25 Mill. individual disturbance patches with a 22 

mean patch size 1.09 ha (range between 1st and 99th percentile 0.18 – 10.10 ha). On average 23 

0.52 (0.02 – 3.01) disturbances occurred per km² every year, removing on average 77% (22 – 24 

100%) of the canopy. While spatial patterns of disturbance were highly variable, disturbance 25 

frequency consistently increased, and disturbance severity decreased since 1986. Both social 26 

and ecological factors are needed to explain the observed patterns and trends in forest 27 

disturbance. We thus conclude that in order to understand and manage the changes in 28 

Europe’s forest disturbance regimes a coupled human and natural systems perspective is 29 

needed. 30 

 31 
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Forests cover 33 % of Europe’s total land area and provide important services to society, 35 

ranging from carbon sequestration to the filtration of water, protection of soil from erosion, 36 

and human infrastructure from natural hazards 1. Europe’s forests have expanded in recent 37 

decades 2 and accumulated substantial amounts of biomass due to intensive post-war 38 

reforestation programs, changes in management systems, and timber harvesting rates that 39 

remained below increment 3. This success story of 20th century forestry in Europe, however, 40 

also has side effects, as the resultant changes in forest structure have – in combination with 41 

climate change – led to an episode of increasing forest disturbances in recent decades 4–7. 42 

Increasing forest disturbances have the potential to erode Europe’s carbon storage potential 8,9 43 

and also impact other important services provided by Europe’s forests 10,11. Given a predicted 44 

increase in the demand for wood 1 and an expected future intensification of forest dieback 45 

under climate change 12, it is fundamental to increase the resilience of Europe’s forests to 46 

changing disturbances 13–15. 47 

Developing resilient management strategies requires a robust quantitative 48 

understanding of forest ecosystem dynamics 16. In particular, it is essential to understand the 49 

disturbance regimes of Europe’s forests 17. Disturbance regimes characterize the cumulative 50 

effects of all disturbance events occurring in a given area and time period, and understanding 51 

them is fundamental to understanding the current state and future trajectories of forest 52 

ecosystems 18. In Europe, however, forests have been utilized by humans for centuries, 53 

transforming species composition and structure 19–21, and consequently also the natural 54 

disturbance regimes of forests. In addition to this indirect effect, human land-use is directly 55 

disturbing forest canopies through timber harvesting, altering the rate and spatial patterns of 56 

forest disturbances compared to natural systems 22. Human land-use also interacts with natural 57 

disturbances, e.g. by salvaging disturbed timber 23 and shortening early seral stages through 58 

planting 24. More broadly, forest management alters biological legacies and landscape 59 

structure 23,25, with feedbacks on subsequent disturbances. Due to the intricate linkages 60 
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between natural and human processes driving forest disturbances in Europe, analyzing them 61 

in the context of coupled human and natural systems 26,27 is a promising approach. Given that 62 

relevant drivers of future changes in forest disturbance regimes are social-ecological (e.g., 63 

anthropogenic climate change, novel disturbances caused by the introduction of non-native 64 

disturbance agents, land-use change) applying such a perspective could considerably increase 65 

the inferential potential on current and future changes of forest dynamics cross Europe’s 66 

forests. 67 

Despite the widespread and long-lasting impacts of changing forest disturbances on 68 

forest ecosystems 10 little quantitatively information on disturbance regimes and their changes 69 

through time exist for Europe. We, for instance, do not know how disturbance size, frequency 70 

and severity (i.e., the main descriptors of disturbance regimes; 28) are distributed throughout 71 

Europe. Furthermore, while recent studies indicate an increase in disturbance rates across 72 

Europe’s natural and managed forests 4,6, it remains unknown whether this change is mainly 73 

driven by changes in disturbance frequency (i.e., more disturbance events) or disturbance size 74 

(i.e., larger individual disturbance patches). Likewise, our quantitative knowledge on changes 75 

in disturbance severity is scant, and it remains unclear whether disturbances in Europe have 76 

become more severe in recent decades (e.g., through increased burn severities; 29) or whether 77 

recent changes in forest policy (e.g., the adoption of “close-to-nature” silviculture; 30) have 78 

reduced disturbance severity 4. 79 

Here, our aim was to map the patterns and trends of recent (1986-2016) forest 80 

disturbance regimes in Europe. Our specific research questions were: (I) What is the size, 81 

frequency and severity of forest disturbances across Europe’s forests? And (II) How did size, 82 

frequency and severity of forest disturbances change over the past three decades? We address 83 

these first two questions by mapping forest disturbance occurrence and severity continuously 84 

for continental Europe (35 countries covering 210 Mill. ha of forest) at a spatial grain of 85 

30 m. We subsequently analyze the disturbance regimes of Europe’s forests in a coupled 86 
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human and natural systems framework, asking (III) how strongly patterns and trends in 87 

disturbance size, frequency and severity are explained by variation in the natural template vs. 88 

variation in forest policy. We address this third question by comparing the patterns and trends 89 

in disturbance regime indicators among ecoregions (i.e., an aggregate proxy of the spatial 90 

differences in the drivers of natural forest development) and countries (as the spatial entities 91 

encapsulating the variation in forest policies in Europe 31), hypothesizing that under a coupled 92 

human and natural system perspective both social and ecological factors are needed to explain 93 

patterns and trends in disturbance regimes across Europe’s forests. 94 

Results 95 

We identified a total of 25 Mill. individual disturbance patches occurring across Europe 96 

between 1986-2016, equaling a disturbed forest area of 4 Mill. ha or 17 % of Europe’s forests 97 

(Figure 1). The overall accuracy of our map was 92.5 %, with a disturbance commission error 98 

of 14.6 % and a disturbance omission error of 32.8 %, but we refer the reader to 99 

Supplementary Note 1 for further information on map accuracies. The average patch size of 100 

forest disturbances in Europe was 1.09 ha, but the disturbance size distribution was highly 101 

left-skewed (Figure 2 B). The median disturbance size was only 0.45 ha, with 78 % of the 102 

disturbances being smaller than 1 ha and 99 % of the disturbances being smaller than 10 ha 103 

(Supplement Table 2). The largest disturbance patch mapped across Europe was a 16,617 ha 104 

large forest fire occurring in 2012 in southern Spain. The average disturbance frequency was 105 

0.52 patches per km2 per year (median of 0.37 patches per km2), with highest frequencies 106 

(highest 1 %) ranging from 3 to 31 patches per km2 (Supplement Table 2). Disturbance 107 

severity, that is a measure between 0 and 100 indicating the loss of canopy during disturbance 108 

(see Figure 1C), ranged from 23 % to 100 %, with an average of 77 % of canopy loss within a 109 

disturbed patch (median of 83 %; Supplement Table 2). 110 
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 6 

 111 

Fig. 1: Forest disturbances in Europe 1986-2016. Disturbance maps were derived from 112 

manually interpreting more than 30,000 Landsat images systematically distributed across 113 

Europe. Panel A shows the occurrence of disturbances across Europe. Panels B show the 114 
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 7 

disturbance year and panels C show the disturbance severity – a measure of canopy cover loss 115 

– for three selected areas: (1) Bark beetle outbreak of varying severity in and around Harz 116 

National Park (Germany); (2) wind disturbance in an intensively managed plantation forest in 117 

the Landes of Gascony (France) with very high disturbance severities; and (3) fire 118 

disturbances on the Peloponnese peninsula (Greece), with variable burn-severities. 119 

 120 

Spatial variability in the size, frequency and severity of forest disturbances is high 121 

across Europe (Figure 2 A). Disturbance patches are generally larger in Northern and 122 

Southern Europe compared to Central Europe. Also, Eastern Europe has larger disturbance 123 

patches compared to Western Europe (Figure 2 A). Above-average disturbance frequencies 124 

were found in Central Europe, the hemi-boreal zone, parts of France and the Iberian Peninsula 125 

(Figure 2 A). The highest disturbance frequencies (i.e., above 3 patches per km2) occurred 126 

almost exclusively in Portugal. Disturbance severity was more evenly distributed than the 127 

other two disturbance regime indicators (Figure 2 A), with a tendency towards higher 128 

severities in the Atlantic forests of Ireland and the United Kingdom, the Iberian Peninsula, the 129 

Po-Valley, and the Pannonian Basin. In contrast, low disturbance severities were recorded for 130 

South-Eastern Europe along the Dinaric mountain range, as well as in the Apennine 131 

mountains of Italy. 132 
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 133 

Fig. 2: (A) Maps of average disturbance size, frequency and severity calculated for hexagons 134 

on a 50 km grid across continental Europe. (B) Distribution of disturbance size, frequency 135 

and severity across Europe. 136 

 137 

Disturbance regimes changed profoundly between 1986 and 2016, with 65 % of 138 

Europe’s forests experiencing an increase in disturbance size, and 74 % an increase in 139 

disturbance frequency (Figure 3 B). Hot spots of increasing disturbance size were in the 140 

Baltic states, the United Kingdom, Ireland, and Italy (Figure 3 A), whereas trends were 141 

largely negative in Eastern Germany, western Poland and southeastern Europe (Figure 3 A). 142 

Hot spots of increasing disturbance frequency were located in Central and Eastern Europe 143 

(Figure 3), whereas negative trends in disturbance frequency were recorded for Belarus, 144 

western Europe, and northern Scandinavia (Figure 3 A). Disturbance severity decreased in 145 
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85 % of the European forest area (Figure 3), with particularly strong trends in Central and 146 

Southeastern Europe. 147 

While the mean disturbance size generally increased across Europe (Figure 3) the 148 

median disturbance size was more stable (no change in median disturbance size in 81 % of 149 

European forests; Supplementary Table 3). Hence, changes in disturbance size were driven by 150 

a widening of the disturbance size distribution, with approximately 50 % of Europe’s forests 151 

showing an increase in large disturbance patches (i.e., in the 75% quantile and maximum of 152 

the disturbance patch size distribution; Supplement Table 3). Overall, changes in disturbance 153 

frequency explained 71 % of the variability in changing disturbance rates (i.e., the trend in the 154 

annual percent of forest area disturbed), whereas changes in disturbance size only accounted 155 

for 24 % (see Supplementary Figure 8). Thus, changes in disturbance rates are primarily 156 

driven by changes in disturbance frequency, and not disturbance size, in Europe’s forests. 157 

 158 

 159 

Fig. 3: (A) Maps of trends in disturbance size, frequency and severity calculated at a 50 km 160 

hexagon grid across continental Europe. (B) Distribution of forest area among trend classes. 161 
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 162 

Spatial variability in all three disturbance regime indicators varied significantly with 163 

ecoregion (i.e., a coarse filter proxy of spatial differences in the drivers of natural forest 164 

development), and ecoregions alone explained 15, 28 and 39 % of the continental-scale 165 

spatial variation in disturbance size, frequency and severity, respectively (Table 1). Including 166 

within-ecoregion variability by country (i.e., a coarse filter proxy for differences in forest 167 

policy and management) further increased the variance explained by 16, 24 and 16 percentage 168 

points, respectively (Table 1).  169 

 170 

Table 1: Variance explained by ecoregions and countries nested within ecoregions derived 171 

from linear mixed effect models testing for differences in averages and trends in disturbance 172 

size, frequency and severity measured across 3,240 50 km2 hexagons. Also shown is the 173 

amount of variance explained by random variation among years (for averages), as well as the 174 

residual variance (i.e., variance not explained by the two coarse filter variables used here). 175 

Indicator Variance explained  Residual variance 
Ecoregions Ecoregions/countries Year 

Average     
 Mean size (log) 0.15 0.16 0.01 0.67 
 Frequency (log) 0.28 0.24 0.03 0.45 
 Severity 0.39 0.16 0.07 0.37 
Trend     
 Mean size  0.12 0.11 - 0.77 
 Frequency  0.09 0.24 - 0.67 
 Severity 0.19 0.14 - 0.68 

 176 

Trends in size and severity were also determined by a combination of ecoregions and 177 

policy differences within ecoregions, with the two factors explaining roughly equal parts of 178 

the spatial variation in disturbances trends (Table 1). For changes in frequency ecoregion 179 

alone was a poor predictor, whereas country explained 24 % of the variance in frequency 180 

trends (Table 2). Hence, while the ecological template determines the general spatial pattern 181 

of the disturbance regimes in Europe, human activity modulates this pattern considerably (for 182 
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estimates see Supplementary Figure S9, S10), underlining the coupled human and natural 183 

nature of forest disturbances in Europe. 184 

Discussion 185 

We here provide the first quantitative characterization of Europe’s forest disturbance regimes, 186 

highlighting the wide variability in disturbance sizes, frequencies and severities prevailing 187 

across the European continent. We show that this variability is determined by the combined 188 

effects of natural processes (i.e., variation in climate and soil, resulting in different forest 189 

development trajectories) and human activity (i.e., variation in forest policy, resulting in 190 

different management regimes). Differences in forest policy can be large even among 191 

neighboring countries in Europe, especially among countries of variable socio-political 192 

histories (e.g., the iron curtain dividing the continent into two geopolitical spheres). These 193 

differences in forest policy result in different management intensities and silvicultural 194 

practices 31 and variable land use legacies 21. For example, spatial patterns of timber 195 

extraction can vary widely between countries, resulting in contrasting disturbance sizes and 196 

frequencies within ecoregions (Supplementary Figure S11). Another example for the impact 197 

of forest policy on disturbance regimes is the varying share of plantation forests with non-198 

native tree species 1, such as Eucalyptus sp. in Portugal or Black locust (Robinia 199 

pseudoacacia) in Hungary (Supplementary Figure S12). Human activity thus has a profound 200 

impact on the forest disturbance regimes of Europe, on the one hand altering disturbance 201 

regimes directly via timber harvesting, and on the other hand indirectly modifying disturbance 202 

processes through changing species composition and forest structure. Our results hence 203 

support the hypothesis that the European forest disturbance regime is a coupled human and 204 

natural system, driven by the complex interplay between social and ecological forces.  205 

The disturbance regimes of Europe’s forests are changing profoundly. We here show 206 

that the previously reported increase in disturbance activity 4,6,7 is primarily an effect of 207 
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increasing disturbance frequency, while disturbance patch size distributions are becoming 208 

more variable and disturbance severities are decreasing. Variation in forest policy was a more 209 

important predictor of changing disturbance frequencies than the variation in the natural 210 

template, suggesting human resource use as a major driver of change 1,4,7,32. In contrast, the 211 

widening of the patch size distribution likely results from the combined effects of 212 

management changes (towards smaller intervention sizes) and increased natural disturbance 213 

activity (resulting in large areas of canopy removal). The same developments also result in 214 

decreasing disturbance severity at the continental scale, with management systems being 215 

optimized to reduce impact 33 and natural disturbance events being frequently characterized 216 

by mixed severities 34. We conclude that recent trends in Europe’s forest disturbance regimes 217 

are strongly driven by the interaction of social and ecological forces, with human resource use 218 

feedbacking to the natural system and vice versa (Figure 4). 219 

 220 

 221 

Fig. 4: Europe’s disturbance regimes as coupled human and natural system. 222 

 223 

Our results have important implications for the future of Europe’s forests. First, by 224 

characterizing the recent disturbance regimes of Europe we provide a baseline to assess future 225 
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changes. This is important as disturbances are expected to change considerably in the coming 226 

decades 22,35, yet a sound quantitative baseline for quantifying these changes has been missing 227 

to date. Second, we highlight that both socio-ecological shocks (such as reforestation waves 228 

after the Second World War 3 or the collapse of the Soviet Union 36) and changes in the 229 

biophysical environment (such as climate change) drive changes in forest disturbance regimes 230 

(Figure 4). This has important consequences for managing the resultant negative 231 

consequences of increasing disturbances on ecosystem service provisioning 10. In particular, 232 

our analyses suggest that efforts focusing on both the mitigation of climate change and the 233 

compensation of increasing canopy openings in forest policy and management are needed to 234 

bend the curve and stabilize forest canopy turnover at sustainable rates 37. A further focus 235 

should be on steering the intricate social-ecological interactions driving disturbance regimes 236 

towards dampening feedbacks (Figure 4). For instance, management should focus on creating 237 

land use legacies that reduce the propensity of natural disturbances in the future 28,38, which 238 

will reduce the need for management techniques that cause harm to important ecosystem 239 

services and biodiversity (i.e., salvage logging) 25,39. Overall, we suggest that acknowledging 240 

complex social-ecological interactions is elementary for managing Europe’s forests and key 241 

to creating resilient systems that will sustain important functions and services under an 242 

uncertain future. 243 

244 
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Materials and Methods 245 

Reference data 246 

Acquiring consistent reference data across large areas – such as continental Europe – is 247 

challenging and we therefore make use of manual interpretation of satellite data, serving as 248 

valuable alternative to field-based data 40. Manual interpretation of satellite data for 249 

calibrating and validating Landsat-based forest change maps is a well-established approach 250 

and has been used in numerous studies previously 41–44. In essence, an interpreter inspects the 251 

temporal profile of a Landsat pixel and, with the help of Landsat image chips and very high-252 

resolution imagery available in Google Earth, makes a well-informed call whether the 253 

trajectory represents a stable forest or a forest experiencing a mortality event 45. We here used 254 

a previously established set of 19,996 interpreted Landsat pixels 4,7. The initial sample was 255 

drawn at random within forests of Europe, with samples stratified by country. Yet, as 256 

interpreters might declare a plot as no-forest during interpretation (caused by errors in the 257 

automatically generated forest mask), the realized sample size slightly varied (Table S1). 258 

Please note that samples for six Central European countries stem from another study using the 259 

same image interpretation approach but have higher sampling densities. The response design 260 

followed well-documented protocols developed and published previously 4. Manual 261 

interpretation was done by a total of nine interpreters using established software tools 45, and 262 

the data is freely accessible under following repository: 263 

https://doi.org/10.5281/zenodo.3561925  264 

The reference sample set only consisted of forest pixels and there was thus need for 265 

substituting the sample with non-forest reference pixels. We therefore drew a country-266 

stratified sample of non-forest pixels using a Landsat-based land cover map from 46. Each 267 

countries sample size was chosen to match the forest proportion of the respective country 268 

(based on data from the FAOSTATS database), that is the total sample of each country 269 

equaled a random sample across its terrestrial forested and non-forested land surface (see 270 
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Table S1). In total we drew 46,461 non-forest reference pixel that, paired with the 19,996 271 

forest reference pixels manually interpreted, totaled to 66,457 reference pixels used for 272 

calibration and validation. From the full reference sample, we randomly drew a sub-sample of 273 

5,000 pixels for map validation, and the remaining 61,457 pixels were used for model 274 

calibration. The validation sub-sample was drawn proportionally to the size of each country to 275 

ensure a consistent and unbiased estimation of map accuracies for the final European map 276 

product.  277 

Mapping disturbances 278 

At the core of our mapping workflow we rely on an established time-series segmentation 279 

approach called LandTrendr 47, implemented in the high-performance cloud-computing 280 

environment Google Earth Engine 48. In essence, LandTrendr segments annual Landsat pixel 281 

time series into linear features from which a set of metrics can be extracted. We here do not 282 

provide details on the underlying LandTrendr routines but focus on the salient details of our 283 

mapping workflow (please see Figure S2 for a graphical outline of our mapping workflow). 284 

The workflow was based on code published in Kennedy et al. 48. 285 

In a first step we screened all available Tier 1 Landsat 4, 5, 7 and 8 images in the 286 

United States Geological Survey archive. Tier 1 images are delivered as ready-to-use surface 287 

reflectance images including a cloud mask, yet we used coefficients from Roy et al. 49 to 288 

spectrally align the varying sensor types used onboard Landsat 4/5 (Thematic Mapper), 289 

Landsat 7 (Enhanced Thematic Mapper Plus), and Landsat 8 (Operational Land Imager). 290 

After spectral alignment we filtered all available images for summer-season acquisition dates 291 

(1st of June to 30th September) and built annual medoid composites following Flood 50.  292 

Second, we ran LandTrendr for two spectral bands (shortwave infrared I and II) and 293 

two spectral indices commonly used for forest disturbance and mortality mapping 43,44,51–53: 294 

The Tasseled Cap wetness (TCW) and the Normalized Burn Ration (NBR). We used a 295 
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standard parameter set for LandTrendr with no filtering or thresholding and thus allowing for 296 

maximum sensitivity in detecting changes (i.e., allowing for a high commission error).  297 

Third, we extracted the greatest change segment from each pixel’s LandTrendr fit to 298 

both spectral bands and both spectral indices. From the greatest change segment we derived a 299 

set of three metrics describing the magnitude, duration and rate of change 51; as well as a 300 

measure of the signal-to-noise ratio described in Cohen et al. 52. We further derived the 301 

spectral band/index value prior to, and the rate of change following the greatest change 302 

segment. Similar metrics as the ones used here have been applied also in many previous 303 

studies mapping forest cover changes 42,44,53.  304 

Fourth, we used the set of metrics derived from the greatest change segment for the 305 

two spectral bands and the two spectral indices, the calibration data outlined in the previous 306 

section, and random forest classification 54 to classify each pixel into either no-forest, 307 

undisturbed forest or disturbed forest (i.e., at least one disturbance event during the study 308 

period). This last step filtered out commission errors by LandTrendr and thus greatly 309 

improves mapping accuracy compared to purely automatic algorithms 55. Yet, we experienced 310 

difficulties in correctly separating forest and no-forest areas solely based on LandTrendr 311 

outputs. This was due to high spectral changes in agricultural areas, which were identified as 312 

disturbances by LandTrendr. To tackle this problem, we added a three-year Tasseled Cap 313 

Brightness, Greenness and Wetness median composite centered on 1985 and 2018, 314 

respectively, to the classification stack. The additional six bands delivered more detailed 315 

spectral information on stable forest and no-forest pixels. Finally, we applied the trained 316 

random forest model to the full classification stack (i.e., LandTrendr metrics from the two 317 

spectral bands and two spectral indices plus the Tasseled Cap composite from 1985 and 2018) 318 

to consistently map the categories no forest, undisturbed forest and forest disturbances across 319 

continental Europe. We validated the final map using the validation sub-sample described in 320 
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the previous section. We derived a confusion matrix and report overall accuracy, errors of 321 

commission and errors of omission following best-practice recommendations given in 40. 322 

  Fifth, while the thus derived map indicates that a mortality event has happened, they 323 

do not indicate when the mortality event happened. We therefore calculated the disturbance 324 

onset year (i.e., the year of the greatest spectral change) from all spectral bands and spectral 325 

indices using a majority vote. If there was a tie (e.g., all four bands/indices indicated a 326 

different year), we reverted to the median value. To validate this processing step, we 327 

compared the year assigned from LandTrendr to the manually interpreted year of disturbance 328 

for the 19,996 forest reference plots. 329 

Spatial filtering 330 

The last step in creating disturbance maps for continental Europe was to apply a set of spatial 331 

filters for smoothing the resulting disturbance maps and enhancing spatial pattern analysis. 332 

We first set a minimum mapping unit of two 30 × 30 m pixels (i.e., 0.18 ha) and removed all 333 

patches smaller than the minimum mapping unit. In a second filtering step, we identified all 334 

annual patches smaller than the minimum mapping unit and assigned them to the year of the 335 

surrounding pixels, thus smoothing the definition of patches (see Figure S3). In a final 336 

filtering step, we removed holes within mortality patches smaller than the minimum mapping 337 

unit by filling them with the year of the surrounding pixels. While the spatial filtering was 338 

done to improve the spatial analysis described in the following section, we note that the 339 

filtering was applied after the accuracy assessment. The accuracy assessment thus reports the 340 

raw classification performance without additional filtering. 341 

Characterizing disturbance regimes and their changes 342 

From the annual forest disturbance maps we calculated three disturbance regime indicators 343 

based on Turner 17 and Johnstone et al. 28: disturbance size, frequency and severity. 344 

Disturbance size and severity were first calculated at the patch level and then aggregated to 345 

the landscape level, while disturbance frequency was calculated at the landscape level 346 
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directly. Patch size is the number of disturbed pixels for each individual patch (patches were 347 

defined annually using a rook-contiguity) multiplied by pixel size (0.09 ha). For calculating 348 

disturbance frequency, we sub-divided the total study area into a 50 * 50 km hexagon grid 349 

(here representing the landscape scale), totaling to 3,240 hexagons across Europe’s land area. 350 

We chose hexagons over squares, as hexagons minimize the spatial difference to the more 351 

complex border of countries and ecoregions used in later analysis. For each hexagon, we then 352 

counted the number of individual patches per year and divided this number by the total forest 353 

area within the hexagon, yielding a measure of the number of patches per km2 forest area per 354 

year as in indicator of disturbance frequency. 355 

 For quantifying disturbance severity, we made use of the spectral change magnitude 356 

provided by the LandTrendr analysis. The spectral change magnitude during disturbance is 357 

well correlated with changes in vegetation cover 51,56–59. Consequently, we here use it as 358 

measure of canopy cover change within a disturbed patch. To combine the spectral change 359 

magnitude from all four spectral bands/indices into one index of canopy cover change we 360 

used logistic regression to predict the occurrence of stand-replacing disturbances from the 361 

four spectral change magnitudes. Data on stand replacing disturbances was generated from 362 

the reference sample by analyzing the manually interpreted land cover after a disturbance 363 

segment. If the land cover switched to non-treed following a disturbance segment (e.g., after 364 

clear-cut harvest or high intensity fire), the disturbance is assigned as stand-replacing. If the 365 

land cover remains treed following a disturbance segment (e.g., following a thinning 366 

operation or a low intensity windthrow), the disturbance is classified as non-stand-replacing. 367 

The method is based on Senf et al. 4 who showed that visual interpretation of post-disturbance 368 

land cover is an accurate measure for separating stand-replacing from non-stand-replacing 369 

disturbances. By predicting the occurrence of stand-replacing disturbances (i.e., complete 370 

removal of the canopy), we scale the spectral change magnitudes to a value between 0 and 1 371 

(or 0 % and 100%), where 1 (or 100 %) indicates complete canopy loss. We validated this 372 
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measure of disturbance severity by separating stand-replacing and non-stand-replacing 373 

disturbances solely based on disturbance severity, expecting a high discriminatory power in 374 

separating the different disturbance types.  375 

 For spatially visualizing disturbance size, frequency and severity, as well as for 376 

calculating and visualizing trends, we finally aggregated the patch-based metrics (i.e., 377 

disturbance size and severity) to the landscape level (i.e., the hexagon) by calculating the 378 

arithmetic mean. We report the mean over the median as it is sensitive to changes in both the 379 

central tendency and the spread of the distribution, but we also report other statistics in the 380 

Supplement. Trends in disturbance size, frequency and severity were quantified using a non-381 

parametric Theil–Sen estimator, which is a non-parametric measure of monotonic trends in 382 

time series insensitive to outliers 60. 383 

Statistical analysis of differences between ecoregions and countries 384 

We used linear mixed effect models (LMM) to test for differences in averages and trends in 385 

disturbance size, frequency and severity among ecoregions and countries nested within 386 

ecoregions. Both ecoregions and countries nested within ecoregions were modelled as random 387 

effects, assuming the individual averages and trends emerging from a common underlying 388 

distribution 61. For the average modes we also considered years as random effect. From the 389 

fitted LMMs we calculated the variance partition coefficient, that is the amount of variance 390 

explained by ecoregions, countries within ecoregions, and the residual variance within 391 

countries nested within ecoregions (i.e., variance not explained). 392 

393 
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