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Abstract

The stimulation of a single neuron in the rat somatosensory cortex can elicit a
behavioral response. The probability of a behavioral response does not depend
appreciably on the duration or intensity of a constant stimulation, whereas the response
probability increases significantly upon injection of an irregular current. Biological
mechanisms that can potentially suppress a constant input signal are present in the
dynamics of both neurons and synapses and seem ideal candidates to explain these
experimental findings. Here, we study a large network of integrate-and-fire neurons with
several salient features of neuronal populations in the rat barrel cortex. The model
includes cellular spike-frequency adaptation, experimentally constrained numbers and
types of chemical synapses endowed with short-term plasticity, and gap junctions.
Numerical simulations of this model indicate that cellular and synaptic adaptation
mechanisms alone may not be sufficient to account for the experimental results if the
local network activity is read out by an integrator. However, a differentiator circuit can
detect the single-cell stimulation with a reliability that barely depends on the length or
intensity of the stimulus, but that increases when an irregular signal is used. This
finding is in accordance with the experimental results obtained for the stimulation of a
regularly-spiking excitatory cell.

Author summary

It is widely assumed that only a large group of neurons can encode a stimulus or control
behavior. This tenet of neuroscience has been challenged by experiments in which
stimulating a single cortical neuron has had a measurable effect on an animal’s behavior.
Recently, theoretical studies have explored how a single-neuron stimulation could be
detected in a large recurrent network. However, these studies missed essential biological
mechanisms of cortical networks and are unable to explain more recent experiments in
the barrel cortex. Here, to describe the stimulated brain area, we propose and study a
network model endowed with many important biological features of the barrel cortex.
Importantly, we also investigate different readout mechanisms, i.e. ways in which the
stimulation effects can propagate to other brain areas. We show that a readout network
which tracks rapid variations in the local network activity is in agreement with the
experiments. Our model demonstrates a possible mechanism for how the stimulation of
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a single neuron translates into a signal at the population level, which is taken as a proxy
of the animal’s response. Our results illustrate the power of spiking neural networks to
properly describe the effects of a single neuron’s activity.

Introduction

A classical method used in neuroscience to understand cortical circuits is to determine
how single neurons respond to a controlled sensory stimulus. If, for instance, one of a
rat’s whiskers is moved by the experimenter, a change in firing of specific neurons can
be measured in the barrel cortex, one of the most well studied parts of the primary
sensory cortex [1]. The concept of “reverse physiology” turns this approach around by
studying the inverse situation in which neurons in higher brain areas are stimulated and
a behavioral or motor response can be elicited (see [2] for early references on such
experiments). The two kinds of experiments in combination then allow the linking of
sensation and perception, one of the notoriously difficult problems in neuroscience.

In the case that the stimulation affects only a single neuron, the outcome of the
unconventional and technically challenging reverse physiology experiments are
particularly striking: stimulating a single neuron in the motor cortex can evoke a
whisker movement [3], and single-cell stimulation in the barrel cortex (but not in the
thalamus) leads to a weak but statistically significant behavioral response [4–6]. This
contradicts prevailing hypotheses that relevant signals can only be encoded in the
activity of large neural populations.

Both the enormity of cortical networks - tens of thousands of neurons in the case of
the somatosensory cortex [7] - and the apparent randomness of single-neuron
spiking [8, 9] have classically been evoked as arguments for population coding. If single
spikes are unpredictable and noisy how can a few externally induced spikes lead to
changes in behavior?

On the theoretical side, cortical populations have been modeled as (locally) random
networks of synaptically coupled excitatory and inhibitory cells [10–12] (many studies
just take into account two distinct cell types). Even without the inclusion of explicit
noise sources, these models can show asynchronous irregular activity [13–15] that is
similar to that observed in the cortex of alert animals [16,17]; this kind of network noise
can also be described analytically by stochastic mean-field methods (see for
instance [10, 13,18–20]). Besides the autonomous activity of such networks, their linear
and nonlinear response to global stimuli (applied to all neurons in the network) has
been in focus [20–24]. However, injecting a current into a single neuron in such a
generic network model can lead to sizable changes in a subpopulation’s activity as
well [25, 26]; this subpopulation can be regarded as a readout of the stimulus. If the
readout population is somewhat oriented towards the direct postsynaptic partners of
the stimulated cell, then the stimulus can be detected in the activity of this
population [25]. If, more realistically, the readout is accomplished by a second recurrent
network with feed-forward inhibition (as is most likely the case in the cortex), already a
very small bias will lead to a detection performance comparable to that in the
behavioral experiment [26]. Especially challenging for theoreticians are the results of the
nanostimulation experiments in the barrel cortex of behaving rats [6] which
demonstrated striking dependencies of the behavioral response on the properties of the
stimulating current. The response does not depend on the duration of the stimulus, it
depends weakly on its intensity, and strongly on its irregularity: the response is greatly
enhanced if the current varies irregularly within the stimulation window instead of being
held constant.

Here we tackle these challenges by studying a more detailed computational model
that is much closer to the barrel cortex network than the generic setups previously
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investigated in the context of single-cell stimulation [25,26]. We also put forward a
novel implementation of an alternative readout mechanism, based on the differentiation
of the population activity. Our model includes three distinct populations of cells (one
excitatory neuron type and two distinct inhibitory interneuron types) that are all
modeled as integrate-and-fire neurons endowed with adaptation currents, mediating the
omnipresent spike-frequency adaptation. These cells are coupled by chemical synapses,
which undergo synaptic depression or facilitation, and by electrical synapses (gap
junctions). Combined with the so-called differentiator readout, we achieve a response at
the population level that is in several key aspects similar to the behavioral response in
the experiments by [6].

Results

The model consists of two parts: a recurrent network, in which a randomly selected
excitatory regular spiking cell is stimulated to mimic the experiments, and a readout,
which receives input from excitatory neurons of the recurrent network and can detect
the stimulation.

Recurrent network model

Figure 1 shows a scheme containing all essential features of the BCN, briefly described
in the figure caption. The recurrent network model represents the surroundings of the
stimulated cell in a radius of about 200µm, in which connection probabilities can be
considered as constant [27,28]. A total network size of N = 2600 is in line with
estimates of neuron density in the barrel cortex [7]. Although this network size
corresponds to a fraction of one barrel, this part of the model will be indicated as
“barrel cortex network” (BCN). The BCN consists of three neuronal populations:
excitatory regular spiking cells (RS), inhibitory fast-spiking (FS) cells, and
somatostatin-expressing low-threshold spiking (SOM-LTS) inhibitory neurons. These
three cell types account for a large fraction of the neurons found in the barrel cortex
(about 99% of layer IV [29]). All neurons are modeled as one-compartment leaky
integrate-and-fire (LIF) neurons. Besides leak conductance and spike generation, several
other biological mechanisms are modeled, according to the cell type.

The largest population consists of 2000 excitatory RS neurons, which are sparsely
connected to each other but densely connected to FS interneurons and SOM-LTS cells,
as experimental studies report [29]. The membrane time constant of RS cells is
lognormally distributed with mean τm,e = 20 ms and a standard deviation of 20% of the
mean [29, 30]. The 400 inhibitory FS interneurons are characterized by faster membrane
time constants (lognormal distribution with mean τm,i = 10 ms [29]) and are densely
connected both to other FS neurons and to RS cells. The 200 SOM-LTS inhibitory
neurons possess longer time scales (lognormal distribution with mean τm,s = 20 ms [29])
and a firing threshold which is 6 mV lower than in RS and FS neurons [29]. SOM-LTS
neurons do not inhibit each other via chemical synapses, but form dense connections to
and from RS neurons and sparser connections to and from FS interneurons [29,31,32].

Both FS and SOM-LTS neurons are densely coupled to cells of the same type via
electrical synapses (gap junctions) [29, 31, 33], which are represented here by an effective
global excitatory spiking coupling (the sub-threshold contribution of gap junctions has a
much smaller effects on the network dynamics [34]).

In the barrel cortex, both RS and SOM-LTS neurons display spike-frequency
adaptation, whereas FS neurons do not [29,35]. Therefore, RS and SOM-LTS are
endowed with a spike-triggered hyperpolarizing current [36–38]. Consistent with
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Fig 1. Recurrent network model representing the surroundings of the
stimulated cell. The network is formed by Ne = 2000 excitatory regular spiking (RS)
neurons, Ni = 400 inhibitory fast spiking (FS) neurons, and Ns = 200 inhibitory
somatostatin-positive low-threshold spiking (SOM-LTS) neurons. Recurrent connections
between RS neurons are sparse (15%), all connections involving FS neurons as well as
those between RS and SOM-LTS neurons are dense (40%-50%). FS and SOM-LTS
neurons are electrically coupled (only neurons of the same type). Gap junctions are
represented by an effective all-to-all spiking coupling (see main text). Connections in
blue are strongly depressing, connections in light blue are weakly depressing, and
connections in red are strongly facilitating. RS and SOM-LTS neurons are endowed
with a spike-frequency adaptation current. Input from the thalamus and from
neighboring cortical regions is represented by Poissonian shot noise. SOM-LTS neurons
do not receive external shot noise. The three raster plots show the spontaneous activity
of 120 (from top to bottom) RS, SOM, and FS neurons. The spontaneous activity of all
three populations is asynchronous and irregular. The spontaneous mean firing rate of
excitatory RS neurons is rsp,e ≈ 0.8 Hz, of SOM-LTS neurons is rsp,s ≈ 3 Hz, and of FS
neurons is rsp,i ≈ 10 Hz.
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experimental observations, the strength of the adaptation current is larger for RS
neurons than for SOM-LTS neurons.

We drive RS and FS cells with Poissonian spike trains mimicking input from the
thalamus and neighboring cortical areas. SOM-LTS cells are mostly subject to local
input [29,39] and therefore, in our model, they do not receive external input.

Experimental studies suggest that most synapses in the barrel cortex show short
term depression, with the notable exception of connections from RS neurons to
SOM-LTS cells, which have been found to be strongly facilitating [29, 40–42]. The short
term plasticity of chemical synapses is simulated here by means of a standard
model [43, 44]. Parameters were chosen such that all synapses except those from and to
SOM-LTS neurons are strongly depressing. These synapses are depicted in blue in fig. 1.
Parameters for synapses branching from SOM-LTS neurons (represented in light blue in
fig. 1) are set such that they display a weak depression. Finally, parameters of synapses
connecting RS cells to SOM-LTS neurons are chosen to generate a strong facilitation. A
further property that distinguishes these synapses is that the transmission failure rate is
high (∼ 50%) at low presynaptic firing rate, but the reliability increases upon repeated
activation of the synapse [29]. This property is modeled by a variable that mimics the
activity-dependent failure rate.

More details on model equations and parameters are given in the Methods.

Readout models

Because outgoing long-range connections in the cortex mostly originate from pyramidal
neurons, we assume that the readout can access a subset of the RS cells and consider
three possible schemes, as illustrated in fig. 2. The first detection scheme (fig. 2A)
receives input from a subset of the excitatory neurons of the BCN and reacts when the
filtered activity of these neurons reaches a lower barrier. This readout scheme will be
called integrator readout (IR). The second readout scheme (fig. 2B) filters the activity
in the same way as the IR, but it subtracts a time-shifted copy of the same activity. In
other words, it considers the difference between the filtered activity at different time
points, thus acting as a sort of differentiator. For this reason, it will be referred to as
differentiator readout (DR). The third readout scheme is the implementation of the DR
by means of a simple network of LIF neurons and will be called differentiator network
readout (DNR).

Integrator readout

The first readout scheme, the integrator readout (IR), is based on a random selection of
Ĉ = 1000 RS neurons that constitute the readout set SA (see fig. 2A). The spike trains
emitted by all neurons within the readout population SA are linearly filtered by using
the following dynamical equation:

τm,e
dAir(t)

dt
= −Air +Rm,read

[ ∑
i∈SA

Jread,i(t)xi(t)

]
, (1)

where xi is the spike train of the ith neuron within the readout set SA, the integration
time constant is τm,e = 20 ms, and Rm,read = τm,e/Cm. Consistent with the idea that
synapses projecting to other brain areas will also undergo depression, the dynamic
weights Jread,i(t) obey the same equation as all excitatory weights within the BCN.

To compute false positive and correct detection rates, a single lower decision
boundary θ− is used by the IR, as depicted in fig. 3. A detection event is registered if
Air falls at least once below the boundary θ− within the detection time window
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Fig 2. Readout models considered in this paper. A cell selected at random from
the barrel cortex network (BCN) is selected at random and stimulated. The BCN
consists of three populations: excitatory regular-spiking neurons (RS), inhibitory
fast-spiking neurons (FS), and somatostatin-positive low-threshold spiking neurons
(SOM-LTS), all modeled by leaky integrate-and-fire neurons. The BCN includes several
biological details of the barrel cortex (see fig. 1 and methods). Three readout schemes
are considered. A: the integrator readout (IR) integrates the activity of a subset of the
RS neurons within the BC and reacts to deviations in the negative direction. B: the
differentiator readout (DR) evaluates the difference between the IR activity at two time
points separated by a delay. This filtered running difference at fixed lag is processed by
the detector, which reacts when an upper threshold is reached. C: the differentiator
network readout (DNR) implements the operation of the DR with two populations of
LIF neurons. The FS readout population provides delayed recurrent inhibition to itself
and feed-forward inhibition to the RS readout population. All connections depicted in
blue are dynamic and show short-term depression (STD).
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Fig 3. Working principle of the detector. Here, the case of a lower boundary is
shown. The black trace is one realization of Air(t) for a catch trial (no stimulus).
Because the trajectory hits the detection boundary once, this trial generates a false
positive event. The red trace represents one realization of the IR activity Air(t) in the
presence of a stimulus. Because the trajectory hits the boundary at least once (in this
case even multiple times), this trial triggers a hit, or correct detection event.

(0, Tw = 600 ms). In catch trials, no stimulus is present. These catch trials are used to
determine the false positive rate:

FP ir(θ−) =

〈
max

t∈(0,Tw)

{
H(θ− −Air(t))

}〉
catch

, (2)

where H(x) is the Heaviside step function, and angular brackets indicate trial average.
The reasons why a single lower detection boundary is used are explained below (see
Firing-rate response of the network). The hit or correct detection rate is computed
exactly in the same way, but in the presence of a stimulus

CDir(θ−) =

〈
max

t∈(0,Tw)

{
H(θ− −Air(t))

}〉
stim.

. (3)

Differentiator readout

The differentiator readout (DR) first reads in the input from the network in the same
way as the IR and it takes the difference between Air evaluated at two times separated
by a lag ∆T . The result is then convolved with an exponential filter
Fτf (t) = exp(−t/τf )/τf to reduce the noise

Adr(t) =
(
Air(t)−Air(t−∆T )

)
? Fτf (t). (4)

Trajectories computed from eq. (4) are used in combination with an upper detection
threshold θ+ to obtain the false positive and hit rates:

FPdr(θ+) =

〈
max

t∈(0,Tw)

{
H(Adr(t)− θ+)

}〉
catch

(5)

CDdr(θ+) =

〈
max

t∈(0,Tw)

{
H(Adr(t)− θ+)

}〉
stim.

. (6)

Differentiator network readout

The operation performed by the DR, i.e. the subtraction of a delayed copy of the
readout activity, can be approximately implemented by the simple network shown in
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BCN

Fig 4. Tuning of the differentiator readout network to implement the
operation of the differentiator readout scheme. A perturbation in the firing rate
of the RS neurons in the BCN (∆re) causes a perturbation in the mean input to the RS
readout neurons, ∆µe, and a perturbation in the firing rate of the inhibitory readout
population I. This change in firing rate causes a shift in the input from I to SB (∆µI).
The strength of the connection from I to SB is adjusted such that ∆µe + ∆µI = 0.
This cancellation reaches SB with a time lag ∆T so that the readout network roughly
implements the operation of the DR eq. (4).

fig. 2C. The differentiator network readout (DNR) consists of two populations: one
readout population of 10 000 RS neurons (SB) and one population of 2000 FS inhibitory
neurons (I). Both populations receive the same number of excitatory feed-forward
connections from the RS population of the BCN. More precisely, each neuron in the
DNR receives input from Ĉ = 1000 randomly chosen RS neurons. Neurons in the
readout population SB evolve according to the same dynamical equation as RS neurons
of the BCN, while neurons in I follow the same dynamical equations as the FS neurons
of the BCN.

If the purpose of the DNR is to implement the operation performed by the DR, it is
crucial that the feed-forward inhibitory pathway from the BCN via I to SB balances
the direct feed-forward excitatory pathway input at a later time. To this end, the
average weight of connections from I to SB , JRei , is chosen such that a static change in
the input from the direct pathway ∆µe is compensated by the static change in the input
from the inhibitory pathway ∆µI (see fig. 4). The value of JRei that approximately
satisfies the condition ∆µe + ∆µI = 0 is computed from a linear-response calculation,
reported in the Methods. Importantly, the inhibitory pathway is given an additional
transmission delay ∆T = 10 ms, so that changes in the input from the BCN to the DNR
are counterbalanced at a later time. More details on the DNR can be found in the
Methods along with all parameter values.

The DNR activity is obtained by filtering the average firing rate of the readout
neurons SB with the same exponential filter used for the DR:

Adnr(t) =
1

NB

∑
xk∈SB

xk(t) ? Fτf (t). (7)
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False positive and hit rates are obtained in exactly the same way as done for the DR:

FPdnr(θ+) =

〈
max

t∈(0,Tw)

{
H(Adnr(t)− θ+)

}〉
catch

, (8)

CDdnr(θ+) =

〈
max

t∈(0,Tw)

{
H(Adnr(t)− θ+)

}〉
stim.

. (9)

Effect size

The effect size is defined as the difference between the hit and the false positive rate [4].
It is a function of the detection threshold θ

YX(θ) = CDX(θ)−FPX(θ), (10)

where X ∈ {ir, dr, dnr} indicates the detector type and θ can be either an upper or
lower boundary. The false positive rate of 0.25 corresponds approximately to the
average false positive rate measured experimentally. For this reason, this value was
chosen to compare the simulation results to the experimental data. More precisely, the
threshold θ̄ is chosen such that

FPX(θ̄) = 0.25, (11)

which is then used to compute
ȲX = YX(θ̄), (12)

which is the final output of the detection procedure and will be compared to the
experimental data.

Single-cell stimulation

In every trial, the network is initialized with random initial conditions and simulated for
Tidle = 1200 ms, to let the system forget the initial state. The spontaneous firing
pattern of the network is asynchronous and irregular (fig. 1). The mean spontaneous
firing rate of RS, FS, and SOM-LTS neurons is rsp,e ≈ 0.8 Hz, rsp,i ≈ 10 Hz, and
rsp,s ≈ 3 Hz, respectively. These properties of the spontaneous firing activity are
consistent with experimental observations [45,46].

A neuron is randomly selected as site of the nanostimulation, which is switched on at
t = 0 and modeled as an additional current injected into the cell. The maximum
stimulation current used here is ∆Imax,e = 5 nA. This value is chosen to elicit a similar
number of spikes as in the experiment and is in the range used experimentally [47].
After the stimulus is switched off, the network is further simulated until the time
reaches t = Tend = 1200 ms.

Following [6, 47], we use step currents of different lengths and intensities to
investigate how the response probability depend on the properties of the stimulus.
Furthermore, random permutations of steps of different length and amplitude will be
used to generate irregular spike trains. Two equally-sized sets of catch trials, i.e. trials
in which no stimulus was present, were simulated to estimate the size of random
fluctuations in the detection rates.

The shot noise mimicking external input and the initial conditions were drawn anew
in every trial. The same realization of the network (randomized cellular parameters and
the connectivity matrix including weights and delays) was used once for each stimulus
type. The total number of trials per stimulus type was Ntrials = 10000.
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Fig 5. Disynaptic inhibition mediated by somatostatin-positive
low-threshold spiking (SOM-LTS) cells causes inhibitory response to the
stimulation of a regular spiking (RS) cell. A: when a RS cell is stimulated (the
stimulus is switched here on at t = 0 and off at t = 400 ms), synapses from the
stimulated cell (red triangle) to the SOM-LTS population strongly facilitate and cause a
large increase in the firing rate of the SOM population, which then relaxes back to a
plateau because of the spike-frequency adaptation (b). The inhibitory input from the
SOM to the RS population produces a response in the RS cells which is almost a mirror
image (a, black line). The initial positive peak in the RS response is due to the spikes
fired by the stimulated cell itself, as it can be seen by excluding it from the population
(a, green line). The curves in panels a and b are averages over 10000 trials and spikes
are filtered with an exponential filter with decay constant τf = 15 ms. Gray lines
indicate catch trials (no stimulation).

Firing-rate response of the network

Before investigating to what extent the three readout procedures introduced above are
capable to detect the single-cell stimulation, it is instructive to examine the
trial-averaged firing rate response of the network to the stimulation of a single RS cell.
In the following, the case of a constant step current with intensity at 25% of the
maximum and a duration of 400 ms is considered.

When a single RS cell is stimulated (red triangle in fig. 5), its output spikes affect a
relatively small set of RS neurons (blue shaded area in fig. 5) because RS-to-RS
connections are sparse (15% connection probability). Furthermore, their average
amplitude is smaller if compared to other connections and they are strongly depressing,
so that the direct effect on the overall firing rate of the RS population is small.

Connections from RS cells to the FS population are dense (40%), so that the spikes
of the stimulated RS neuron reach a large fraction of the FS population (blue shaded
area in fig. 5). However, FS cells also strongly inhibit one another and thus counteract
the input from the stimulated cell. Consequently, the average change in the firing rate
of the entire FS population is small (not shown).

Finally and most importantly, the output of the stimulated cell reaches a large
fraction of the SOM-LTS population (50%, red shaded area in fig. 5) via strongly
facilitating synapses. As a result, they induce an appreciable increase in the average
firing rate of the SOM-LTS population, shown in fig. 5b. Importantly, SOM-LTS do not
inhibit each other. However, the spike-frequency adaptation causes a strongly damped
oscillation which, after an initial peak around t = 30 ms and a dip around t = 100 ms,
relaxes to a plateau lying about 20% above the spontaneous firing rate level.
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The increased inhibition from the SOM-LTS population ultimately causes the
average firing rate of the RS population (fig. 5a, black line) to drop below the
spontaneous level (fig. 5a, gray line). Note that the time course of the response of the
RS population is closely related to that of the SOM-LTS population, except for the
small peak shortly after the stimulus onset and for the overshoot after the stimulus is
switched off. The small peak is due to the spikes fired by the stimulated cell itself. This
can be seen by omitting the spikes fired by the stimulated cell (fig. 5a, green line) and
observing that the peak disappears. The overshoot after t = 400 ms is due to the slow
relaxation of the adaptation variable to its baseline value.

These observations are consistent with in vitro experiments showing that the strong
activation of a single pyramidal cell in the barrel cortex has mostly an inhibitory effect
on nearby pyramidal cells, and that this effect is due to disynaptic inhibition mediated
by SOM-LTS neurons [40,41]. More recent in vivo experiments pairing the stimulation
of a single cell with calcium imaging suggest that bursts induced in a pyramidal cell
have a very weak excitatory effect on other pyramidal cells and on FS neurons, but have
a significant effect on neighboring SOM-LTS cells [48], in line with the behavior of our
model.

Relation between effect size and statistics of readout activity

In the previous subsection, the effects of the single-cell stimulation on the trial-averaged
response of the RS population have been examined. The readout, however, must decide
on the presence of the stimulus based on the RS population activity in each single trial,
a much more difficult task (compare the smooth lines of fig. 5A,B with the noisy curves
in fig. 3). The readout performance is quantified by the effect size, defined above.
Before investigating how the effect size depends on the properties of the stimulus, we
will examine how changes in the statistical properties of the readout activity AX(t) can
influence the effect size.

The simplest statistics that can be considered are the time-dependent mean and
standard deviation of the readout activity (the averaging ensemble consists of the
different trials). Statistics of higher order (skewness and kurtosis) were measured and
did not display appreciable deviations from the spontaneous state and will be therefore
omitted for brevity. Because we are interested in deviations from the spontaneous state,
it makes sense to consider mean and standard deviation of the readout activity as
standardized deviations from the spontaneous value. More precisely, we will consider
first the time-dependent mean of the readout activity AX(t) (here X =ir, dr, dnr, as
defined in the subsection Readout models):

µ̂X(t) =

〈
AX(t)

〉
− µX, catch

σX, catch
, (13)

where µX, catch and σX, catch are the average mean and standard deviation in the
spontaneous state, respectively:

µX, catch = 〈AX(t)〉catch , (14)

σX, catch =
√
〈∆A2

X(t)〉catch, (15)

where ∆A2
X(t) =

(
AX(t)−

〈
AX(t)

〉)2
, and the time dependence in both last equations

is self-averaging due to the stationary conditions. The time-dependent standard
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A B C

Fig 6. Illustration of simplified detection model used to interpret the
simulation results. The continuous-time problem is approximated by a discretized
process, obtained by “sampling” trajectories at times separated by the correlation time.
Each deviation from the spontaneous state changes the probability of not reaching the
decision barrier from the spontaneous value p0 to p1 or to p2.

deviation of the readout activity is defined in a similar way:

σ̂X(t) =

√〈
∆A2

X(t)
〉
− σX, catch

σX, catch
. (16)

Non-zero values of µ̂X(t) and of σ̂X(t) at any time point within the detection time
window can impact the effect size in different ways. Suppose, for instance, that the
considered detector employs an upper boundary. Then, a positive deflection of µ̂X(t)
locally increases the probability of reaching the threshold, whereas a negative deflection
reduces it. If a lower detection boundary is used, the opposite holds. Regardless of the
type of threshold, a local increase of σ̂X(t) enhances the probability of reaching the
threshold, whereas a local decrease in σ̂X(t) reduces the probability of crossing the
decision barrier. This line of reasoning is qualitative only and holds under the
assumption that AX(t) is approximately normally distributed at all times.

To understand how multiple deviations from the spontaneous state within the
decision time window jointly influence the effect size, it is useful to consider a simplified
description of the decision model introduced in [25,26,49]. In this simplified theory, hit
and false positive rates are approximated as the result of n = Tw/τcorr draws of a
random variable, where Tw is the detection time window and τcorr is the autocorrelation
time of the readout activity (in the example of fig. 6, n = 4). If these draws are treated
as independent, the false positive rate reads

FP(θ) = 1− pn0 (θ), (17)

where p0(θ) is the probability of not crossing the barrier θ at a given time point and in
the absence of the stimulus [p0(θ) does not depend on time and is therefore the same for
each draw]. For concreteness, let us use an upper barrier at the value θ̄, which yields
the false positive rate of 0.25. In this way, the dependence on θ can be dropped, but the
following considerations do not depend on the particular position or type of the
boundary. Suppose now that µ̂X(t) displays one peak at a certain position within the
detection time window, as depicted in fig. 6A. Therefore, the probability that one
trajectory of the readout activity triggers the detector is locally increased. Thus, in the
vicinity of the peak, the probability of not triggering the detector will be
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p1 = p0 + ∆p1 < p0. The correct detection rate for this situation is then

C̄D1 = 1− p1pn−10 . (18)

Consequently, the effect size reads

Ȳ1 = 1− p1pn−10 − (1− pn0 ) = pn0

(
1− p1

p0

)
. (19)

Consider now the situation of a negative deflection in µ̂X(t) occurring at a different
time (as in fig. 6B). Locally, the probability of not triggering the detector is
p2 = p0 + ∆p2 > p0. In this case, the effect size is

Ȳ2 = 1− p2pn−10 − (1− pn0 ) = pn0

(
1− p2

p0

)
. (20)

Suppose now that both features are present at sufficiently separated times within the
same detection time window, as in fig. 6C. In this case, the effect size is

Ȳ12 = pn0 − p1p2pn−20 = pn0

(
1− p1p2

p20

)
. (21)

Substituting p1 = p0 + ∆p1 and p2 = p0 + ∆p2 into eq. (21) and supposing
∆p1,∆p2 � 1 yields

Ȳ12 = pn0

(
1− p20 + p0∆p1 + p0∆p2 + ∆p1∆p2 + p20 − p20

p20

)
≈ pn0

(
1− p0 + ∆p1

p0
+ 1− p0 + ∆p2

p0

)
(22)

= Ȳ1 + Ȳ2.

This approximation generalizes to the case of more than two deviations from the
spontaneous state [49], given that all deviations are small compared to p0. For instance,
when three features are present the effect size is

Ȳ123 = pn0

(
1− p1p2p3

p30

)
≈ Ȳ1 + Ȳ2 + Ȳ3. (23)

The main insight here is that weak deviations from the spontaneous state appearing in
the same detection window can (approximately) add or cancel each other. This will be
useful in the following to interpret how the behavior of µ̂X(t) and σ̂X(t) influence the
response of the detector.

Detection of the stimulation of a single neuron

In this subsection, we will investigate how the properties of the stimulus influence the
response probability of the detector for each of the three readout procedures.

Effect of stimulus duration

The effect of changing the stimulus duration will be considered first. To this end,
stimuli of length 100, 200, and 400 ms are used (fig. 7, top). The stimulus intensity is
kept constant at 25% of the maximum current. In the experiment, when the stimulated
cell was a RS neuron, the three stimuli evoked 6± 3, 11± 5, and 23± 10 spikes,
respectively. In the model, the number of evoked spikes was 7± 1, 12± 2, and 20± 5
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spikes, respectively. The average number of evoked spikes generated by the model is
within one standard deviation of the experimental data. However, the spread of the
spike count distribution is smaller in the model, which is not surprising, considering the
multiple possible noise sources that are not modeled, and that only some of the cellular
parameters are randomly distributed in the model.

Figure 7 gives an overview of µ̂X(t), σ̂X(t), and the effect size measured by all three
detectors with stimuli of different duration. In all plots, the color coding is as in the top
panel and the black line represents catch trials. The various panels are organized as
follows: the first, second, and third column represent results obtained from the IR, DR,
and DNR, respectively; the first row shows the time-dependent trial average (expressed
as standard score) µ̂X(t), the second row shows σ̂X(t), and the third row displays the
effect size defined as in eq. (12) (filled dots) superimposed with the experimental results
(open circles with error bars).

The IR activity Air(t) is a low-pass filtered sum of a random subset of the spike
trains fired by the RS population, as made clear by eq. (1). Hence, the time course of
µ̂ir(t) upon 400 ms stimulation (fig. 7A, blue line) closely resembles that of the RS
population (see fig. 5 and the related discussion on p. 10). Except for the small initial
peak due to the spikes fired by the stimulated cell (note that there is a 50% chance in
each trial that the stimulated cell is included in the readout activity), the average
response of the IR activity is a reduction that shows its deepest dip around t = 40 ms
and then relaxes back owing to the spike-frequency adaptation of RS and SOM-LTS
populations. In the case of the 100 ms stimulus (red line), the mean deviation goes back
to zero shortly after the stimulus is turned off, while µ̂ir(t) for the other stimulus
durations (green and blue line) settles around -0.3 for the remainder of the respective
stimulation time window. In each case, µ̂ir(t) shows an overshoot caused by the slower
relaxation time scales of the adaptation variables; the overshoot is stronger the longer
the signal’s duration. The time-dependent standard deviation σ̂ir(t), shown in fig. 7B,
does not display appreciable deviations from zero except for a small dip that
corresponds to that observed in the mean. The time courses of µ̂ir(t) and σ̂ir(t) suggest
that the readout activity has more chances of reaching a lower detection threshold for
longer lasting stimuli. Indeed, the effect size measured by the IR strongly depends on
the stimulus duration, as it can be seen in fig. 7C (filled circles), which is in contrast
with the experimental data (open circles with error bars).

When the DR is used, the picture changes rather drastically. The time-dependent
mean µ̂dr(t) displays three peaks and one trough in response to all three signals
(fig. 7D), even though the last two peaks partly overlap in the case of the 100 ms
stimulus (red line). Because the DR considers differences in the IR readout activity,
each peak corresponds to an upswing of µ̂ir(t) and the trough to the initial sharp drop.
The most prominent feature in σ̂dr(t) is the dip right after the stimulus onset, which is
the same for all stimuli (fig. 7E). The main difference in the response to the three
stimuli is the position of the last peak. Hence, it stands to reason that the DR activity
Adr(t) has similar chances to reach the upper barrier regardless of the signal length.
Indeed, the effect size measured by the DR is very similar for the three signals and of
the same magnitude as that measured in the experiments (fig. 7F).

The time course of µ̂dnr(t) qualitatively resembles that of µ̂dr(t) (see fig. 7G), thus
suggesting that the DNR does approximately operate as a differentiator. The most
evident difference between µ̂dnr(t) and µ̂dr(t) is the more pronounced undershoot after
the last peak, which is likely due to the adaptation current in the readout population.
The time-dependent standard deviation σ̂dnr(t) behaves similarly to the mean, and
shows peaks and one dip at the same time as the time-dependent mean (fig. 7H).
However, a persistent positive shift of σ̂dnr(t) with respect to the zero level can be
observed during the entire duration of the signal, which slightly enhances the
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Fig 7. Only simulation results from differentiator readout (DR) and
differentiator network readout (DNR) are compatible with the
experimental data for the stimulation of a RS cell with three stimuli of
equal intensity and different duration (top panel). First row: standardized
deviation from the spontaneous value of the time-dependent mean readout activity
eq. (13). Second row: standardized deviation from the spontaneous value of the
time-dependent standard deviation of the readout activity eq. (16). Third row: average
effect size for the three stimuli. Open circles with error bars are experimental results,
which are the same in each panel, and represent the average effect size computed from
119 RS cells (2407 trials in total). First column: integrator readout (IR). Second
column: differentiator readout (DR). Third column: differentiator network readout
(DNR). The color of each line corresponds to a stimulus as in the top panel (red:
100 ms, green: 200 ms, blue: 400 ms). Black line is catch trial condition (no stimulus).
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detectability of the longer signal, as seen in fig. 7I. Still, the increase is moderate and
the effect sizes are still close to the experimental values.

To summarize the results of fig. 7, the effect size measured by the IR is larger but
strongly depends on the duration of the stimulus. The DR and the DNR detect the
stimulus with a reliability that is essentially independent of the signal duration and that
is of the same magnitude as the experimental data.

Effect of stimulus intensity

In the second experiment, we vary the firing rate of the stimulated cell by changing the
current intensity while keeping the total area under the step stimulus, i.e. the injected
charge, constant. As depicted in the top panel of fig. 8, the stimulus lasting 100 ms
(red), 200 ms (green), and 400 ms have an intensity corresponding to 100%, 50%, and
25% of the maximum current, respectively. In this way, the total number of elicited
spikes is approximately the same for each stimulus. In the experiment, the three stimuli
evoked a firing rate of (109± 52) Hz, (54± 23) Hz, and (30± 10) Hz, respectively. In
the model, the average evoked rates are (150± 25) Hz, (103± 20) Hz (50± 12) Hz.
Note that the maximum current in the model is chosen such that the number of elicited
spikes roughly matches the data of the previous experiment (dependence on stimulus
duration), which were based on a different set of cells. Still, the evoked firing rates in
the model are in a similar range as the experimental values.

Figure 8 reports all detection statistics arranged in the same way as before. The
shape of µ̂ir(t), the mean response of the IR to the three stimuli, is similar to the
previous case, although the initial drop is much stronger here when the stronger stimuli
are used (fig. 8A). A clear dip in the time-dependent standard deviation σ̂ir(t) is
observed right after the signal onset for the two stronger stimuli (fig. 8B). The
pronounced initial response to the stronger signals roughly compensates the shorter
duration of the signal in terms of chances of reaching the detection barrier. As a result,
the effect size measured by the IR depends weakly on the current intensity and is much
stronger than in the experiments, as shown in fig. 8C.

The time-dependent mean of the DR activity, µ̂dr(t), shown in fig. 8D, displays an
initial drop followed by two peaks for each of the three stimuli. Here, however, both the
first trough and the two subsequent peaks are more pronounced for signals of larger
intensity, and the same holds for the initial dip in the time-dependent standard
deviation σ̂dr(t) (fig. 8E). As these features have opposing effects and become stronger
simultaneously upon growing stimulus intensity, the net effect on the response
probability is barely noticeable, as shown in fig. 8F. Furthermore, the effect size is of
magnitude comparable with the experimental observations.

Results obtained from the DNR are mostly similar to those from the DR. The
principal differences are the mild trough after the last peak in the mean response µ̂dnr(t)
(fig. 8G) and the increased σ̂dnr(t) in the later part of the response (fig. 8H). The effect
size measured from the DNR in the model shows a slight increase upon decreasing
current intensity, which, considering the measurement uncertainties, is still consistent
with the experimental observations.

Hence, the effect measured by all three readouts shows a weak dependence on the
intensity of the stimulus, as it is observed in the experimental data. However, the effect
size measured by the DR and the DNR is close to the experimentally observed average
effect size of ≈ 2%, while the effect size obtained from the IR is considerably larger.

Effect of stimulus regularity

In the third and last in silico experiment, random stimuli will be used to evoke irregular
spike trains. These stimuli, in accordance with the experimental procedure [6, 47], is a
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Fig 8. Only results from differentiator readout (DR) and differentiator
network readout (DNR) are compatible with the experimental data for the
stimulation of a RS cell with three stimuli of intensity inversely
proportional to duration (top panel). As in the previous case, results from
differentiator readout (DR) and differentiator network readout (DNR) are compatible
with experimental data, whereas integrator readout (IR) gives qualitatively different
results. Meaning of panels and color coding are as in fig. 7. Open circles with error bars
are experimental results, which are the same in each panel, and represent the average
effect size computed from 55 RS cells (1469 total trials).
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random shuffling of six current steps of length 10, 20, 40, 80, 160, and 90 ms, and with
current intensity 100%, 50%, 25%, 12.5%, 6.25%, and -50% of the maximum current,
respectively. In other words, each sequence consists of a random permutation of five
positive (depolarizing) current steps with intensity inversely proportional to the
duration and of one hyperpolarizing step, which inhibits the cell from firing. Two
example signals are shown in fig. 9A. Note that stimuli are varied in each trial and not
frozen. The irregular stimuli are constructed such that their total duration is 400 ms.
The response probability to these stimuli will be compared to that of regular steps of
400 ms at 25% of the maximum current, which was used in both previous cases (plotted
in blue). In the experiments, irregular current injections generated spike trains with an
average firing rate of (24± 11) Hz and average CV of (1.1± 0.3). In the model, the
average rate is (27± 5) Hz and the average CV (1.3± 0.3).

In fig. 9 we compare the simulation results obtained when irregular stimuli are used
to those obtained from the 400 ms regular current injection. The latter is shown once
more in fig. 9 because it serves here as reference case but it will not be discussed in
depth (see discussion above). Results for irregular stimulation are based on two sets of
irregular stimuli, constructed by choosing from all possible permutations with equal
probability. Despite the large total number of trials used here (Ntrials = 10000), it is
advisable to compare results for two independent sets of stimuli because the large
number of possible permutations (6!=720) implies that the number of trials per signal is
limited and that finite-size fluctuations due to the particular choice of signals may be
non-negligible. Results for the two independent sets of irregular stimuli are plotted in
red and orange in fig. 9. We recall that µ̂X(t) and σ̂X(t) are obtained by averaging over
different realizations of the irregular stimuli and are not related to the two particular
signals shown in fig. 9A.

The average signal is plotted in fig. 9B and displays a peak just after the stimulus
onset, followed by a mild trough and then by a plateau barely above the zero level. Just
before the end of the stimulation time window, another trough followed by a peak can
be seen. Accordingly, µ̂ir shows two dips at the same time where the two peaks in the
average signal are seen (fig. 9C). Note that although the first and second half of the
average signal are perfectly symmetrical, the second dip in µ̂ir(t) is more pronounced
than the first.

Considering how different the average signal is from each particular realization of the
irregular sequence, it may seem questionable to average over signals that provoke rather
heterogeneous responses. However, the detector as well as the animals in the actual
experiments do not know which realization of the irregular sequence is used in each trial.
Therefore, this averaging ensemble, in which the stimulus is drawn in each trial,
correctly represents the experimental situation and it makes sense to consider its
time-dependent mean, as done above. The variability due to the particular realization
of the input signal, which mostly averages out in the mean, reveals itself in an increased
time-dependent standard deviation, σ̂ir(t) (fig. 9D), which is above the zero level in the
entire stimulation time window and grows further towards the end of the stimulus. This
increase of σ̂ir(t) above the zero level enhances the chances of reaching the detection
threshold. As a result, the effect size upon irregular stimulation is large, but not as
large as that observed for the regular stimulus (fig. 9E filled dots), which is not
consistent with the experimental observations, in which it is the other way around
(fig. 9E, open circles with error bars).

The average DR activity in response to the irregular stimuli (fig. 9F, red and orange
line) and to the 400 ms regular stimulus (blue line) are rather similar to each other. The
main difference is that both the initial trough and peak are somewhat smaller for
irregular stimulation. Furthermore, a small dip is observed for irregular stimuli just
before the last peak. On the contrary, the standard deviation σ̂dr(t) is markedly

March 25, 2020 18/35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.30.016261doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.016261
http://creativecommons.org/licenses/by/4.0/


Reg. Irreg.

0

0.05

0.1

0.15

0.2

E
ff

ec
t S

iz
e

Reg. Irreg.

0

0.05

Reg. Irreg.

0

0.05

-1

-0.5

0

0.5
IR DR DNR

0 400
-0.1

0

0.1

0 400
Time [ms]

0 400

A B

D

E

FC

G

H

J

K

I

0 400
Time [ms]

S
ti

m
. C

ur
re

nt

0 400
Time [ms]

S
ti

m
. C

ur
re

nt
A

vg
.

Fig 9. Summary of detection statistics upon stimulation of a RS cell with
irregular stimuli (random permutation of multiple current steps),
compared to regular 400 ms stimulation. Blue line refers to regular stimulus, as
in the previous cases. Red and orange lines represent two different random samples of
10000 stimuli (the stimulus is changed in each trial) from the 720 possible permutations
of the six steps (two specific realizations are shown in the top panel, while the average
stimulus is shown in the inset). Black line is catch trial condition (no stimulus). First
row: standardized deviation from the spontaneous value of the time-dependent mean
readout activity eq. (13). Second row: standardized deviation from the spontaneous
value of the time-dependent standard deviation of the readout activity eq. (16). Third
row: mean effect size for regular and irregular stimulation. Open circles with error bars
are experimental results, which are the same in each panel, and represent the average
effect size computed from 62 RS cells (1780 trials in total).
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different for the two stimulus types (fig. 9G). When the regular stimulus is used, σ̂dr(t)
displays a small dip at the beginning and a slight increase in the later part of the
stimulation time window (blue). In contrast, upon irregular stimulation it steadily
grows over the entire stimulus range (red and orange lines), similarly to σ̂ir(t).
Consequently, the average effect size upon irregular stimulation measured by the DR is
larger than that upon regular stimulation (fig. 9H, red and orange vs. blue full circles),
which is qualitatively consistent with the experimental observations.

The time-dependent mean DNR activity µ̂dnr(t) (shown in fig. 9I) is similar to
µ̂dr(t), whereas σ̂dnr(t) is generally larger than σ̂dr(t), as in the previous cases.
Nevertheless, fig. 9J shows that σ̂dnr(t) is larger in response to irregular stimuli (red and
orange line) than its counterpart measured upon regular stimulation (blue line) and
displays a strong peak at the end. The larger σ̂dnr(t) leads to a larger average effect size
when irregular stimuli are presented (fig. 9K).

In summary, the simulation results in fig. 9 show that once again the DR and the
DNR are consistent with the experimental observation that irregular stimuli are easier
to detect than a regular current step, as opposed to the IR, which yields a smaller effect
upon irregular stimulation than upon regular stimulation.

Discussion

The development of juxtacellular stimulation has brought remarkable experimental
opportunities, ranging from reliably evoking prescribed spike trains [50–52] to probing
the role of a single neuron in the perception of sensory inputs and motor responses [2–6].
Recently, first attempts were made to model the behavioral responses to the stimulation
of a single cortical neuron in rodents [25,26]. However, how the behavioral response
probability is influenced by the properties of the injected current [6, 47] is still
unaccounted for theoretically. The aim of the present study was to construct a model
that can reproduce some of these findings, i.e. that the probability of the behavioral
response is not substantially influenced by the duration or by the intensity of a constant
stimulus, but it is strongly dependent on whether irregular or regular stimuli are used.

The spiking network model we constructed in this study incorporates several
features of the barrel cortex, and its parameters were consistent with the experimental
literature. Among the biological processes included in the model, short-term depression
and spike frequency adaptation could be expected to oppose slow changes in the input.
However, our results indicate that these mechanisms may not be sufficient to explain
the data if an integrator readout (IR) is employed. If a differentiator readout (DR or
DNR) is used instead, simulation results are in agreement with the data.

How plausible is the scenario of a DNR and the implied transmission delays? The
finite time difference used by the differentiator was chosen to be ∆T = 10 ms because it
roughly matches the timescales of the changes induced in the readout population by the
current jumps and thus ensures a good signal-to-noise ratio. The intersomatic distance
required to achieve such a time difference in the barrel cortex would be approximately
2 mm [53], which is a large but not unphysiological value [54]. Moreover, although in
the model the additional delay was entirely assigned to the connections from the BCN
to the inhibitory readout population I (fig. 2C), it would be possible to distribute the
total latency among these connections and those from I to the readout population SB .
In this way, the disynaptic inhibitory pathway would need, for instance, to travel back
and forth with a distance of only one millimeter.

It has been shown that a simple classifier can discriminate highly correlated inputs
to a spiking network which exhibits chaotic spontaneous firing activity [55]. It is likely
that some explicit training of the readout weights would drastically increase the effect
size; in fact, the experimental subjects did undergo a training phase before the
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single-neuron stimulation sessions [4, 6]. However, we chose not to explicitly train the
readout to detect specific cells, because the training in experiments was performed by
employing microstimulation pulses, which intricately affect a large area rather than a
specific cell directly [56–59]. Instead, here we assumed that the training had already
occurred and that it resulted in the formation of the differentiator circuit. It is possible
that training the readout to detect the microstimulation with a suitable learning rule
would produce a detector that is also more efficient in detecting the single-cell
stimulation than the simple differentiator considered here. It would be substantially
more complicated, however, to construct a proper model for the complex and only
partially understood cascade of events triggered by cortical microstimulation.

In our model, the main effect of inducing sustained firing in a single excitatory cell
was to recruit SOM-LTS cells, which, in turn, inhibited the surrounding excitatory
neurons. These results are consistent with the disynaptic inhibition observed in
vitro [40, 41] and with recordings under anesthesia showing that bursts in pyramidal
cells mostly activate surrounding SOM cells, hardly affecting other pyramidal cells or
neighboring fast-spiking neurons [48].

Many different classes of inhibitory interneurons have been identified in the
neocortex [60]. In this study we decided to include only two types of interneurons to try
to limit the already high degree of complexity of the model. Modeling PV neurons is
necessary as they are the most common interneuron type and form the backbone of the
inhibitory system. SOM-LTS cells were included both because they are the second most
common type of interneuron in the barrel cortex [61] and because other experimental
studies hinted at their possible functional role when a single pyramidal cell is firing at
high rates [40,41,48]. Another important class of cortical interneurons is formed by
vasoactive intestinal peptide (VIP) neurons. These neurons do not directly provide
inhibitory input to pyramidal cells and receive comparatively weak input from
pyramidal cells. However, they have been found to make connections to and receive
connections from SOM-LTS cells [32]. A recent computational study shows that the
mutual inhibition between VIP and SOM-LTS cells can modulate the response of
pyramidal cells to external input [62]. On this basis, it may be speculated that VIP
neurons also amplify the response to the single-cell stimulation through disinhibition. In
other words, SOM-LTS cell activation would inhibit VIP neurons which, in turn, would
disinhibit SOM-LTS and amplify the effects of single-cell stimulation. Because VIP
neurons are believed to receive top-down input, this conjecture would explain how the
attention level of the experimental subjects positively influences the ability to detect the
single-cell stimulation [4, 6].

The network model considered here represents the surroundings of the stimulated
cells, which justifies the choice of a random unstructured connection topology within
each neuronal population. Expanding the model beyond the local scale requires a
structured or distance-dependent connectivity profile. Spatial connection profiles and
non-random topologies have strong repercussions on the cross-correlations between the
spike trains in a network [63–66]. Cross-correlations, in turn, largely contribute to the
fluctuations in the pooled activity of a large readout population, as was considered
here [25,49, 67–70], and in general has consequences for the propagation of information
about a stimulus to subsequent processing stages [71]. Hence, it is important that
future studies investigate how different network topologies influence both the signal (the
single-cell stimulation) and the noise (the fluctuations in the network’s activity).

Our results indicate that a readout circuit operating as a differentiator is in better
agreement with the experimental data, although the effect size measured by the
integrator readout was larger in all considered cases. Recalling that experimental
subjects are rewarded for each correct detection, why should they opt for a sub-optimal
readout procedure? One possible answer is that the integrator readout only works
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better for the stationary situation considered here. In reality, the detector would have
to deal with strong and slow variations in the network’s firing state. It is possible to
have a sense of this kind of variability by looking at fig. 10, which shows the
spontaneous firing rate of some neurons during single-cell stimulation recording sessions.
The strong changes in firing rate are mostly unrelated to any stimulation event. A
readout that integrates spiking in a sliding time window would experience difficulty in
distinguishing the possibly small changes induced by the single-cell stimulation from the
strong background variations, whereas a differentiator readout might still separate the
timescales of stimulus and background noise.
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Fig 10. Nonstationarity of the firing rate of cells measured in vivo in the
barrel cortex. Spikes are filtered with a 1 s sliding window.

Methods

Detailed description of the recurrent network model

Single-neuron properties and total input to neurons

We modeled all neurons as leaky integrate-and-fire point neurons [72]. The kth neuron
follows the differential equation

τm,k
dvk
dt

(t) = −vk(t) +Rm,kItotal,k(t), (24)

where the membrane time constant τm,k was drawn from a lognormal distribution with
mean τm,e = τm,s = 20 ms if k is a RS neuron or a SOM-LTS neuron, or with mean
τm,i = 10 ms if k is a FS neuron. The standard deviation of all three distributions was
set to 20% of the mean. These values are compatible with experimental measurements

March 25, 2020 22/35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.30.016261doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.016261
http://creativecommons.org/licenses/by/4.0/


for the rat barrel cortex [29,30]. The membrane resistance is Rm,k = τm,k/Cm, where
the capacitance Cm = 150 pF is assumed equal for all neurons. Equation (24) is
complemented with the rule that whenever vk(t) reaches the threshold value vT,k, the
neuron emits a spike and vk(t) is reset and clamped at vR = 10 mV for the duration of
the refractory period τref,k. The value of the firing threshold was drawn independently
for each neuron from a Gaussian distribution [30] with mean vT,E = vT,I = 20 mV if k
is an RS or FS neuron [29,30] and with mean vT,S = 14 mV if the kth neuron belongs
to the SOM-LTS population, because the distance from resting potential to threshold is
5 mV to 7 mV lower in SOM-LTS neurons than in RS and FS neurons [29]. The
standard deviation was set to 10% of the mean for all three neuron types [29]. The
refractory time is τref,k = τref,0 + τ̂ref,k, where τref,0 = 4 ms and τ̂ref,k was drawn from a
lognormal distribution with mean 2 ms and standard deviation 1 ms. The variability in
the refractory time serves the purpose of mimicking the variability in the maximum
firing rate of neurons [29].

If the kth neuron belongs to the FS population, its total input current Itotal,k is just
the sum of the external input and of the recurrent input, i.e. it reads:

Rm,kItotal,k(t)
k∈FS

= Rm,k[Iext,k(t) + Irec,k(t)], (25)

where the first term on the right side of eq. (25) represents the external input from
other brain areas and the second term models the recurrent local input from other
neurons within the network. If the considered kth neuron belongs either to the RS or to
the SOM-LTS population, the total input current includes an additional adaptation
term ak(t):

Rm,kItotal,k(t)
k∈RS, SOM

= Rm,k[Iext,k(t) + Irec,k(t)− ak(t)]. (26)

The adaptation current in the last equation obeys [36,37]:

τa,k
dak
dt

(t) = −ak(t) + τa,k∆akxk(t), (27)

where xk(t) =
∑
j δ(t− tk,j) is the spike train emitted by neuron k. In other words,

every time the neuron fires, the adaptation current jumps by ∆ak. Otherwise, it decays
to zero with the time constant τa,k.

Both ∆ak and τa,k are randomly drawn from a lognormal distribution with standard
deviation equal to 20% of the mean. For RS neurons, the mean of the two distributions
are τa,e = 100 ms and ∆ae = 0.3 nA, respectively; for SOM-LTS neurons they are
τa,s = 50 ms and ∆as = 0.2 nA, respectively.

With this choice of parameters, the strength of the spike-frequency adaptation
roughly agrees with in vitro measurements from the layer IV of the rat barrel
cortex [29,35].

External input to the network

The external input encompasses one constant term and two excitatory Poissonian
shot-noise processes:

Rm,kIext,k(t) = Rm,kI0 + τm,k

[Cext,th,k∑
j=1

∑
l

J thk,j,lδ(t− tthk,j,l)

+

Cext,bc,k∑
p=1

∑
q

Jbck,p,qδ(t− tbck,p,q)

]
.

(28)
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The constant term is set to Rm,kI0 = 10 mV for all neurons. The second term in
eq. (28) represents the input from the thalamus, and the third mimics incoming spikes
from surrounding cortical areas. Because the thalamus has a higher average firing rate,
“thalamic” input spikes at times tthk,j,l occur at an average rate of rext,th = 10 Hz, while

“cortical” input spikes at times tbck,p,q have a lower rate of rext,bc = 2 Hz. The number of
external input spike trains depends on the cell type. Experimental studies suggest that
SOM cells, in contrast to RS and FS cells, receive only weak input from the thalamus
and from distant brain areas [29,39]. Therefore, if the kth neuron belongs to the
SOM-LTS population, then the number of external inputs is set to zero
Cext,th,k = Cext,bc,k = 0, whereas when k is a RS or a FS neuron, then Cext,th,k = 500.
Furthermore, dendrites of FS neurons tend to be more localized than those of pyramidal
cells, i.e. to receive more input from local RS neurons and less from distant ones. Hence,
the number of inputs mimicking the cortical surroundings is Cext,bc,e = 2000 when k is
a RS neuron, and Cext,bc,i = 1000 when k is a FS neuron. Each input spike causes a
PSP drawn independently from an exponential distribution with mean Jext,e = 0.1 mV
when k is a RS neuron, and from an exponential distribution with mean Jext,i = 0.2 mV
when k is a FS neuron, because both thalamic and cortical excitatory postsynaptic
potential (EPSP) amplitudes are larger in FS cells than in RS cells [29].

Recurrent input to RS neurons

The recurrent input term Irec,k(t) depends on the neuron type. If k is a RS cell, it is

Rm,kIrec,k(t)
k∈RS

= τm,k

[ ∑
i∈Pe(k)

Jki(t)xi(t−Dki)

−
∑

j∈Pi(k)

Jkj(t)xj(t−Dkj)

−
∑

`∈Ps(k)

Jk`(t)x`(t−Dk`)

]
,

(29)

where xi(t−Dki) indicates the spike train emitted by neuron i, Dki represents the total
transmission delay resulting from the axonal propagation, the neurotransmitter diffusion,
and the dendritic propagation from neuron i to neuron k, Jki stands for the synaptic
strength from neuron i to neuron k, which depends on the spiking history (see below).

Connections to neuron k originate from three sets of neurons: Pe(k), formed by
Cee = 300 randomly selected RS neurons, Pi(k), consisting of Cei = 200 randomly
selected FS neurons, and Ps(k), composed of Ces = 100 randomly selected SOM-LTS
neurons. Hence, the connection probability of RS-to-RS synapses is Cee/Ne = 15%, of
FS-to-RS and of SOM-LTS-to-RS is Cei/Ni = Ces/Ns = 50%, consistent with the
experimental observations that the connections between RS cells are sparse whereas
those between RS and inhibitory cells are dense [27,29,40,73–75]. Transmission delays
are drawn uniformly in the range 0.5 ms to 1.0 ms [75]. All synaptic weights in eq. (29)
undergo short-term depression (STD)

Jki(t) = JkiRki(t
−), (30)

where the maximum coupling amplitudes Jki (corresponding to the first spike after
neuron i has not been firing for a long time) are drawn independently from an
exponential distribution with mean Jee = 0.1 mV for RS-to-RS connections,
Jei = 0.5 mV for FS-to-RS coupling, and Jes = 0.25 mV for SOM-to-RS connections.
The variables Rki(t) represent the fraction of available synaptic resources, and t−

indicates that the function is evaluated immediately before a spike. Model and
parameters of STD, i.e. the time evolution of the Rki(t), are described below.
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Recurrent input to FS neurons

The recurrent input to a FS neuron reads:

Rm,kIrec,k(t)
k∈FS

= τm,k

[ ∑
i∈Qe(k)

Jki(t)xi(t−Dki)

−
∑

j∈Qi(k)

Jkj(t)xj(t−Dkj)

−
∑

p∈Qs(k)

Jkp(t)xp(t−Dkp)

+
∑
`∈FS

Ĵk`x`(t−Dk`)

]
,

(31)

where the first term represents the synaptic input from Qe(k), a set of Cie = 800
randomly selected RS cells (connection probability Cie/Ne = 40%), the second term is
the input from the inhibitory FS presynaptic population Qi(k) with size Cii = 200
(connection probability Cii/Ni = 50%), and the third term represents the inputs from
Qs(k), Cis = 50 randomly selected SOM-LTS neurons (connection probability 25%). All
weights appearing in these three terms follow eq. (30) and their peak value is drawn
from an exponential distribution of mean Jie = 0.2 mV, Jii = 1.0 mV, and Jis = 0.1 mV,
respectively. Transmission delays are the same as for RS-to-RS connections. These
values reflect the fact that FS neurons receive strong and dense connections both from
RS and from FS neurons, and that synapses from SOM to FS neurons are
comparatively weaker [29, 32]. The fourth and last term in eq. (31) is an effective model
for the electrical coupling among FS cells (gap junctions), see next subsection.

Effective model for gap junctions

Both FS and SOM neurons in the rat somatosensory cortex are coupled by gap
junctions [31,33,39,76]. In a simplified picture, gap junctions act as a passive
conductance coupling between the membrane voltage of two neurons. The standard way
of mimicking the effect of a gap junction between neuron k and neuron ` would be the
following additional current for neuron k [77, 78]:

Rm,kIGJ,k` = γk`(v` − vk) + τm,kĴk`x`(t−Dk`), (32)

where γk` is proportional to the Ohmic conductance between the two neurons and
modulates the strength of the subthreshold coupling, and Ĵk` models the effect of spikes
fired by neuron `, which has to be added ad hoc, because LIF neurons do not explicitly
generate action potentials. Gap junctions typically form between dendrites of different
neurons. Therefore, the effect of spikes must travel from the soma along the dendrite of
the first neuron to the gap junction and then from it along the dendrite into the soma
of the second neuron. For this reason, the time necessary for this propagation can be as
large as 0.5 ms [79]. Hence the delay term Dk` is drawn from a uniform distribution in
the range 0.1 ms to 0.5 ms. As reported in the main text, the subthreshold coupling is
completely neglected here, i.e. γj` = 0 is set for all neuron pairs. The subthreshold
coupling was shown to have a very weak influence on the firing rate, synchrony, and
oscillation frequency of networks of LIF neurons, as opposed to the spike-related
coupling [34]. The amplitude of gap-junction-related post-synaptic potentials measured
in FS neurons of the rat somatosensory cortex is rather variable and, on average, about
half as large as excitatory post-synaptic potentials induced by RS neurons [79,80].
Hence, Ĵk` was drawn from an exponential distribution of mean Ĵii = Jie/2 = 0.05 mV.
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The probability of a gap junction connecting two neighboring inhibitory neurons of the
same type (FS with FS and SOM with SOM) is high (60% to 80% [39,76]). For
simplicity, the gap-junction coupling was approximated here as all-to-all (without
self-coupling).

Recurrent input to SOM-LTS neurons

Finally, the recurrent input to a SOM-LTS neuron is

Rm,kIrec,k(t)
k∈SOM

= τm,k

[ ∑
i∈Le(k)

Jki(t)xi(t−Dki)

−
∑

j∈Li(k)

Jkj(t)xj(t−Dkj)

+
∑

`∈SOM

Ĵk`x`(t−Dk`)

]
.

(33)

The three terms in eq. (33) represent the input from excitatory RS neurons, from
inhibitory FS neurons, and from gap junctions, respectively. Gap-junctions are modeled
in the same way as for FS neurons: their amplitudes and delays are drawn from the
same distributions. The first term in eq. (33) is the input from Cse = 1000 randomly
chosen RS neurons (connection probability Cse/Ne = 50%). These are the only
connections that undergo short-term facilitation instead of depression, and for which
random transmission failures were modeled (details on the model below). The static
baseline amplitudes Jki of each synapse are drawn independently from an exponential
distribution and have mean Jse = 0.1 mV. The second term in eq. (33) represents the
input from Csi = 100 randomly selected FS neurons (connection probability
Csi/Ni = 25%). These connections have the average maximum strength Jsi = 0.25 mV,
undergo short-term depression and obey eq. (30). Chemical synapses between SOM
neurons are infrequent and weak [29,39] and were omitted for simplicity.

Model of short-term depression

Except for those connecting RS to SOM neurons, all chemical synapses in the model
undergo short-term depression. Each weight Jkj(t) has a time dependence described by

Jki(t) = JkiRki(t
−), (34)

where the variable Rki(t) stands for the fraction of available synaptic resources and is
described by the standard model by Tsodyks and Markram [43],

Ṙki(t) =
1−Rki(t)

τD
− UseRki(t−)

∑
j

δ(t− t̂i,j), (35)

where t̂i,j are the times at which the spikes of neuron i arrive at the synapse, and t−

indicates that the function is evaluated at t− ε (ε > 0 is a small positive number), i.e.
just before a spike. The parameter Use represents the release probability and τD is the
recovery time scale. Note that the time evolution of Rki(t) depends on the spike times
of the presynaptic neuron i only. Hence, if τD and Use do not depend on k, the time
course of each variable Rki(t) is a time-shifted copy of a single master variable Ri(t)

Rki(t) = Ri(t−Dki), (36)
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where Ri(t) obeys the same equation as Rki(t), except that the arrival times t̂i,j in
eq. (35) are replaced by ti,j , the spike times of neuron i. Here, it is assumed that τD
and Use only depend on the type of the source and target neuron, but not on the
identity of the particular neuron within a population so that eq. (36) holds. In this way,
the actual number of dynamic variables required to simulate the network is reduced
from one variable per synapse to one variable per neuron, which is an enormous
computational advantage.

The parameter values chosen to model strong depression (all connections depicted in
blue in fig. 1) are τD = τD,s = 150 ms and Use = Use,s = 0.2. With this choice, the
eighth PSP of a 40 Hz pre-synaptic regular spike train is about one half of the maximal
amplitude [29]. Most chemical synapses in the barrel cortex are depressing ( [29, 42, 53]).
However, inhibitory synapses originating from SOM-LTS neurons and terminating onto
RS neurons show only weak depression or slight facilitation. Here, these connections are
modeled as mildly depressing (fig. 1, light blue) by setting τD = τD,w = 50 ms and
Use,w = 0.05. For simplicity, also SOM-to-FS connections were given the same STD
parameters.

Short-term facilitation and transmission failures

Excitatory synapses from RS neurons to SOM-LTS neurons (depicted in red in fig. 1)
are strongly facilitating ( [29,40,41]). If the parameter Use in eq. (36) is turned into a
dynamical variable, u(t), facilitating synapses can be described [44,81]. The amplitude
of the PSPs is proportional to the product R(t)u(t). Considering the connection from
the RS neuron i to the SOM-LTS neuron k, the time evolution of the synaptic
amplitude is described by (note that the conventions have been slightly changed with
respect to ref. [44]):

Jki(t) = JkiRi(t
− −Dki)

ui(t
+ −Dki)

Ub
, (37)

where t+ means that the function is evaluated at t+ ε, i.e. the value of ui(t) just after
the occurrence of a spike. The variables Ri(t) and ui(t) obey

u̇i(t) =
Ub − ui(t)

τF
+
(

1− ui(t−)
)
U
∑
j

δ(t− ti,j) (38)

Ṙi(t) =
1−Ri(t)

τD
−ui(t−)Ri(t

−)
∑
j

δ(t− ti,j), (39)

where ti,j indicate the spike times of neuron i. The first term in eq. (38) governs the
relaxation of the facilitation variable to the baseline level Ub and the second term
determines a positive jump upon each pre-synaptic spike. The time evolution of the
depression variable Ri(t) has the same form of eq. (35), i.e. a purely depressing synapse,
except that the release probability is the time-dependent function ui(t). The choice of
the parameters U, τF , τD dictates whether, for a given firing rate, the synapse facilitates,
depresses, or both [44]. Here, the four parameters appearing in eqs. (38) and (39) were
set as follows: τF = 300 ms, τD = τD,f = 100 ms, Ub = 0.01, and U = 0.03. With this
choice and for a pre-synaptic stimulation of 40 Hz, the synapse is purely facilitating [29].

RS-to-SOM synapses stand out from all other synapses considered here because of a
much higher occurrence of transmission failures at low presynaptic firing rates (the
average failure rate is ≈ 10% for RS-to-RS synapses, ≈ 5% for synapses to and from FS
neurons, and & 50% for RS to SOM-LTS synapses [29]). However, the failure rate of
RS-to-SOM-LTS synapses decreases to ≈ 10% upon repeated stimulation at 40 Hz
(failure rates for other synapses weakly depend on the presynaptic firing rate [29]). Here,
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transmission failures are modeled only for RS-to-SOM synapses via a stochastic binary
variable S(pf ):

S(pf ) =

{
1 with probability 1− pf
0 with probability pf

, (40)

where pf describes the failure rate, which obeys the following dynamical equation

ṗf (t) =
pf,rest − pf (t)

τf
−G(pf ,∆pf , pmin)

∑
j

δ(t− ti,j). (41)

In the last equation, pf,rest = 0.5 is the baseline failure rate. Upon each presynaptic
spike, the failure rate decreases by G(pf ,∆pf , pmin) and relaxes back to the baseline
value with the time constant τf = 250 ms. The size of each downward jump is
∆pf = 0.1 but is constrained to values above ∆pf = pmin = 0.1, a condition which is
imposed by the piecewise linear function

G(pf ,∆pf , pmin) =


0 if pf ≤ pmin

pf − pmin if pmin < pf < pmin + ∆pf

∆pf if pmin + ∆pf ≤ pf
. (42)

In the end, the synaptic weight from the RS neuron i to the SOM-LTS neuron k obeys
the following equation:

Jki(t) = JkiRi(t
− −Dki)

ui(t
+ −Dki)

Ub
S
(
pf,i(t

− −Dki)
)
. (43)

If the average effect of synaptic failures is taken into account, a 40 Hz presynaptic
stimulation causes the eighth PSP to be about eight times larger than the first, which is
in a reasonable qualitative agreement with the strong amplification measured in
vitro [29, 41].

Detailed description of the readout network model

The differentiator network readout (DNR) consists of one population of NB = 10 000
RS neurons (SB) and of one population of 2000 FS neurons (I). Each neuron in the
DNR follows the same dynamical equation as its counterpart within the BCN and
receives feedforward input from Ĉ = 1000 randomly selected RS neurons of the BCN.
The number of independent Poisson processes mimicking thalamic input is CRext,th = 250
and the constant external input is RmI0, = 15 mV. The number of independent Poisson
processes representing cortical input is the same as for the BCN. Each neuron in the
DNR receives 200 random connections from the local inhibitory population (I). Hence,
the only recurrent connections within the DNR are inhibitory.

All connections from the BCN to the DNR and within the DNR are randomly drawn
from the same distributions as for the corresponding class of neurons within the BCN,
except for the connections from the inhibitory readout population I to the excitatory
readout population SB , the average strength of which, JR

ei, is tuned to a value that
enables the DNR to approximate the function of a differentiator circuit, as explained in
the following.

Referring to fig. 4, we have to calculate the value of JR
ei such that the input ∆µI via

the indirect path to the readout population SB equals a negative and temporally
delayed image of the direct input ∆µe. This value can approximately be determined by
the following linear-response calculation.

Consider a perturbation of the firing rate of the RS neurons within the BCN and
indicate it with ∆re. We assume that the perturbation is slow compared to the most
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important system time constants so that time-dependencies can be neglected. As a
consequence of the firing rate perturbation within the BCN, the mean input from the
BCN to SB changes by

∆µe = τm,eJ
FF
ee R̄(re)Ĉ∆re, (44)

where the term

R̄(r) =
1

1 + τD,sUse,sr
(45)

represents the average effect of the short-term depression (STD), given a presynaptic
firing rate r. In eq. (44), JFF

ee represents the average synaptic strength of the
connections from the BCN to the excitatory readout population SB . Likewise, the mean
input from I to SB changes by

∆µI = −τm,eJR
eiR̄(rI)CRei∆rI , (46)

where CRei = 200 is the number of input connections from I to SB per postsynaptic
neuron, and ∆rI is the change in the firing rate of the population I from the
spontaneous value rI .

The linear-response approximation of ∆rI is

∆rI =
dφsn
dµ

τm,i

(
JFF
ie R̄(re)Ĉ∆re−JR

ii R̄(rI)CRii∆rI

)
, (47)

where dφsn/dµ is the so-called DC susceptibility, i.e. the linear response of the firing
rate of a LIF neuron to a slow change in its total mean input µ. The value of the DC
susceptibility can be approximated by taking the derivative of the firing rate of a
white-shot-noise-driven LIF neuron [82] with respect to its mean input. The explicit
expression for dφsn/dµ with a non-zero refractory period can be found in the first
appendix of [49].

First, eq. (47) can be solved for ∆rI and substituted into eq. (46). Then, we require
that the perturbation in the mean input from direct and indirect pathways cancel each
other (see fig. 4). In other words, we impose ∆µe + ∆µI = 0 and finally solve for JRei ,
which yields

JRei =
JFFee

(
1 + τm,i

dφsn

dµ JRii R̄(rI)CRii

)
τm,i

dφsn

dµ JFFie CReiR̄(rI)
. (48)

The only unknown quantity on the right hand side of eq. (48) is rI , the spontaneous
firing rate of I. This firing rate can be estimated from the numerical solution of the
following self-consistency condition:

rI = φsn(JFFee , JRii , r
in
tot, C

R
ii · rI , Iext), (49)

where rintot = Ĉre + CRext,bc,erext,bc + CRext,th,erext,th is the total excitatory input rate to
I and φsn(ae, ai, Re, Ri, I0) is the firing rate of a LIF neuron driven by white shot-noise
with exponentially distributed weights [82]. The first two arguments, ae, ai are the
excitatory and inhibitory mean input weights, respectively. The third and fourth
argument Re, Ri are the input rates of the excitatory and inhibitory input, respectively.
The last argument I0 is the constant input. The explicit expression with non-zero input
current and non-zero refractory period is

φsn(ae, ai, Re, Ri, I0) =

(
τref

+ τm

1/ae∫
0

ds

s
Z−10 (s)

[
esv̂T

1− aes
− esv̂R

])−1
(50)

March 25, 2020 29/35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.30.016261doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.016261
http://creativecommons.org/licenses/by/4.0/


where v̂R = vR −RmI0, v̂T = vT −RmI0, and Z−10 (s) = (1− aes)τmRe(1 + ais)
τmRi .

Substituting numerical values in eq. (48) reveals that JRei = 0.65 mV approximately
satisfies the imposed condition.

Experimental data

The experimental data appearing in figs. 7 to 9 are a part of the dataset of
references [6, 47]. In particular, the data shown in fig. 7 are the average effect size (for
each stimulus duration) of most cells shown in Fig. 18A of reference [47] (800 ms stimuli
were not used in the present study); the experimental effect size in fig. 8 is the average
for each stimulus intensity (and duration) of the cells appearing in Fig. 14A of
reference [47]; the average effect size for regular and irregular stimulation of fig. 9 is
based on the same dataset used for Fig. 21C of reference [47]. For experimental
procedures, we refer to [6, 47].
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