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Fig 6. Illustration of simplified detection model used to interpret the
simulation results. The continuous-time problem is approximated by a discretized
process, obtained by “sampling” trajectories at times separated by the correlation time.
Each deviation from the spontaneous state changes the probability of not reaching the
decision barrier from the spontaneous value py to p; or to ps.

deviation of the readout activity is defined in a similar way:
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Non-zero values of fix(t) and of 6x(¢) at any time point within the detection time
window can impact the effect size in different ways. Suppose, for instance, that the
considered detector employs an upper boundary. Then, a positive deflection of fix (¥)
locally increases the probability of reaching the threshold, whereas a negative deflection
reduces it. If a lower detection boundary is used, the opposite holds. Regardless of the
type of threshold, a local increase of 6 x(t) enhances the probability of reaching the
threshold, whereas a local decrease in 6x (t) reduces the probability of crossing the
decision barrier. This line of reasoning is qualitative only and holds under the
assumption that Ax(¢) is approximately normally distributed at all times.

To understand how multiple deviations from the spontaneous state within the
decision time window jointly influence the effect size, it is useful to consider a simplified
description of the decision model introduced in [25,26,49]. In this simplified theory, hit
and false positive rates are approximated as the result of n = Ty, /Tcorr draws of a
random variable, where T, is the detection time window and 7., is the autocorrelation
time of the readout activity (in the example of fig. 6, n = 4). If these draws are treated
as independent, the false positive rate reads

FPO) =1-p5(0), (17)

where po(6) is the probability of not crossing the barrier 6 at a given time point and in
the absence of the stimulus [pg(#) does not depend on time and is therefore the same for
each draw]. For concreteness, let us use an upper barrier at the value @, which yields
the false positive rate of 0.25. In this way, the dependence on € can be dropped, but the
following considerations do not depend on the particular position or type of the
boundary. Suppose now that fix(t) displays one peak at a certain position within the
detection time window, as depicted in fig. 6A. Therefore, the probability that one
trajectory of the readout activity triggers the detector is locally increased. Thus, in the
vicinity of the peak, the probability of not triggering the detector will be
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p1 = po + Ap1 < po. The correct detection rate for this situation is then
CDy=1—pipy . (18)
Consequently, the effect size reads
V=t - 0 = (1-2)). (19)
0

Consider now the situation of a negative deflection in fix (t) occurring at a different
time (as in fig. 6B). Locally, the probability of not triggering the detector is
P2 = po + Apa > pg. In this case, the effect size is

\) n— n n D
V=L parfy = (=) =0 (1-2). (20)

Suppose now that both features are present at sufficiently separated times within the
same detection time window, as in fig. 6C. In this case, the effect size is

- _ pip
Viz = py — pipepy 2 = phy (1 - ;;) . (21)
0

Substituting p; = po + Apy and ps = pg + Aps into eq. (21) and supposing
Apq, Aps < 1 yields

ST P + poAp1 + poAps + Ap1 Aps + pE — pi
Vie=py | 1- 3
Po
+ A + A
wg(l_pole_M) (22)
Po Do
=)+ .

This approximation generalizes to the case of more than two deviations from the
spontaneous state [49], given that all deviations are small compared to pg. For instance,
when three features are present the effect size is

v P1p2p3 5 5 5

Y123 = py (1— e ) =Y+ Vo + Vs, (23)
0

The main insight here is that weak deviations from the spontaneous state appearing in

the same detection window can (approximately) add or cancel each other. This will be

useful in the following to interpret how the behavior of fix (¢) and 6x(t) influence the

response of the detector.

Detection of the stimulation of a single neuron

In this subsection, we will investigate how the properties of the stimulus influence the
response probability of the detector for each of the three readout procedures.

Effect of stimulus duration

The effect of changing the stimulus duration will be considered first. To this end,
stimuli of length 100, 200, and 400 ms are used (fig. 7, top). The stimulus intensity is
kept constant at 25% of the maximum current. In the experiment, when the stimulated
cell was a RS neuron, the three stimuli evoked 6 &3, 11 £ 5, and 23 4+ 10 spikes,
respectively. In the model, the number of evoked spikes was 7+ 1, 124+ 2, and 20+ 5
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spikes, respectively. The average number of evoked spikes generated by the model is
within one standard deviation of the experimental data. However, the spread of the
spike count distribution is smaller in the model, which is not surprising, considering the
multiple possible noise sources that are not modeled, and that only some of the cellular
parameters are randomly distributed in the model.

Figure 7 gives an overview of fix(t), 6x (), and the effect size measured by all three
detectors with stimuli of different duration. In all plots, the color coding is as in the top
panel and the black line represents catch trials. The various panels are organized as
follows: the first, second, and third column represent results obtained from the IR, DR,
and DNR, respectively; the first row shows the time-dependent trial average (expressed
as standard score) fix(t), the second row shows &x (t), and the third row displays the
effect size defined as in eq. (12) (filled dots) superimposed with the experimental results
(open circles with error bars).

The IR activity A; (t) is a low-pass filtered sum of a random subset of the spike
trains fired by the RS population, as made clear by eq. (1). Hence, the time course of
fiir(t) upon 400 ms stimulation (fig. 7A, blue line) closely resembles that of the RS
population (see fig. 5 and the related discussion on p. 10). Except for the small initial
peak due to the spikes fired by the stimulated cell (note that there is a 50% chance in
each trial that the stimulated cell is included in the readout activity), the average
response of the IR activity is a reduction that shows its deepest dip around ¢ = 40 ms
and then relaxes back owing to the spike-frequency adaptation of RS and SOM-LTS
populations. In the case of the 100 ms stimulus (red line), the mean deviation goes back
to zero shortly after the stimulus is turned off, while fi;,(¢) for the other stimulus
durations (green and blue line) settles around -0.3 for the remainder of the respective
stimulation time window. In each case, fi;,(f) shows an overshoot caused by the slower
relaxation time scales of the adaptation variables; the overshoot is stronger the longer
the signal’s duration. The time-dependent standard deviation 6;,(¢), shown in fig. 7B,
does not display appreciable deviations from zero except for a small dip that
corresponds to that observed in the mean. The time courses of fi;;(t) and &, (t) suggest
that the readout activity has more chances of reaching a lower detection threshold for
longer lasting stimuli. Indeed, the effect size measured by the IR strongly depends on
the stimulus duration, as it can be seen in fig. 7C (filled circles), which is in contrast
with the experimental data (open circles with error bars).

When the DR is used, the picture changes rather drastically. The time-dependent
mean jig,(t) displays three peaks and one trough in response to all three signals
(fig. 7D), even though the last two peaks partly overlap in the case of the 100 ms
stimulus (red line). Because the DR considers differences in the IR readout activity,
each peak corresponds to an upswing of fi;,(¢) and the trough to the initial sharp drop.
The most prominent feature in 64,(t) is the dip right after the stimulus onset, which is
the same for all stimuli (fig. 7E). The main difference in the response to the three
stimuli is the position of the last peak. Hence, it stands to reason that the DR activity
Agy(t) has similar chances to reach the upper barrier regardless of the signal length.
Indeed, the effect size measured by the DR is very similar for the three signals and of
the same magnitude as that measured in the experiments (fig. 7F).

The time course of fiqn(t) qualitatively resembles that of fiq,(t) (see fig. 7G), thus
suggesting that the DNR does approximately operate as a differentiator. The most
evident difference between fiqn,(t) and fig,(¢) is the more pronounced undershoot after
the last peak, which is likely due to the adaptation current in the readout population.
The time-dependent standard deviation G4, (t) behaves similarly to the mean, and
shows peaks and one dip at the same time as the time-dependent mean (fig. 7H).
However, a persistent positive shift of G4, (¢) with respect to the zero level can be
observed during the entire duration of the signal, which slightly enhances the
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Fig 7. Only simulation results from differentiator readout (DR) and
differentiator network readout (DNR) are compatible with the
experimental data for the stimulation of a RS cell with three stimuli of
equal intensity and different duration (top panel). First row: standardized
deviation from the spontaneous value of the time-dependent mean readout activity

eq. (13). Second row: standardized deviation from the spontaneous value of the
time-dependent standard deviation of the readout activity eq. (16). Third row: average
effect size for the three stimuli. Open circles with error bars are experimental results,
which are the same in each panel, and represent the average effect size computed from
119 RS cells (2407 trials in total). First column: integrator readout (IR). Second
column: differentiator readout (DR). Third column: differentiator network readout
(DNR). The color of each line corresponds to a stimulus as in the top panel (red:

100 ms, green: 200 ms, blue: 400ms). Black line is catch trial condition (no stimulus).
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detectability of the longer signal, as seen in fig. 71. Still, the increase is moderate and
the effect sizes are still close to the experimental values.

To summarize the results of fig. 7, the effect size measured by the IR is larger but
strongly depends on the duration of the stimulus. The DR and the DNR detect the
stimulus with a reliability that is essentially independent of the signal duration and that
is of the same magnitude as the experimental data.

Effect of stimulus intensity

In the second experiment, we vary the firing rate of the stimulated cell by changing the
current intensity while keeping the total area under the step stimulus, i.e. the injected
charge, constant. As depicted in the top panel of fig. 8, the stimulus lasting 100 ms
(red), 200ms (green), and 400 ms have an intensity corresponding to 100%, 50%, and
25% of the maximum current, respectively. In this way, the total number of elicited
spikes is approximately the same for each stimulus. In the experiment, the three stimuli
evoked a firing rate of (109 &+ 52) Hz, (54 £ 23) Hz, and (30 + 10) Hz, respectively. In
the model, the average evoked rates are (150 & 25) Hz, (103 £ 20) Hz (50 + 12) Hz.
Note that the maximum current in the model is chosen such that the number of elicited
spikes roughly matches the data of the previous experiment (dependence on stimulus
duration), which were based on a different set of cells. Still, the evoked firing rates in
the model are in a similar range as the experimental values.

Figure 8 reports all detection statistics arranged in the same way as before. The
shape of [i;;(¢), the mean response of the IR to the three stimuli, is similar to the
previous case, although the initial drop is much stronger here when the stronger stimuli
are used (fig. 8A). A clear dip in the time-dependent standard deviation i(t) is
observed right after the signal onset for the two stronger stimuli (fig. 8B). The
pronounced initial response to the stronger signals roughly compensates the shorter
duration of the signal in terms of chances of reaching the detection barrier. As a result,
the effect size measured by the IR depends weakly on the current intensity and is much
stronger than in the experiments, as shown in fig. 8C.

The time-dependent mean of the DR activity, fiq;(t), shown in fig. 8D, displays an
initial drop followed by two peaks for each of the three stimuli. Here, however, both the
first trough and the two subsequent peaks are more pronounced for signals of larger
intensity, and the same holds for the initial dip in the time-dependent standard
deviation 64,(t) (fig. 8E). As these features have opposing effects and become stronger
simultaneously upon growing stimulus intensity, the net effect on the response
probability is barely noticeable, as shown in fig. 8F. Furthermore, the effect size is of
magnitude comparable with the experimental observations.

Results obtained from the DNR are mostly similar to those from the DR. The
principal differences are the mild trough after the last peak in the mean response fidn, (%)
(fig. 8G) and the increased G4n,(t) in the later part of the response (fig. 8H). The effect
size measured from the DNR in the model shows a slight increase upon decreasing
current intensity, which, considering the measurement uncertainties, is still consistent
with the experimental observations.

Hence, the effect measured by all three readouts shows a weak dependence on the
intensity of the stimulus, as it is observed in the experimental data. However, the effect
size measured by the DR and the DNR is close to the experimentally observed average
effect size of ~ 2%, while the effect size obtained from the IR is considerably larger.

Effect of stimulus regularity

In the third and last in silico experiment, random stimuli will be used to evoke irregular
spike trains. These stimuli, in accordance with the experimental procedure [6,47], is a
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Fig 8. Only results from differentiator readout (DR) and differentiator
network readout (DNR) are compatible with the experimental data for the
stimulation of a RS cell with three stimuli of intensity inversely
proportional to duration (top panel). As in the previous case, results from
differentiator readout (DR) and differentiator network readout (DNR) are compatible
with experimental data, whereas integrator readout (IR) gives qualitatively different
results. Meaning of panels and color coding are as in fig. 7. Open circles with error bars
are experimental results, which are the same in each panel, and represent the average

effect size computed from 55 RS cells (1469 total trials).
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random shuffling of six current steps of length 10, 20, 40, 80, 160, and 90 ms, and with
current intensity 100%, 50%, 25%, 12.5%, 6.25%, and -50% of the maximum current,
respectively. In other words, each sequence consists of a random permutation of five
positive (depolarizing) current steps with intensity inversely proportional to the
duration and of one hyperpolarizing step, which inhibits the cell from firing. Two
example signals are shown in fig. 9A. Note that stimuli are varied in each trial and not
frozen. The irregular stimuli are constructed such that their total duration is 400 ms.
The response probability to these stimuli will be compared to that of regular steps of
400 ms at 25% of the maximum current, which was used in both previous cases (plotted
in blue). In the experiments, irregular current injections generated spike trains with an
average firing rate of (24 £ 11) Hz and average CV of (1.1 £0.3). In the model, the
average rate is (27 &+ 5) Hz and the average CV (1.3 £0.3).

In fig. 9 we compare the simulation results obtained when irregular stimuli are used
to those obtained from the 400 ms regular current injection. The latter is shown once
more in fig. 9 because it serves here as reference case but it will not be discussed in
depth (see discussion above). Results for irregular stimulation are based on two sets of
irregular stimuli, constructed by choosing from all possible permutations with equal
probability. Despite the large total number of trials used here (Niya1s = 10000), it is
advisable to compare results for two independent sets of stimuli because the large
number of possible permutations (6!=720) implies that the number of trials per signal is
limited and that finite-size fluctuations due to the particular choice of signals may be
non-negligible. Results for the two independent sets of irregular stimuli are plotted in
red and orange in fig. 9. We recall that fix(t) and x(t) are obtained by averaging over
different realizations of the irregular stimuli and are not related to the two particular
signals shown in fig. 9A.

The average signal is plotted in fig. 9B and displays a peak just after the stimulus
onset, followed by a mild trough and then by a plateau barely above the zero level. Just
before the end of the stimulation time window, another trough followed by a peak can
be seen. Accordingly, ji;, shows two dips at the same time where the two peaks in the
average signal are seen (fig. 9C). Note that although the first and second half of the
average signal are perfectly symmetrical, the second dip in fi;,(¢) is more pronounced
than the first.

Considering how different the average signal is from each particular realization of the
irregular sequence, it may seem questionable to average over signals that provoke rather
heterogeneous responses. However, the detector as well as the animals in the actual
experiments do not know which realization of the irregular sequence is used in each trial.
Therefore, this averaging ensemble, in which the stimulus is drawn in each trial,
correctly represents the experimental situation and it makes sense to consider its
time-dependent mean, as done above. The variability due to the particular realization
of the input signal, which mostly averages out in the mean, reveals itself in an increased
time-dependent standard deviation, 6y.(¢) (fig. 9D), which is above the zero level in the
entire stimulation time window and grows further towards the end of the stimulus. This
increase of 6;,(t) above the zero level enhances the chances of reaching the detection
threshold. As a result, the effect size upon irregular stimulation is large, but not as
large as that observed for the regular stimulus (fig. 9E filled dots), which is not
consistent with the experimental observations, in which it is the other way around
(fig. 9E, open circles with error bars).

The average DR activity in response to the irregular stimuli (fig. 9F, red and orange
line) and to the 400 ms regular stimulus (blue line) are rather similar to each other. The
main difference is that both the initial trough and peak are somewhat smaller for
irregular stimulation. Furthermore, a small dip is observed for irregular stimuli just
before the last peak. On the contrary, the standard deviation 64,(t) is markedly
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Fig 9. Summary of detection statistics upon stimulation of a RS cell with
irregular stimuli (random permutation of multiple current steps),
compared to regular 400 ms stimulation. Blue line refers to regular stimulus, as
in the previous cases. Red and orange lines represent two different random samples of
10000 stimuli (the stimulus is changed in each trial) from the 720 possible permutations
of the six steps (two specific realizations are shown in the top panel, while the average
stimulus is shown in the inset). Black line is catch trial condition (no stimulus). First
row: standardized deviation from the spontaneous value of the time-dependent mean
readout activity eq. (13). Second row: standardized deviation from the spontaneous
value of the time-dependent standard deviation of the readout activity eq. (16). Third
row: mean effect size for regular and irregular stimulation. Open circles with error bars
are experimental results, which are the same in each panel, and represent the average
effect size computed from 62 RS cells (1780 trials in total).
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different for the two stimulus types (fig. 9G). When the regular stimulus is used, G4, (%)
displays a small dip at the beginning and a slight increase in the later part of the
stimulation time window (blue). In contrast, upon irregular stimulation it steadily
grows over the entire stimulus range (red and orange lines), similarly to i, (t).
Consequently, the average effect size upon irregular stimulation measured by the DR is
larger than that upon regular stimulation (fig. 9H, red and orange vs. blue full circles),
which is qualitatively consistent with the experimental observations.

The time-dependent mean DNR activity fign,(t) (shown in fig. 91) is similar to
ftar (t), whereas Ganr(t) is generally larger than G4,(t), as in the previous cases.
Nevertheless, fig. 9J shows that 64y, (t) is larger in response to irregular stimuli (red and
orange line) than its counterpart measured upon regular stimulation (blue line) and
displays a strong peak at the end. The larger G4,,(t) leads to a larger average effect size
when irregular stimuli are presented (fig. 9K).

In summary, the simulation results in fig. 9 show that once again the DR and the
DNR are consistent with the experimental observation that irregular stimuli are easier
to detect than a regular current step, as opposed to the IR, which yields a smaller effect
upon irregular stimulation than upon regular stimulation.

Discussion

The development of juxtacellular stimulation has brought remarkable experimental
opportunities, ranging from reliably evoking prescribed spike trains [50-52] to probing
the role of a single neuron in the perception of sensory inputs and motor responses [2-6].
Recently, first attempts were made to model the behavioral responses to the stimulation
of a single cortical neuron in rodents [25,26]. However, how the behavioral response
probability is influenced by the properties of the injected current [6,47] is still
unaccounted for theoretically. The aim of the present study was to construct a model
that can reproduce some of these findings, i.e. that the probability of the behavioral
response is not substantially influenced by the duration or by the intensity of a constant
stimulus, but it is strongly dependent on whether irregular or regular stimuli are used.

The spiking network model we constructed in this study incorporates several
features of the barrel cortex, and its parameters were consistent with the experimental
literature. Among the biological processes included in the model, short-term depression
and spike frequency adaptation could be expected to oppose slow changes in the input.
However, our results indicate that these mechanisms may not be sufficient to explain
the data if an integrator readout (IR) is employed. If a differentiator readout (DR or
DNR) is used instead, simulation results are in agreement with the data.

How plausible is the scenario of a DNR and the implied transmission delays? The
finite time difference used by the differentiator was chosen to be AT = 10 ms because it
roughly matches the timescales of the changes induced in the readout population by the
current jumps and thus ensures a good signal-to-noise ratio. The intersomatic distance
required to achieve such a time difference in the barrel cortex would be approximately
2mm [53], which is a large but not unphysiological value [54]. Moreover, although in
the model the additional delay was entirely assigned to the connections from the BCN
to the inhibitory readout population Z (fig. 2C), it would be possible to distribute the
total latency among these connections and those from Z to the readout population SZ.
In this way, the disynaptic inhibitory pathway would need, for instance, to travel back
and forth with a distance of only one millimeter.

It has been shown that a simple classifier can discriminate highly correlated inputs
to a spiking network which exhibits chaotic spontaneous firing activity [55]. It is likely
that some explicit training of the readout weights would drastically increase the effect
size; in fact, the experimental subjects did undergo a training phase before the
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single-neuron stimulation sessions [4,6]. However, we chose not to explicitly train the
readout to detect specific cells, because the training in experiments was performed by
employing microstimulation pulses, which intricately affect a large area rather than a
specific cell directly [56-59]. Instead, here we assumed that the training had already
occurred and that it resulted in the formation of the differentiator circuit. It is possible
that training the readout to detect the microstimulation with a suitable learning rule
would produce a detector that is also more efficient in detecting the single-cell
stimulation than the simple differentiator considered here. It would be substantially
more complicated, however, to construct a proper model for the complex and only
partially understood cascade of events triggered by cortical microstimulation.

In our model, the main effect of inducing sustained firing in a single excitatory cell
was to recruit SOM-LTS cells, which, in turn, inhibited the surrounding excitatory
neurons. These results are consistent with the disynaptic inhibition observed in
vitro [40,41] and with recordings under anesthesia showing that bursts in pyramidal
cells mostly activate surrounding SOM cells, hardly affecting other pyramidal cells or
neighboring fast-spiking neurons [48].

Many different classes of inhibitory interneurons have been identified in the
neocortex [60]. In this study we decided to include only two types of interneurons to try
to limit the already high degree of complexity of the model. Modeling PV neurons is
necessary as they are the most common interneuron type and form the backbone of the
inhibitory system. SOM-LTS cells were included both because they are the second most
common type of interneuron in the barrel cortex [61] and because other experimental
studies hinted at their possible functional role when a single pyramidal cell is firing at
high rates [40,41,48]. Another important class of cortical interneurons is formed by
vasoactive intestinal peptide (VIP) neurons. These neurons do not directly provide
inhibitory input to pyramidal cells and receive comparatively weak input from
pyramidal cells. However, they have been found to make connections to and receive
connections from SOM-LTS cells [32]. A recent computational study shows that the
mutual inhibition between VIP and SOM-LTS cells can modulate the response of
pyramidal cells to external input [62]. On this basis, it may be speculated that VIP
neurons also amplify the response to the single-cell stimulation through disinhibition. In
other words, SOM-LTS cell activation would inhibit VIP neurons which, in turn, would
disinhibit SOM-LTS and amplify the effects of single-cell stimulation. Because VIP
neurons are believed to receive top-down input, this conjecture would explain how the
attention level of the experimental subjects positively influences the ability to detect the
single-cell stimulation [4, 6].

The network model considered here represents the surroundings of the stimulated
cells, which justifies the choice of a random unstructured connection topology within
each neuronal population. Expanding the model beyond the local scale requires a
structured or distance-dependent connectivity profile. Spatial connection profiles and
non-random topologies have strong repercussions on the cross-correlations between the
spike trains in a network [63-66]. Cross-correlations, in turn, largely contribute to the
fluctuations in the pooled activity of a large readout population, as was considered
here [25,49,67-70], and in general has consequences for the propagation of information
about a stimulus to subsequent processing stages [71]. Hence, it is important that
future studies investigate how different network topologies influence both the signal (the
single-cell stimulation) and the noise (the fluctuations in the network’s activity).

Our results indicate that a readout circuit operating as a differentiator is in better
agreement with the experimental data, although the effect size measured by the
integrator readout was larger in all considered cases. Recalling that experimental
subjects are rewarded for each correct detection, why should they opt for a sub-optimal
readout procedure? One possible answer is that the integrator readout only works
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better for the stationary situation considered here. In reality, the detector would have
to deal with strong and slow variations in the network’s firing state. It is possible to
have a sense of this kind of variability by looking at fig. 10, which shows the
spontaneous firing rate of some neurons during single-cell stimulation recording sessions.
The strong changes in firing rate are mostly unrelated to any stimulation event. A
readout that integrates spiking in a sliding time window would experience difficulty in
distinguishing the possibly small changes induced by the single-cell stimulation from the
strong background variations, whereas a differentiator readout might still separate the
timescales of stimulus and background noise.
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Fig 10. Nonstationarity of the firing rate of cells measured in vivo in the
barrel cortex. Spikes are filtered with a 1s sliding window.
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Methods

Detailed description of the recurrent network model
Single-neuron properties and total input to neurons

We modeled all neurons as leaky integrate-and-fire point neurons [72]. The kth neuron
follows the differential equation

dvk
Tm,kg(t) = —vx(t) + Rk Lrotar (1), (24)
where the membrane time constant 7, ; was drawn from a lognormal distribution with
mean Ty, e = Tm,s = 20ms if £ is a RS neuron or a SOM-LTS neuron, or with mean
Tm,i = 10ms if k is a F'S neuron. The standard deviation of all three distributions was
set to 20% of the mean. These values are compatible with experimental measurements
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for the rat barrel cortex [29,30]. The membrane resistance is Ry, k = T k/Cm, Where
the capacitance Cy, = 150 pF is assumed equal for all neurons. Equation (24) is
complemented with the rule that whenever vy(¢) reaches the threshold value vy, the
neuron emits a spike and vy (t) is reset and clamped at v = 10mV for the duration of
the refractory period 7ycr k. The value of the firing threshold was drawn independently
for each neuron from a Gaussian distribution [30] with mean vy g = vp; = 20mV if k
is an RS or FS neuron [29,30] and with mean vy g = 14mV if the kth neuron belongs
to the SOM-LTS population, because the distance from resting potential to threshold is
5mV to 7mV lower in SOM-LTS neurons than in RS and FS neurons [29]. The
standard deviation was set to 10% of the mean for all three neuron types [29]. The
refractory time is Tyef k = Tref,0 + Tret,k, Where Trep o = 4ms and Tyer x Was drawn from a
lognormal distribution with mean 2ms and standard deviation 1 ms. The variability in
the refractory time serves the purpose of mimicking the variability in the maximum
firing rate of neurons [29].

If the kth neuron belongs to the F'S population, its total input current Iioal r is just
the sum of the external input and of the recurrent input, i.e. it reads:

Rm,kltotal,k(t) = Rm,k[lext,k’(t) + Irec,k’(t)}v (25)
kEFS

where the first term on the right side of eq. (25) represents the external input from
other brain areas and the second term models the recurrent local input from other
neurons within the network. If the considered kth neuron belongs either to the RS or to
the SOM-LTS population, the total input current includes an additional adaptation
term ay(t):
Ry i Leotal k() = Rk Lotk (t) + Tree k() — ar(t)]. (26)
kERS, SOM

The adaptation current in the last equation obeys [36,37]:

dak

i (t) = —ak(t) + Ta p Aarzi(t), (27)

Ta,k =,
where () = >_, 0(t — tx,;) is the spike train emitted by neuron k. In other words,
every time the neuron fires, the adaptation current jumps by Aag. Otherwise, it decays
to zero with the time constant 7, j.

Both Aay and 7, are randomly drawn from a lognormal distribution with standard
deviation equal to 20% of the mean. For RS neurons, the mean of the two distributions
are 7, . = 100ms and Aa, = 0.3nA, respectively; for SOM-LTS neurons they are

s = 50ms and Aags = 0.2nA, respectively.

With this choice of parameters, the strength of the spike-frequency adaptation
roughly agrees with in vitro measurements from the layer IV of the rat barrel
cortex [29,35].

External input to the network

The external input encompasses one constant term and two excitatory Poissonian
shot-noise processes:

Cloxt,th,k

ZJ,jl k]l)
l

extb(‘k
+ Z Z kpq Zcp,q)]'

Rm,klext,k:<t) = Rm,kIO + Tm,k [

j=1
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The constant term is set to R,, 1o = 10mV for all neurons. The second term in

eq. (28) represents the input from the thalamus, and the third mimics incoming spikes
from surrounding cortical areas. Because the thalamus has a higher average firing rate,
“thalamic” input spikes at times tth 1 occur at an average rate of rex tn = 10 Hz, while
“cortical” input spikes at times tbcp q have a lower rate of rex b = 2 Hz. The number of
external input spike trains depends on the cell type. Experimental studies suggest that
SOM cells, in contrast to RS and FS cells, receive only weak input from the thalamus
and from distant brain areas [29,39]. Therefore, if the kth neuron belongs to the
SOM-LTS population, then the number of external inputs is set to zero

Cext,thk = Coxt,be,k = 0, whereas when k is a RS or a F'S neuron, then Ceyt tn,x = 500.
Furthermore, dendrites of F'S neurons tend to be more localized than those of pyramidal
cells, i.e. to receive more input from local RS neurons and less from distant ones. Hence,
the number of inputs mimicking the cortical surroundings is Cext,bc,e = 2000 when £ is
a RS neuron, and Cext be,i = 1000 when £ is a F'S neuron. Each input spike causes a
PSP drawn independently from an exponential distribution with mean Jext e = 0.1 mV
when £ is a RS neuron, and from an exponential distribution with mean Jex; = 0.2mV
when k is a F'S neuron, because both thalamic and cortical excitatory postsynaptic
potential (EPSP) amplitudes are larger in FS cells than in RS cells [29].

Recurrent input to RS neurons

The recurrent input term Iyec 1 (t) depends on the neuron type. If k is a RS cell, it is

Rm kIreck —ka[ Z Jk‘l 1'1 Dkz)
keRS i€Pe (k)

> it (t = D) (29)

JE€Pi(k)

D Tre(t)ae(t - Dké)] )

LePs (k)

where x;(t — Dy;) indicates the spike train emitted by neuron i, Dy, represents the total
transmission delay resulting from the axonal propagation, the neurotransmitter diffusion,
and the dendritic propagation from neuron i to neuron k, Ji; stands for the synaptic
strength from neuron ¢ to neuron k, which depends on the spiking history (see below).

Connections to neuron k originate from three sets of neurons: P.(k), formed by
Cee = 300 randomly selected RS neurons, P;(k), consisting of Ce; = 200 randomly
selected F'S neurons, and P, (k), composed of C.s = 100 randomly selected SOM-LTS
neurons. Hence, the connection probability of RS-to-RS synapses is Ce. /N, = 15%, of
FS-to-RS and of SOM-LTS-to-RS is C¢;/N; = Ces /Ny = 50%, consistent with the
experimental observations that the connections between RS cells are sparse whereas
those between RS and inhibitory cells are dense [27,29,40,73-75]. Transmission delays
are drawn uniformly in the range 0.5ms to 1.0ms [75]. All synaptic weights in eq. (29)
undergo short-term depression (STD)

Jri(t) = JriRii(t7), (30)

where the maximum coupling amplitudes Jy; (corresponding to the first spike after
neuron ¢ has not been firing for a long time) are drawn independently from an
exponential distribution with mean J,. = 0.1 mV for RS-to-RS connections,

Jei = 0.5mV for FS-to-RS coupling, and J.s = 0.25mV for SOM-to-RS connections.
The variables Ry;(t) represent the fraction of available synaptic resources, and ¢~
indicates that the function is evaluated immediately before a spike. Model and
parameters of STD, i.e. the time evolution of the Ry;(t), are described below.

March 25, 2020

24/35


https://doi.org/10.1101/2020.03.30.016261
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.30.016261; this version posted March 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Recurrent input to FS neurons

The recurrent input to a FS neuron reads:

Rm,k:Irec,k(t) = Tm,k [ Z Jk:l(t)xz(t - Dkz)
keFS

1€Q. (k)
= > Jk(®)a;(t — Dy)
— > Jp(®)zy(t — D)
pEQ, (k)
+ ) jkzxz(t—Dke)]7
LeEFS

where the first term represents the synaptic input from Q. (k), a set of C;. = 800
randomly selected RS cells (connection probability Cj./N. = 40%), the second term is
the input from the inhibitory FS presynaptic population Q;(k) with size C;; = 200
(connection probability C;;/N; = 50%), and the third term represents the inputs from
Qs(k), C;s = 50 randomly selected SOM-LTS neurons (connection probability 25%). All
weights appearing in these three terms follow eq. (30) and their peak value is drawn
from an exponential distribution of mean J;. = 0.2mV, J; = 1.0mV, and J;; = 0.1 mV,
respectively. Transmission delays are the same as for RS-to-RS connections. These
values reflect the fact that F'S neurons receive strong and dense connections both from
RS and from FS neurons, and that synapses from SOM to FS neurons are
comparatively weaker [29,32]. The fourth and last term in eq. (31) is an effective model
for the electrical coupling among FS cells (gap junctions), see next subsection.

Effective model for gap junctions

Both FS and SOM neurons in the rat somatosensory cortex are coupled by gap
junctions [31,33,39,76]. In a simplified picture, gap junctions act as a passive
conductance coupling between the membrane voltage of two neurons. The standard way
of mimicking the effect of a gap junction between neuron k and neuron ¢ would be the
following additional current for neuron k [77,78]:

R Icyie = Yee(ve — vk) + Tk Jree(t — Dig), (32)

where 7y is proportional to the Ohmic conductance between the two neurons and
modulates the strength of the subthreshold coupling, and Ji, models the effect of spikes
fired by neuron ¢, which has to be added ad hoc, because LIF neurons do not explicitly
generate action potentials. Gap junctions typically form between dendrites of different
neurons. Therefore, the effect of spikes must travel from the soma along the dendrite of
the first neuron to the gap junction and then from it along the dendrite into the soma
of the second neuron. For this reason, the time necessary for this propagation can be as
large as 0.5 ms [79]. Hence the delay term Dy, is drawn from a uniform distribution in
the range 0.1 ms to 0.5 ms. As reported in the main text, the subthreshold coupling is
completely neglected here, i.e. vj; = 0 is set for all neuron pairs. The subthreshold
coupling was shown to have a very weak influence on the firing rate, synchrony, and
oscillation frequency of networks of LIF neurons, as opposed to the spike-related
coupling [34]. The amplitude of gap-junction-related post-synaptic potentials measured
in F'S neurons of the rat somatosensory cortex is rather variable and, on average, about
half as large as excitatory post-synaptic potentials induced by RS neurons [79,80].
Hence, jkg was drawn from an exponential distribution of mean J}i = Jie/2 =0.05mV.
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The probability of a gap junction connecting two neighboring inhibitory neurons of the
same type (FS with FS and SOM with SOM) is high (60% to 80% [39,76]). For
simplicity, the gap-junction coupling was approximated here as all-to-all (without
self-coupling).

Recurrent input to SOM-LTS neurons
Finally, the recurrent input to a SOM-LTS neuron is

Rm,kIrec,k(t) = Tm,k [ Z sz(t)zz(t - Dk"L)
kESOM 1€Le (k)

— Y Jii(t)a;(t — Dyj) (33)

JELi(k)

+ Z jkexe(t—Dke)]~

LeSOM

The three terms in eq. (33) represent the input from excitatory RS neurons, from
inhibitory FS neurons, and from gap junctions, respectively. Gap-junctions are modeled
in the same way as for F'S neurons: their amplitudes and delays are drawn from the
same distributions. The first term in eq. (33) is the input from Cs. = 1000 randomly
chosen RS neurons (connection probability Cs./N, = 50%). These are the only
connections that undergo short-term facilitation instead of depression, and for which
random transmission failures were modeled (details on the model below). The static
baseline amplitudes Ji; of each synapse are drawn independently from an exponential
distribution and have mean J;, = 0.1 mV. The second term in eq. (33) represents the
input from Cy; = 100 randomly selected FS neurons (connection probability

Cs;/N; = 25%). These connections have the average maximum strength Jg; = 0.25mV,
undergo short-term depression and obey eq. (30). Chemical synapses between SOM
neurons are infrequent and weak [29,39] and were omitted for simplicity.

Model of short-term depression

Except for those connecting RS to SOM neurons, all chemical synapses in the model
undergo short-term depression. Each weight J;(t) has a time dependence described by

Jri(t) = JriRii(t7), (34)

where the variable Ry;(t) stands for the fraction of available synaptic resources and is
described by the standard model by Tsodyks and Markram [43],

Ruatt) = T2 g R7) 60— i) (35)

where fiyj are the times at which the spikes of neuron i arrive at the synapse, and ¢~
indicates that the function is evaluated at ¢ — e (¢ > 0 is a small positive number), i.e.
just before a spike. The parameter U, represents the release probability and 7p is the
recovery time scale. Note that the time evolution of Ry;(t) depends on the spike times
of the presynaptic neuron i only. Hence, if 7p and U, do not depend on k, the time
course of each variable Ry;(t) is a time-shifted copy of a single master variable R;(t)

Ry;(t) = Ri(t — Dyy), (36)
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where R;(t) obeys the same equation as Rj;(t), except that the arrival times #; ; in

eq. (35) are replaced by t; ;, the spike times of neuron i. Here, it is assumed that 7p
and U, only depend on the type of the source and target neuron, but not on the
identity of the particular neuron within a population so that eq. (36) holds. In this way,
the actual number of dynamic variables required to simulate the network is reduced
from one variable per synapse to one variable per neuron, which is an enormous
computational advantage.

The parameter values chosen to model strong depression (all connections depicted in
blue in fig. 1) are 7p = 7p s = 150 ms and Use = Us, s = 0.2. With this choice, the
eighth PSP of a 40 Hz pre-synaptic regular spike train is about one half of the maximal
amplitude [29]. Most chemical synapses in the barrel cortex are depressing ( [29,42,53]).
However, inhibitory synapses originating from SOM-LTS neurons and terminating onto
RS neurons show only weak depression or slight facilitation. Here, these connections are
modeled as mildly depressing (fig. 1, light blue) by setting 7p = 7p , = 50ms and
Use,w = 0.05. For simplicity, also SOM-to-F'S connections were given the same STD
parameters.

Short-term facilitation and transmission failures

Excitatory synapses from RS neurons to SOM-LTS neurons (depicted in red in fig. 1)
are strongly facilitating ( [29,40,41]). If the parameter Uy, in eq. (36) is turned into a
dynamical variable, u(t), facilitating synapses can be described [44,81]. The amplitude
of the PSPs is proportional to the product R(t)u(t). Considering the connection from
the RS neuron ¢ to the SOM-LTS neuron k, the time evolution of the synaptic
amplitude is described by (note that the conventions have been slightly changed with
respect to ref. [44]):

u;(tT — Dy;)

—, (37)

Jii(t) = JriRi(t™ — Di;)
where tT means that the function is evaluated at ¢ + ¢, i.e. the value of u;(t) just after
the occurrence of a spike. The variables R;(t) and u;(t) obey

m@):giiﬁi9+(yfm@*»U§:5@fmd) (38)

F

]@(t)::liifiifz—wh(t_)lﬁ(t_)jg:é(t——t@j), (39)

TD

where t; ; indicate the spike times of neuron 4. The first term in eq. (38) governs the
relaxation of the facilitation variable to the baseline level U, and the second term
determines a positive jump upon each pre-synaptic spike. The time evolution of the
depression variable R;(t) has the same form of eq. (35), i.e. a purely depressing synapse,
except that the release probability is the time-dependent function u;(¢). The choice of
the parameters U, 7, Tp dictates whether, for a given firing rate, the synapse facilitates,
depresses, or both [44]. Here, the four parameters appearing in egs. (38) and (39) were
set as follows: 77 = 300ms, 7p = 7p, 5 = 100ms, Uy = 0.01, and U = 0.03. With this
choice and for a pre-synaptic stimulation of 40 Hz, the synapse is purely facilitating [29].
RS-t0-SOM synapses stand out from all other synapses considered here because of a
much higher occurrence of transmission failures at low presynaptic firing rates (the
average failure rate is &~ 10% for RS-to-RS synapses, ~ 5% for synapses to and from FS
neurons, and 2 50% for RS to SOM-LTS synapses [29]). However, the failure rate of
RS-t0-SOM-LTS synapses decreases to =~ 10% upon repeated stimulation at 40 Hz
(failure rates for other synapses weakly depend on the presynaptic firing rate [29]). Here,
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transmission failures are modeled only for RS-to-SOM synapses via a stochastic binary
variable S(py):

1 with probability 1 — p
S(ps) = { ! (40)

0 with probability p

where py describes the failure rate, which obeys the following dynamical equation

. rest — t
pr(t) = 22xt =PI G Ay i) 360~ 1), (41)

Tf ;

In the last equation, pfrest = 0.5 is the baseline failure rate. Upon each presynaptic
spike, the failure rate decreases by G(ps, Aps, Pmin) and relaxes back to the baseline
value with the time constant 7y = 250 ms. The size of each downward jump is

Ap; = 0.1 but is constrained to values above Aps = pmin = 0.1, a condition which is
imposed by the piecewise linear function

0 if Py < Pmin
G(pfv Apf;pmin) = Y Pf — Pmin if Pmin < Pf < Pmin + Apf : (42)
Apf if Pmin + Apf < Dy

In the end, the synaptic weight from the RS neuron i to the SOM-LTS neuron k obeys
the following equation:

u;(tT — Dy;)

Ji(t) = JkiRi(t™ — D) 7,

S (pri(t™ = Dri)) - (43)
If the average effect of synaptic failures is taken into account, a 40 Hz presynaptic
stimulation causes the eighth PSP to be about eight times larger than the first, which is
in a reasonable qualitative agreement with the strong amplification measured in

vitro [29,41].

Detailed description of the readout network model

The differentiator network readout (DNR) consists of one population of Np = 10000
RS neurons (SP) and of one population of 2000 FS neurons (Z). Each neuron in the
DNR follows the same dynamical equation as its counterpart within the BCN and
receives feedforward input from C' = 1000 randomly selected RS neurons of the BCN.
The number of independent Poisson processes mimicking thalamic input is C’g{mh =250
and the constant external input is R,,Ip, = 15mV. The number of independent Poisson
processes representing cortical input is the same as for the BCN. Each neuron in the
DNR receives 200 random connections from the local inhibitory population (Z). Hence,
the only recurrent connections within the DNR are inhibitory.

All connections from the BCN to the DNR and within the DNR are randomly drawn
from the same distributions as for the corresponding class of neurons within the BCN,
except for the connections from the inhibitory readout population Z to the excitatory
readout population SB, the average strength of which, J&, is tuned to a value that
enables the DNR to approximate the function of a differentiator circuit, as explained in
the following.

Referring to fig. 4, we have to calculate the value of J® such that the input Apuz via
the indirect path to the readout population S® equals a negative and temporally
delayed image of the direct input Ap,.. This value can approximately be determined by
the following linear-response calculation.

Consider a perturbation of the firing rate of the RS neurons within the BCN and
indicate it with Ar.. We assume that the perturbation is slow compared to the most
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important system time constants so that time-dependencies can be neglected. As a
consequence of the firing rate perturbation within the BCN, the mean input from the
BCN to SP changes by

Ape = vaeJiFR(re)CA'Are, (44)

where the term )

Rir)= ——+
(r) 14 7_D,sljse,sr

(45)
represents the average effect of the short-term depression (STD), given a presynaptic
firing rate r. In eq. (44), JEF represents the average synaptic strength of the
connections from the BCN to the excitatory readout population SE. Likewise, the mean
input from Z to SP changes by

Apr = —T,,L,eJSR(TI)CgATI, (46)

where C£ = 200 is the number of input connections from Z to SP per postsynaptic
neuron, and Arz is the change in the firing rate of the population Z from the
spontaneous value rz.

The linear-response approximation of Arz is

dd)sn
dp

Arr = Trmi (JEFR(TE)CA'ATE—JE}R(TI)CgArI> , (47)
where d¢s,, /du is the so-called DC susceptibility, i.e. the linear response of the firing
rate of a LIF neuron to a slow change in its total mean input pu. The value of the DC
susceptibility can be approximated by taking the derivative of the firing rate of a
white-shot-noise-driven LIF neuron [82] with respect to its mean input. The explicit
expression for des, /dp with a non-zero refractory period can be found in the first
appendix of [49].

First, eq. (47) can be solved for Arz and substituted into eq. (46). Then, we require
that the perturbation in the mean input from direct and indirect pathways cancel each
other (see fig. 4). In other words, we impose Ay, + Apz = 0 and finally solve for JZ,
which yields

JEF (14 7 i 4922 JER(r7)CE
JE = ( du ) . (48)

d¢ FFORD
Tm,i d/sz,n Jie CeiR(rI)

The only unknown quantity on the right hand side of eq. (48) is rz, the spontaneous
firing rate of Z. This firing rate can be estimated from the numerical solution of the
following self-consistency condition:

r7 = Gen(JEF, Tf

ee YY)

Tigta C'L}z% ‘Tz, Iext)7 (49)

where rin, = Cro + Cgct,bc,ereXt,bC + Celit,th,ere)(t»th is the total excitatory input rate to
T and ¢gp(ae, ai, Re, R;, Io) is the firing rate of a LIF neuron driven by white shot-noise
with exponentially distributed weights [82]. The first two arguments, a.,a; are the
excitatory and inhibitory mean input weights, respectively. The third and fourth
argument R., R; are the input rates of the excitatory and inhibitory input, respectively.
The last argument Iy is the constant input. The explicit expression with non-zero input
current and non-zero refractory period is

d)sn(ae; i, Rea Ri7 IO) = <7_ref

1/ac

T / ‘fz()l(s){ - —esﬁRD_l (50)

1—aes
0
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where g = vg — Ry lo, 07 = vr — R Io, and Z5 ' (s) = (1 — aes)™ e (1 4+ a;5)™ .
Substituting numerical values in eq. (48) reveals that J% = 0.65mV approximately
satisfies the imposed condition.

Experimental data

The experimental data appearing in figs. 7 to 9 are a part of the dataset of

references [6,47]. In particular, the data shown in fig. 7 are the average effect size (for
each stimulus duration) of most cells shown in Fig. 18A of reference [47] (800 ms stimuli
were not used in the present study); the experimental effect size in fig. 8 is the average
for each stimulus intensity (and duration) of the cells appearing in Fig. 14A of
reference [47]; the average effect size for regular and irregular stimulation of fig. 9 is
based on the same dataset used for Fig. 21C of reference [47]. For experimental
procedures, we refer to [6,47].
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