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Abstract  
While  there  are  >2  million  publicly-available  human  microarray  gene-expression  profiles,  these            
profiles  were  measured  using  a  variety  of  platforms  that  each  cover  a  pre-defined,  limited  set  of                 
genes.  Therefore,  key  to  reanalyzing  and  integrating  this  massive  data  collection  are  methods              
that  can  computationally  reconstitute  the  complete  transcriptome  in  partially-measured          
microarray  samples  by  imputing  the  expression  of  unmeasured  genes.  Current  state-of-the-art            
imputation  methods  are  tailored  to  samples  from  a  specific  platform  and  rely  on  gene-gene               
relationships  regardless  of  the  biological  context  of  the  target  sample.  We  show  that  sparse               
regression  models  that  capture  sample-sample  relationships  (termed SampleLASSO ),  built          
on-the-fly  for  each  new  target  sample  to  be  imputed,  outperform  models  based  on  fixed  gene                
relationships.  Extensive  evaluation  involving  three  machine  learning  algorithms  (LASSO,          
k-nearest-neighbors,  and  deep-neural-networks),  two  gene  subsets  (GPL96-570  and  LINCS),          
and  three  imputation  tasks  (within  and  across  microarray/RNA-seq)  establishes  that           
SampleLASSO is  the  most  accurate  model.  Additionally,  we  demonstrate  the  biological            
interpretability  of  this  method  by  showing  that,  for  imputing  a  target  sample  from  a  certain  tissue,                 
SampleLASSO  automatically  leverages  training  samples  from  the  same  tissue.  Thus,           
SampleLASSO  is  a  simple,  yet  powerful  and  flexible  approach  for  harmonizing  large-scale             
gene-expression   data.   
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Introduction  
High-throughput  gene  expression  technologies  – especially  microarray (Heller,  2002)  and          
RNA-sequencing  (RNA-seq) (Wang et  al. ,  2009)  –  have  revolutionized  our  ability  to  capture  and               
understand  the  large-scale  cellular  context  of  many  biological  systems  in  humans  and  several              
model  organisms (Stark et  al. ,  2019;  Hoheisel,  2006) .  Fortunately,  due  to  community-wide             
norms  and  funding  requirements,  nearly  all  of  the  resulting  transcriptomes  have  been  deposited              
in  publicly-available  repositories (Lachmann et  al. ,  2018;  Athar et  al. ,  2019;  Edgar et  al. ,  2002;                
Barrett et  al. ,  2013) .  For  example,  as  of  29  January  2020,  there  are  >1  million  human                 
microarray  samples  from  >24k  datasets  along  with  about  half  as  much  human  RNA-seq  data               
(>583k  samples  from  ~12k  datasets)  contained  in  the  NCBI  Gene  Expression  Omnibus             
database    (Edgar    et   al. ,   2002;   Barrett    et   al. ,   2013) .  
 
The  purpose  of  these  publicly-available  data  is  to  enable  other  researchers  to  use  published               
datasets  to  reproduce  original  findings,  reuse  datasets  in  new  ways  to  answer  new  questions               
(Rung  and  Brazma,  2013) ,  or  combine  thousands  of  datasets  to  build  integrative  models              
(Greene et  al. ,  2015)  towards  precision  medicine (Alyass et  al. ,  2015) .  However,  a  major  hurdle                
in  realizing  these  goals  is  the  fact  that  microarray  profiles  have  been  measured  using  a  number                 
of  different  platforms  that  each  measure  a  different  number  of  pre-defined  genes  (ranging  from               
a  few  hundred  genes  to  ~20k  genes).  For  instance,  the  most  popular  genome-scale  platform               
Affymetrix  Human  Genome  U133  Plus  2.0  Array  (GEO  ID: GPL570 )  accounts  for  only  22%  of                
the  >1  million  samples.  The  next  most  popular Affymetrix  Human  Genome  U133A  Array  (GEO               
ID: GPL96 )  accounts  for  another  11%  of  the  samples,  but  only  covers  <12k  genes.  Therefore,  it                 
is  a  significant  challenge  to  gain  insights  about  the  full  complement  of  genes  in  the  human                 
genome  across  the  diversity  of  biological  samples  and  unique  experimental  conditions  in             
existing   microarray   data.  
 
In  addition  to  these  researcher-submitted  microarray  datasets,  concerted  effort  has  also  been             
put  into  defining  a  reduced  set  of  genes  that  can  be  measured  and  then  be  used  to  accurately                   
recover  the  expression  of  all  the  other  genes (Donner et  al. ,  2012;  Rudd et  al. ,  2015) .  The  most                   
prominent  example  of  this  effort  is  the  Library  of  Integrated  Network-Based  Cellular  Signatures              
(LINCS)  microarray  program (Subramanian et  al. ,  2017) ,  which  has  shown  that  measuring  978              
“landmark”  genes,  costing  only  $5  per  sample (Peck et  al. ,  2006) ,  is  sufficient  to  then  use  to                  
impute  the  expression  of  all  other  (tens  of  thousands  of)  genes.  There  are  currently  1.3  million                 
microarray  samples  in  the  LINCS  data  repository  capturing  the  effect  of  numerous  chemical  and               
genetic   perturbations   on   gene   expression    (Subramanian    et   al. ,   2017) .  
 
With  either  of  these  massive  data  collections  –  the  >1  million  public  transcriptomes  from  various                
microarray  platforms  or  the  1.3  million  LINCS  profiles  –  restricting  analysis  and  integration  to  the                
measured  genes  common  to  all  platforms/samples  will  result  in  a  tremendous  loss  of  valuable               
data.  Therefore,  effectively  leveraging  the  full  data  compendia  on  a  genome-scale  necessitates             
computational  methods  that  can  use  the  expression  levels  of  the  measured  genes  in  a               
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partially-measured  microarray  sample  to  impute  the  expression  of  all unmeasured  genes  in  that              
sample  to  reconstitute  a  complete  transcriptome  [Fig.  1A].  A  few  previous  studies  have  indeed               
proposed  methods  to  solve  this  problem  in  various  settings.  Sparse  regression  models  that  use               
gene-gene  correlation  signals  have  been  shown  to  be  effective  in  imputing  gene  expression  in               
samples  from  the  GPL96  (<12k  genes)  microarray  platform  based  on  samples  from  the  GPL570               
(whole-genome)  platform (Zhou et  al. ,  2017) .  Others  have  developed  methods  that  use  gene              
correlations  based  on  low-rank  regression (Ye et  al. ,  2013)  and  deep  neural  networks (Chen et                
al. ,  2016;  Wang et  al. ,  2018) ,  specifically  for  the  LINCS  dataset.  These  methods  rely  on  training                 
machine  learning  models  that  map  the  relationship  between  fixed  sets  of  measured  and              
unmeasured  genes  in  a  specific  setting,  be  it sparse  gene-based  regression  for  the  GPL570-96              
setting (Zhou et  al. ,  2017)  or  deep  learning  for  the  LINCS  setting (Chen et  al. ,  2016;  Wang et                   
al. ,  2018) .  Methods  have  also  been  proposed  to  address  the  problem  of  identifying  the  best                
reduced  set  of  genes  to  measure  to  enable  subsequent  imputation  of  all  other  genes,  again                
within  the  scope  of  specific  large  datasets (Donner et  al. ,  2012;  Rudd et  al. ,  2015;  Abid et  al. ,                   
2019) .  However,  all  these  methods  lack  the  flexibility  for  broad  adoption  since  public  datasets               
come  from  many  different  expression-profiling  technologies,  with  each  measuring  the           
expression  of  a  different  subset  of  genes  in  the  genome.  All  current  methods  are  hard  to  adapt                  
for  imputing  unmeasured  gene-expression  in  an  arbitrary  experiment  since  they  require  training             
completely  new  models  for  every  microarray  platform  (or  every  new  reduced  gene  set  design),               
which,   in   turn,   requires   very   large   datasets   for   model-training.  
 
Leveraging  gene-gene  correlations  in  data  was  an  important  component  of  gene  expression             
imputation  that  focussed  on  the  related-yet-distinct  “missing  value”  problem  [Fig.  S1],  concerned             
with  recovering  the  expression  values  of  individual  genes  that  were  lost within  a  single  dataset                
due  to  arbitrary  technical  error  in  samples,  i.e.  filling  arbitrary  empty  cells  within  a  larger  data                 
matrix (Aittokallio,  2010;  Brock et  al. ,  2008;  Liew et  al. ,  2011) .  Many  methods  have  been                
proposed  to  tackle  this  problem (Troyanskaya et  al. ,  2001;  Bø et  al. ,  2004;  Kim et  al. ,  2005;  X.                   
Wang et  al. ,  2006;  Oba et  al. ,  2003;  Kim et  al. ,  2004;  Celton et  al. ,  2010) ,  and,  in  general,                    
imputing  missing  values  has  been  shown  to  improve  downstream  tasks  such  as  clustering,              
classification,  co-expression  network  building,  and  differential  expression (de  Brevern et  al. ,            
2004;  Tuikkala et  al. ,  2008;  D.  Wang et  al. ,  2006;  Oh et  al. ,  2011) .  Although  these  seminal                  
works  on  the  missing-value  problem  guide  imputation  methods  today,  the  fact  that  we  can  now                
leverage  information  from  >100k  samples  at  a  time  to  improve  the  imputation  of  unmeasured               
genes  requires  a  rethinking  of  imputation  strategies.  Thus,  it  is  critical  that  new  imputation               
methods  select  only  the  most  relevant  samples  to  the  target  sample,  as  gene-gene  correlations               
change   across   different   biological   contexts    (Melé    et   al. ,   2015) .  
 
In  this  study,  we  demonstrate  that  using  a  sparse-regression  method  that  leverages  information              
from  the  most  similar  samples  provides  more  accurate  predictions  than  other  methods  while              
also  providing  a  highly  interpretable  underlying  model.  Current  state-of-the-art  imputation           
methods  train  machine  learning  models  that  capture  the  relationship  of  the  predetermined  set  of               
measured  genes  to  each  predefined  unmeasured  gene  (or  set  of  unmeasured  genes).  Then,              
during  imputation  in  an  expression  sample  with  the  same  measured/unmeasured  genes,  these             
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methods  use  the  pretrained  models  to  impute  the  expression  of  the  unmeasured  genes.  We               
propose  a  variant  of  this  approach that  we  call SampleLASSO  in  which,  for  every  new               
expression  sample  to  be  imputed,  a  new  sparse  regression  model  is  trained  on-the-fly  that               
captures  the  relationship  of  this  expression  sample  to  all  others  in  the  training  set  based  on  the                  
genes  measured  in  that  given  sample.  We  compare  our  method  to  four  other  imputation               
methods  based  on  three  different  algorithms  –  k-nearest  neighbors,  regularized  linear            
regression,  and  deep  neural  networks  –  that  leverage  gene-gene  or  sample-sample            
relationships  [Fig.  1B].  All  these  methods  are  evaluated  on  imputation  within  the             
same-technology  (microarray  and  RNA-seq),  as  well  as  using  RNA-seq  data  to  impute             
microarray  data.  The  evaluation  is  carried  out  for  two  different,  practical  unmeasured  gene              
settings:  1)  a  high  number  of  measured  genes  and  low  number  of  unmeasured  genes               
(GPL96-570  gene  subset)  and  2)  a  small  number  of  measured  genes  and  large  number  of                
unmeasured  genes  (LINCS  gene  subset)  [Fig.  1C].  Extensive  evaluations  using  multiple            
accuracy  metrics  within  a  rigorous  temporally-split  and  dataset-preserving  scheme  showed  that,            
for  all  cases  considered,  the  flexible  sample-based  imputation  ( SampleLASSO)  is  always  the             
best  performing  method.  We  also  demonstrate  the  biological  interpretability  of  this  method  by              
showing  that,  for  imputing  a  given  sample  from  a  certain  tissue,  the SampleLASSO  model               
automatically   up-weights   training   samples   from   the   same   tissue   type.  

Materials   and   Methods  

Data  
We  used  gene  expression  data  from  both  microarray  and  RNA-seq  technologies.  For  the              
microarray  data,  we  downloaded  all  human  samples  from  the Affymetrix  Human  Genome  U133              
Plus  2.0  Array  (also  known  as  the  GPL570  platform)  for  NCBI  GEO (Barrett et  al. ,  2013)  as  raw                   
CEL  files  and  performed  background  subtraction,  quantile  transformation,  and  summarization           
using  fRMA (McCall et  al. ,  2010)  based  on  a  custom  CDF (Dai et  al. ,  2005)  mapping  probes  to                   
Entrez  gene  IDs.  This  yielded  108,205  samples  with  19,702  genes.  For  the  RNA-seq  data,  we                
downloaded  all  133,776  human,  TPM-normalized  samples  from  ARCHS4 (Lachmann et  al. ,            
2018) ,  and  further  processed  the  data  by  converting  ENST  IDs  to  Entrez  gene  IDs  for  only  the                  
genes  found  in  the  microarray  data.  Genes  that  could  not  be  mapped  this  way  were  discarded                 
from  both  microarray  and  RNA-seq  data.  This  yielded  a  total  of  16,955  genes.  Finally,  the                
RNA-seq  data  was  then  arcsinh  transformed.  More  information  on  data  processing  is  provided              
in   Section   1.1   of   the   Supplemental   Material.  

Validation   Scheme  
Subsetting   Genes  
To  evaluate  the  imputation  methods,  we  chose  to  split  genes  into  measured  and  unmeasured               
sets  to  represent  two  very  different  practical  scenarios  [Fig.  1C].  First,  we  considered  the               
situation  in  which  we  have  a  large  number  of  measured  genes  that  we  could  use  to  impute  a                   
smaller  number  of  unmeasured  genes.  This  scenario  presents  itself  in  the  problem  of  using  the                
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11,678  genes  measured  in  the  older  human  microarray  platform Affymetrix  Human  Genome             
U133A  Array  (also  known  as  GPL96)  to  then  impute  the  expression  of  an  additional  5,277                
genes  that  are  only  present  in  the  newer  genome-scale  platform Affymetrix  Human  Genome              
U133  Plus  2.0  Array  (also  known  as  GPL570) (Zhou et  al. ,  2017) .  This  gene-split  is  referred  to                  
as  the GPL96-570  gene  subset  in  this  work.  Second,  we  considered  the  situation  in  which  we                 
have  a  small  number  of  measured  genes  that  we  could  use  to  impute  a  large  number  of                  
unmeasured  genes.  For  this  scenario  we  used  964  “landmark”  genes  from  LINCS  as  the               
measured  genes  to  impute  the  expression  of  all  the  other  genes  in  the  genome-scale Affymetrix                
Human  Genome  U133  Plus  2.0  Array  (15,991  unmeasured  genes) (Subramanian et  al. ,  2017;              
Chen    et   al. ,   2016) .   This   gene-split   is   referred   to   as   the    LINCS   gene   subset    in   this   work.  

Splitting   Samples  
We  divided  the  expression  samples  into  training,  validation,  and  testing  sets.  The  training  data               
was  used  to  fit  the  models,  the  validation  data  was  used  for  hyperparameter  tuning,  and  the                 
testing  data  was  used  in  the  final  evaluations  of  the  models  (shown  in  all  the  figures  in  the  main                    
text).  To  mitigate  data  leakage,  we  ensured  that  entire  datasets  were  assigned  to  splits,  thus                
keeping  all  expression  samples  from  the  same  experiment  (dataset)  together  in  the  same  split.               
The  data  was  also  temporally  split,  with  the  oldest  expression  samples  being  placed  in  the                
training  and  validation  sets,  and  the  newest  samples  going  into  the  test  set.  To  speed  up                 
hyperparameter  tuning,  which  consisted  of  training  >500,000  individual  models,  we  further            
subsetted  the  validation  set  by  taking  10%  of  the  expression  samples  from  each  experiment  in                
the  full  validation  set  (or  at  least  2  expression  samples,  if  the  number  of  samples  in  an                  
experiment   was   less   than   20)   (see   Section   1.1   in   Supplemental   Material   and   Fig.   S2).  
 
For  all  imputation  methods,  we  standardized  each  feature  in  the  training  set  by  subtracting  the                
mean  and  dividing  by  the  standard  deviation  of  the  given  feature.  Correspondingly,  each  feature               
in  the  validation  and  test  sets  was  standardized  using  the  mean  and  standard  deviation               
obtained   from   the   training   set.  

Imputation   Methods  
In  this  study,  we  evaluated  imputation  methods  using  three  distinct  machine-learning  algorithms:             
𝑘-nearest  neighbors  ( KNN ),  least  absolute  shrinkage  and  selection  operator  ( LASSO) ,  and  deep             
neural   networks   ( DNN ).  
 
KNN  is  a  machine  learning  algorithm  that  predicts  the  target  variable  for  every  new  example                
based  on  the  target  variables  of  the  𝑘  most  similar  examples  in  the  training  data.  To  impute  a                   
given  target  variable,  we  used  a  weighted  average  of  the  measured  target  variable  from  the  𝑘                 
most  similar  examples  based  on  Euclidean  distance,  with  the  weight  equal  to  the  inverse  of  the                 
distance.  KNN  imputation  is  a  widely-used  imputation  method  for  gene  expression  and  provides              
a  strong  baseline (Troyanskaya et  al. ,  2001;  Brock et  al. ,  2008;  Donner et  al. ,  2012;  Chen et  al. ,                   
2016) .  
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LASSO  is  a  linear  regression  method  in  the  family  of  least-squares  optimizers (Tibshirani,              
1996) .  LASSO  builds  a  sparse  model  for  a  given  target  variable  using  the  following  cost                
function:  

                                                                                     eqn.   1 Xβ β  minβ 1
2N ||  y||22 + α|| ||1  

where  is  the  vector  of  learned  parameters,  is  the  training  data,  is  the  target  variable,   β         X       y       α  
is  the  hyperparameter  that  determines  the  extent  of  L1-regularization  ( ).  L1-regularization          β|| ||1   
prevents  overfitting  by  setting  many  of  the  elements  of  to  0.  While  a  variety  of  least-squares           β         
optimizers  have  been  applied  to  the  gene  expression  imputation  problem (Bø et  al. ,  2004;               
Nguyen et  al. ,  2004;  Hu et  al. ,  2006;  Brock et  al. ,  2008) ,  LASSO  is  the  method  most  suited                   
when  the  number  of  features  is  large (Zhang  and  Huang,  2008;  Chen et  al. ,  2016;  Donner et  al. ,                   
2012) .  In  this  study,  we  used  the  KNN  and  LASSO  implementations  contained  in  the  Python                
package    scikit-learn     (Pedregosa    et   al. ,   2011) .  
 
DNN  is  a  multi-layer  neural  network  with  bespoke  architectures  designed  for  each  machine              
learning  task.  We  used  a  multi-layered  feed-forward  neural  network,  similar  to  the  model  used  in                
a  previous  work  that  evaluated  the  feasibility  of  using  DNNs  for  imputing  gene  expressions               
using  the  LINCS  landmark  genes (Chen et  al. ,  2016) .  DNN  models  were  trained  using  Nividia                
Tesla  k80  GPUs  and  implemented  using  the  Python  package Keras (Chollet,  2015)  with  a               
Tensorflow  backend (Abadi et  al. ,  2016) .  To  most  accurately  mimic  the  DNN  architecture              
presented  in (Chen et  al. ,  2016) ,  we  randomly  split  the  unmeasured  genes  into  four  sets  (3998                 
genes  per  set)  and  trained  a  DNN  for  each  set.  For  more  information  on  the  DNN  method  see                   
Section   1.2   of   the   Supplemental   Material.  
 
We  used  these  three  algorithms  – KNN,  LASSO,  DNN  –  to  leverage  two  distinct  types  signals                
– gene-gene  similarities  (across  samples)  and  sample-sample  similarities  (across  genes)  –  for            
imputing  the  expression  of  unmeasured  genes  in  a  new  partially-measured  sample,  resulting  in              
five  methods  referred  to  in  this  study  as SampleKNN , GeneKNN , SampleLASSO  (proposed             
here), GeneLASSO ,  and GeneDNN .  For  intuitive,  pictorial  schematics  of  the  five  methods,  see              
Figs.   S3-S7   in   Section   1.3   of   the   Supplemental   Material.  
 
SampleKNN  and GeneKNN  are  the  most  straightforward  and  popular  implementation  of  KNN             
for  gene  expression  imputation.  For  a  new  partially-measured  expression  sample  to  be  imputed,              
SampleKNN  works  by  first  finding  the  (𝑘)  most  similar  samples  in  the  training  set  based  on  the                  
expression  of  all  measured  genes,  and  then  imputing  the  expression  of  each  unmeasured  gene               
with  the  weighted  average  of  that  gene’s  expression  in  the  most  similar  training  samples.  Thus,                
the  major  biological  signal  used  is  the  similarity  between  samples  (across  genes).  Conversely,              
GeneKNN  works  on  a  gene-by-gene  basis.  For  each  gene  that  is  missing  (unmeasured)  in  a                
new  sample,  the  method  first  finds  the  (𝑘)  measured  genes  most  similar  in  their  expression                
pattern  across  all  the  samples  in  the  training  set,  and  then  imputes  the  expression  of  the                 
unmeasured  gene  with  the  weighted  average  of  the  expression  of  those  𝑘  genes  in  that  new                 
sample.  Thus,  the  major  biological  signal  used  is  the  similarity  between  genes  (across              
samples).  
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GeneLASSO  is  the  traditional,  widely-adopted  means  of  implementing  LASSO  for  gene            
expression  imputation.  Here,  using  the  fully-measured  training  set,  a  separate  sparse            
regression  model  is  trained  for  each  unmeasured  gene,  to  predict  its  expression  based  on  a                
linear  combination  of  all  the  measured  genes.  Then,  given  a  new  partially-measured  sample,              
the  expression  of  every  unmeasured  gene  is  imputed  using  that  gene’s  pre-trained  model,  with               
the  predicted  expression  being  equal  to  the  sum  of  the  expression  of  the  measured  genes  in  the                  
new  sample  weighted  by  the  model  coefficients.  Akin  to GeneKNN ,  the  main  source  of               
biological  signal  for GeneLASSO  is  gene-gene  expression  similarities.  As  an  alternative  to             
GeneLASSO ,  which  requires  information  about  which  genes  are  unmeasured  in  a  new  sample              
and  a  pre-trained  model  for  each  of  those  genes,  in  this  study,  we  propose  a  simple  alternative                  
called SampleLASSO .  Given  a  new  partially-measured  sample, SampleLASSO  builds  a  single            
model  on-the-fly  that  predicts  that  sample’s  expression  profile  based  on  a  sparse  linear              
combination  of  all  the  samples  in  the  training  set  only  using  the  subset  of  genes  measured  in                  
the  new  sample.  Here,  for  every  sample  to  be  imputed,  the  coefficients  of  the  trained  model  in                  
essence  finds  the  relationship  of  that  sample  to  all  samples  in  the  training  set.  Then,  all  the                  
unmeasured  genes  are  imputed  using  this  trained  sample-specific  model.  The  main  source  of              
biological  signal  in  SampleLASSO,  thus,  comes  from  sample  similarities.  We  note  a  method              
similar  to SampleLASSO  has  been  reported  before  (called LS_array ) (Bø et  al. ,  2004) .              
However,  the  implementation  of  that  method  was  focused  on  the  missing  value  problem,  and               
has   never   been   applied   to   the   big-data   and   the   unmeasured   gene   problem.  
 
GeneDNN  uses  a  DNN  to  predict  the  expression  of  (a  fixed  set  of)  many  unmeasured  genes                 
using  a  single  model  that  captures  a  complex,  nonlinear  relationship  between  the  unmeasured              
genes  and  the  measured  genes  using  the  training  set.  Thus,  the  main  biological  signal  in                
GeneDNN  is  also  from  gene-gene  relationships.  Since  DNNs  are  significantly  harder  to  build,              
train,  and  parameterize  than  LASSO  and  KNN  methods,  we  only  considered  DNN  on  the  LINCS                
gene   subset   as   the   optimal   model   architecture   was   worked   out   in    (Chen    et   al. ,   2016) .  

Hyperparameter   Tuning  
For  both  KNN  and  LASSO,  there  is  only  one  hyperparameter  that  needs  to  be  tuned; k:  the                  
number  of  most  similar  training  examples  to  consider  in  KNN  and :  the  parameter  that  sets  the             α       
strength  of  the  L1-regularization  term  in  LASSO.  Although  there  are  many  hyperparameters  to              
tune  in  a  DNN,  we  fixed  most  parameters  based  on  optimal  values  found  in (Chen et  al. ,  2016) ,                   
and  just  tuned  the  optimizer  and  learning  rate.  Hyperparameter  tuning  was  done  using  the               
validation  set  data  [Section  1.4  in  Supplemental  Material,  Fig.  S8-S12,  and  Table  S1],  and  the                
optimal  hyperparameters  were  then  used  for  final  evaluation  using  the  test  set.  We  note  that  for                 
GeneDNN  we  used  all  the  ~13k  samples  in  the  validation  set  for  hyperparameter  tuning  as:  1)                 
this  most  closely  mimics  the  situation  in (Chen et  al. ,  2016) ,  and  2)  DNNs  additionally  use  the                  
validation  to  determine  which  epoch  (i.e.  how  many  passes  through  the  data  the  model  goes                
through)   yields   the   best   model.  
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Evaluation   Metrics  
A  commonly  used  metric  for  evaluating  gene  expression  imputation  methods  is  Normalized             
Root   Mean   Square   Error   (NRMSE).   The   NRMSE   for   a   gene   (   is   given   by: )gi  

                                                         eqn.   2 RMSE(g )   N i =   Mean(g )i
RMSE(g )i =

S∑
S

j=1
gi, j/

√ S∑
S

j=1
g g(︿i, j i, j)

2/
 

where RMSE  is  the  root  mean  square  error, is  the  number  of  samples,  and ,  are  the         S       g︿i, j  gi,j    
imputed   and   real   expression   values,   respectively,   for   the     gene   in   the     sample.  ith jth  
In  addition  to  NRMSE,  we  also  report  evaluation  results  using  the  Spearman  correlation              
coefficient   and   the   Mean   Absolute   Error   (MAE)   in   Section   2.2   of   the   Supplemental   Material.  

Interpreting    SampleLASSO    Models  
We  evaluated  the  interpretability  of SampleLASSO  models  by  examining  if  the -coefficients  of             β   
a  model  trained  for  a  particular  sample  recapitulated  that  sample’s  tissue-of-origin  by  assigning              
high  positive  𝛽  values  to  samples  in  the  training  set  from  the  same  tissue  relative  to  samples                  
from   all   other   tissues.  
 
Specifically,  for  a  given  target  sample  𝑠  that  we  built  a SampleLASSO  model  for,  we  calculated  a                  
z-score, ,  for  each  tissue  in  this  annotated  set  based  on  the  values  of  training  samples  zs,T     T          β      
from   that   tissue:  

                                   eqn   3.    zs,T =
σs/√ T| |

T   μ( ∑
 

j:tissue(j)=T
βj)/| | s

 

where  is  the  number  of  labeled  samples  for  tissue ,  is  the  value  of  the -coefficient   T| |          T  βj        β  
from  the SampleLASSO  model  for  the  𝑗-th  sample,  and and  are  the  mean  and  standard          μs  σs       
deviation   of   the   -coefficients   of   all   samples   in   the   training   set   that   have   any   tissue   label.  β  
 
To  perform  this  analysis  we  used  a  large  set  of  expression  samples  that  were  manually-curated                
to  their  tissue-of-origin (Lee et  al. ,  2013) .  However,  due  to  the  initial  temporal  split  of  the  data                  
into  training,  validation,  and  test  sets,  all  the  labeled  expression  samples  were  in  the  original                
training  set.  Hence,  just  for  this  interpretability  analysis,  we  separated  out  a  subset  of  the                
tissue-labelled  samples  in  the  original  training  set  into  a  new  manually-curated  test  set.  We               
created  this  subset  so  that  it  spanned  six  tissues  that  were  sufficiently  diverse  and  were  labeled                 
to  at  least  10  samples  from  at  least  3  different  datasets  in  both  the  training  and  the  test  sets.                    
This  resulted  in  the  new  test  set  having  222  expression  samples  from  29  different  datasets  and                 
the  new  training  set  having  4,397  expression  samples  from  120  different  datasets  [Table.  S2].               
To  calculate and we  used  any  sample  that  had  a  tissue  label,  regardless  of  tissue  type,   μs  ,  σs                
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allowing  us  to  use  11,618  samples  for  these  calculations.  A SampleLASSO  model  was  trained               
for   each   manually   labeled   test   sample   and   used   in   the   z-score   analysis   above   (eqn.   3).  

Results  
In  this  study,  we  compare  imputation  methods  that  use  three  distinct  machine  learning              
algorithms:  least  absolute  shrinkage  and  selection  operator  (LASSO),  k-Nearest  Neighbors           
(KNN)  and  deep  neural  network  (DNN)  [Fig.  1B].  Combining  these  algorithms  with  the  source  of                
the  data  signal  – gene-gene  or  sample-sample  relationships  –  resulted  in  five  imputation             
methods: SampleLASSO , GeneLASSO , SampleKNN, GeneKNN,  and  GeneDNN .  These         
methods  are  evaluated  in  two  settings  with  different  sets  of  unmeasured  genes  [Fig.  1C]:  1)  the                 
GPL96-570  gene  subset,  which  uses  a  relatively  large  number  of  genes  (~11,000)  to  impute  the                
expression  of  a  smaller  number  of  genes  (~5,000)  and  2)  the  LINCS  gene  subset,  which  uses  a                  
relatively  small  number  of  genes  (~1,000)  to  impute  the  expression  of  a  large  number  of  genes                 
(~16,000).  We  consider  imputation  using  data  from  the  same  technology  (using  microarray  to              
impute  microarray,  and  RNA-seq  to  impute  RNA-seq)  as  well  as  across  technologies  (using              
RNA-seq  to  impute  microarray  data).  We  evaluate  methods  using  both  the  scale-free  regression              
error  metric  (normalized  root  mean  squared  error;  NRMSE),  as  well  as  Spearman  correlation              
and  mean  absolute  error.  Lastly,  we  examine  the  model  coefficients  learned  by SampleLASSO              
for   biological   interpretability.  
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Fig  1.  Overview  of  gene  expression  imputation .  A)  Schematic  of  the  problem  of  “imputing  the                
expression  of  unmeasured  genes”.  A  training  dataset  is  used  to  fill  in  the  expression  values  of  genes  from                   
partially-measured  samples.  The  five  methods  (B)  and  summary  of  the  data  (C)  used  in  this  study.  The                  
methods  are  named  using  a  combination  of  the  machine  learning  algorithm  and  biological  signal  that  the                 
method   uses.  
 
We  first  evaluated  the  performance  of  the  five  imputation  techniques  using  microarray  data  to               
impute  microarray  data  [Fig.  2].  For  both  gene  subset  tasks, SampleLASSO  is  the  best               
performing  model,  with  both  KNN  methods  performing  relatively  poorly.  For  the  GPL96-570             
gene  split, SampleLASSO  outperforms GeneLASSO  91%  of  the  time, SampleKNN  99%  of  the              
time,  and GeneKNN  100%  of  the  time.  For  the  LINCS  gene  split,  these  percentages  are  90%,                 
98%,  and  100%,  respectively. SampleLASSO  outperforms GeneDNN ,  the  current  best  method            
for  imputing  unmeasured  genes  using  LINCS  landmark  genes (Chen et  al. ,  2016) ,  76%  of  the                
time.  Statistical  tests  further  confirmed  that  SampleLASSO  is  significantly  more  accurate  than  all              
the  other  methods  (p-value  <<  1E-3;  paired  Wilcoxon  ranked-sum  test).  Table  S2  provides  a               
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tabular  form  of  this  information.  We  find  similar  results  when  measuring  imputation  accuracy              
using   Spearman   correlation   and   mean   absolute   error   [Figs.   S13-S15].  
 

 
Fig  2.  Performance  of  imputation  methods  for  microarray  data.  Boxplots  showing  the  performance  of               
the  five  imputation  methods  ( SampleLASSO , GeneDNN , GeneLASSO , SampleKNN , GeneKNN )  across           
two  gene  subsets  (A:  GPL96-570  and  B:  LINCS),  trained  and  imputed  on  microarray  data.  The  evaluation                 
metric  is  NRMSE,  with  lower  values  indicating  better  performance.  The  results  show  that SampleLASSO               
is   the   best   performing   method   in   both   cases.  
 
Although  microarray  platforms  like  the Affymetrix  Human  Genome  U133  Plus  2.0  Array  are  able               
to  quantify  the  expression  of  nearly  all  protein-coding  genes,  RNA-seq  technology  enables  the              
quantification  of  nearly  all  cellular  transcripts  from  both  annotated  and  unannotated  genes.             
Hence,  it  would  be  valuable  to  use  RNA-seq  data  to  predict  the  expression  of  genes  missing  in                  
microarrays,  enabling  1)  re-analysis  of  novel  genes  in  experimental  settings  captured  in  the  vast               
number  of  microarray  datasets  and  2)  joint  analysis  and  integration  of  RNA-seq  and  microarray               
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data  based  on  a  common  set  of  genes.  We  evaluated  the  performance  of  using  RNA-seq  data                 
to  impute  microarray  data  using  the  GPL96-570  and  LINCS  gene  subsets  [Fig.  3].              
SampleLASSO  is  again  the  best  performing  method  for  both  gene  subsets.  While GeneLASSO              
is  the  second  best  performing  model  in  the  LINCS  gene  subset,  it  is  outperformed  by GeneKNN                 
in  the  GPL96-570  gene  subset. SampleKNN  is  the  worst  performing  method  in  both  gene               
subsets.  For  the  GPL96-570  gene  split, SampleLASSO  outperforms GeneLASSO  71%  of  the             
time, SampleKNN  80%  of  the  time,  and GeneKNN  70%  of  the  time.  For  the  LINCS  gene  split,                  
these  percentages  change  to  62%,  76%  and  84%,  respectively. SampleLASSO  also            
outperforms GeneDNN  77%  of  the  time.  The  Wilcoxon  ranked-sum  test  between            
SampleLASSO    and   the   other   methods   showed   the   performance   increase   of    SampleLASSO    was   
 

 
Fig  3.  Performance  of  imputation  methods  for  cross-technology  imputation. Boxplots  showing  the             
performance  of  the  five  imputation  methods  ( SampleLASSO , GeneDNN , GeneLASSO , SampleKNN ,           
GeneKNN )  across  two  gene  subsets  (A:  GPL96-570  and  B:  LINCS)  using  RNA-seq  data  to  impute                
microarray  data.  The  evaluation  metric  is  NRMSE,  with  lower  values  indicating  better  performance.  The               
results   show   that    SampleLASSO    is   the   best   performing   method   in   both   cases.  
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always  statistically  significant  (p-value  <<  0.001).  For  the  sake  of  completion,  we  also  tested               
using  RNA-seq  data  to  impute  RNA-seq  data  –  and  found  that,  with  the  exception  of GeneDNN                 
for  the  LINCS  gene  subset, SampleLASSO  is  again  the  best  method  [Fig.  S16].  We  note  that                 
using  RNA-seq  data  to  impute  RNA-seq  data  is  not  a  practically  important  task,  as  RNA-seq                
technologies   do   not   require   pre-determining   a   set   of   genes   to   measure.   
 
We  additionally  looked  at  the  performance  of  the  imputation  methods  as  a  function  of  the  mean                 
expression  and  variance  of  the  unmeasured  genes.  For  each  unmeasured  gene,  we  placed  it               
into  a  low,  medium  or  high  bin  based  on  its  mean  expression  and  variance  in  the  context  of  the                    
known  expression  values  across  all  the  samples  [Fig.  S17-S22].  Although  the  relative             
performance  of  the  imputation  methods  doesn’t  change  too  much  when  looking  at  the  different               
categories  of  mean  expression  and  variance,  it  can  be  seen  in  some  cases  that SampleLASSO                
performs  particularly  well  for  genes  with  low  mean  expression  and  high  variance,  which  is  the                
hardest   category   of   genes   to   impute.  
 
Although  not  very  accurate  in  imputing  unmeasured  genes,  a  method  such  as SampleKNN              
offers  immediate  interpretability  via  the  biological/experimental  contexts  of  the  𝑘-nearest  training            
samples  picked  by  the  method.  Since  we  devised SampleLASSO  with  this  desirable  property  in               
mind,  we  tested  if  this  new  method  also  offers  biological  interpretability  in  addition  to  providing                
very  accurate  imputation.  Since  gene  expression  samples  have  clear  signals  pertaining  to  their              
tissue-of-origin (Melé et  al. ,  2015) ,  we  focused  on  testing  if  the SampleLASSO  model  trained  for                
a  new  sample  from  a  particular  tissue  up-weighted  training  samples  from  that  same  tissue               
relative   to   training   samples   from   other   tissues.  
 
To  perform  this  analysis  we  used  a  large  set  of  expression  samples  that  were  manually  labeled                 
to  their  tissue-of-origin (Lee et  al. ,  2013) .  Due  to  limited  labelled  tissues  and  their  representation                
in  our  data,  the  analysis  was  restricted  to  six  sufficiently-diverse  tissues  that  had  at  least  10                 
samples  from  at  least  3  different  datasets  in  both  the  training  set  (total  of  4,397  samples,  120                  
datasets)  and  the  test  set  (total  of  222  samples,  29  datasets;  Table  S3).  Then,  for  each  test                  
sample,  we  trained  a  SampleLASSO  model  and  used  the  model  coefficients  ( -coefficients)  to             β   
calculate  a  z-score  for  each  of  the  six  tissues  that  represents  the  aggregate -coefficients               β  
corresponding  to  training  samples  just  from  that  tissue  relative  to  the  background  distribution  of               

-coefficients  of  all  labeled  training  samples  (not  just  samples  labeled  from  the  six  tissues).  β               
Thus,  a  large  positive  z-score  for  a  particular  tissue  means  that  samples  from  that  tissue  were                 
more  informative  than  others.  See Materials  and  Methods  for  more  details.  Implementing  this              
analysis  on  the  entire  labeled  test  set,  we  observe  that  for  most  test  samples,  the  strongest                 
signal  captured  by SampleLASSO  comes  from  training  samples  from  the  same  tissue  as  the               
sample   being   imputed   [Fig.   4,   Fig.   S23].  
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Fig  4. SampleLASSO  captures  biologically  relevant  information.  Biological  interpretability  was           
evaluated  using  4,619  expression  samples  (from  149  different  experiments)  labeled  with  tissue-of-origin             
to  determine  if SampleLASSO  up-weights  training  samples  of  the  same  tissue  as  the  test  sample  in  the                  
sparse  model.  The  rows  represent  the  222  tissue-labeled  samples  (GSMs)  in  the  test  set.  The  black                 
horizontal  lines  separate  test  samples  from  different  tissues.  The  columns  correspond  to  the  tissue  type  of                 
the  training  samples.  The  colors  of  the  heatmap  represent  the  z-scores.  Calculated  per  test  sample  (row),                 
the  z-score  per  tissue  (column)  corresponds  to  the  normalized  aggregate  of  the  model  coefficients  of  all                 
the  training  samples  from  that  tissue.  See Material  and  Methods  for  more  details.  The  diagonal  blocks                 
correspond  to  the  case  where  the  z-scores  were  calculated  for  the  same  tissue  type  as  the                 
tissue-of-origin   of   the   test   sample.  
 
To  aid  in  reproducibility,  we  have  publicly  released  all  the  processed  data  that  we  used  on                 
Zenodo  (https://doi.org/10.5281/zenodo.3711089)  as  well  as  all  the  code  to  re-generate  the            
results  and  figures  on  GitHub  (https://github.com/krishnanlab/Expresto).  In  addition,  we  also           
provide  a  user-friendly  function  that  performs  imputation  using SampleLASSO  given  a  file  of              
expression  data.  The  function  will  return  the  imputed  expression  values  as  well  as  a  list  of  the                  
most   utilized   samples   from   the   training   set   (see   Table    S4   for   an   example).  
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Discussion  
In  this  study,  we  propose  a  simple,  new  method  termed SampleLASSO  for  imputing  the               
expression  of  unmeasured  genes  in  partially-measured  gene-expression  profiles.         
SampleLASSO  is  a  sparse  regression  model  that  trains  a  machine  learning  model  on-the-fly  for               
every  expression  profile  that  needs  to  have  expression  values  imputed.  Our  extensive             
evaluations  demonstrate  that SampleLASSO  outperforms  all  the  other  methods  –  consistently  in             
a  statistically  significant  manner  –  based  on  multiple  error  metrics,  uniformly  for  unmeasured              
genes  with  a  broad  range  of  means  and  variances,  in  three  different  imputation  tasks  (within                
and  across  technologies),  and  in  two  imputation  settings  that  differ  in  the  number  of  measured                
genes  by  an  order  of  magnitude. SampleLASSO ’s  strength  comes  from  its  ability  to  effectively               
leverage   information   from   samples   from   the   same   biological   context.   
 
In  addition  to  helping  estimate  the  performance  of  imputation  methods,  our  analyses  in  different               
imputation  settings  highlight  various  data  standardization/normalization  scenarios.  When  using          
microarray  data  to  impute  microarray  data,  the  training  data  and  validation/testing  data             
(including  both  measured  and  unmeasured  genes)  are  quantile  normalized  to  the  same             
distribution.  When  using  RNA-seq  data  to  impute  RNA-seq  data,  samples  only  undergo             
within-sample  normalization  (using  TPM)  without  any  between-sample  normalization.  When          
using  RNA-seq  data  to  impute  microarray,  the  training  set  data  is  not  jointly  normalized  but  the                 
validation/testing  data  are.  The  fact  that  microarray  data  has  a  much  lower  imputation  error  than                
the  RNA-seq  also  points  to  RNA-seq  profiles  having  very  different  data  distributions  due  to  not                
being  (quantile)  normalized  across  samples,  coming  from  many  different  sequencing  platforms,            
and  having  a  broader  dynamic  range  than  microarray  data.  Future  work  is  required  to  examine                
the  effect  of  data  normalization  and  transformation  and  to  develop  strategies  to  perhaps              
transform  data  just  based  on  measured  genes  and,  upon  imputation,  recast  the  unmeasured              
genes   into   the   original   data   space.  
 
The  performance  of  the  various  imputation  methods  in  the  cross-technology  imputation  task,             
where  the  influence  of  data  transformation  is  most  evident,  highlights  how  each  method  works               
to  impute  gene  expression. SampleKNN  performs  poorly  because,  for  a  given  microarray             
sample  to  impute,  it  finds  the  closest  RNA-seq  samples,  which  come  from  a  different  data                
distribution.  On  the  other  hand, GeneKNN  has  relatively  good  performance  because  it  works              
completely  within  the  training  data  (RNA-seq)  to  find  the  genes  nearest  to  a  particular  gene  and                 
then  uses  these  gene  relationships  for  imputation  within  the  microarray  data.  Even  though              
GeneLASSO  similarly  captures  gene  relationships  only  using  the  training  data  (RNA-seq),  the             
mapping  in  the  form  of  model  coefficients  does  not  transfer  to  microarray  samples  as  easily  as                 
nearest  neighbors.  Similar  issues,  in  addition  to  potential  overfitting  to  the  training  set,  thwart  the                
performance  of GeneDNN  [Figs.  S24-S26]. SampleLASSO ’s  top  performance  stems  from           
having  the  unique  property  of  learning  a  supervised  model  that,  in  addition  to  learning               
meaningful  sample  relationships,  naturally  captures  the  scaling  factors  required  to  closely  map             
RNA-seq   data   distribution   to   microarray   data   distribution.  
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Although  DNNs  have  been  shown  to  give  promising  results  in  gene  expression  imputation  in  the                
LINCS  setting (Chen et  al. ,  2016;  Wang et  al. ,  2018) ,  using  them  for  imputation  has  a  number  of                   
practical  drawbacks.  The  foremost  limitation  is  that  a  very  large  number  of  hyperparameters,  in               
addition  to  other  aspects  of  model  optimization  such  as  regularization  and  dropout,  need  to  be                
tuned  to  build  an  accurate  model.  Next,  complex  models  like  DNNs  are  likely  to  overfit  to  the                  
training  set,  as  can  be  seen  in  the  cross-technology  setting  (very  different  training  and  test  data)                 
where  the  drop  in  performance  of GeneDNN  is  more  severe  than  that  of GeneLASSO on  an                 
independent  set  [Fig.  3,  Figs.  S24-S26].  DNNs  are  also  hard  to  scale  in  terms  of  model  size,                  
with  the  number  of  weights  growing  nonlinearly  with  increasing  layer  number  and  layer  size.               
Additionally,  the  current  state  of  the  standard  hardware  is  such  that  only  ~32GB  of  a  model  can                  
fit   into   the   memory   of   a   GPU,   and   anything   more   requires   the   utilization   of   multiple   GPUs.  
 
In  contrast, SampleLASSO  is  a  simple,  intuitive,  flexible  model.  A  number  of  the  benefits  of                
SampleLASSO  emanate  from  the  fact  that  a  new  machine  learning  model  is  trained  on-the-fly               
for  each  new  target  sample  that  needs  to  be  imputed  based  on  the  set  of  measured  genes  in                   
that  sample.  Any  set  of  genes  can  be  measured/unmeasured  in  this  setup,  obviating  the  need                
for  fixed  pretrained  models.  Target  data  can  also  remain  in  the  original  scale/space  without  the                
need  for  data  transformation.  These  benefits  come  along  with SampleLASSO ’s  ability  to             
leverage  biological  information  specific  to  the  new  target  sample,  enabling  easy  interpretability.             
We  specifically  evaluated SampleLASSO ’s  interpretability  on  a  large-scale  using  4,397  samples            
labelled  to  various  tissues  of  origin.  This  analysis  shows  that,  when  imputing  a  sample  from  a                 
specific  tissue,  the SampleLASSO  model  up-weights  training  samples  from  the  same  tissue  in              
majority  of  the  cases  [Fig.  4  and  Fig.  S23].  The  rest  of  the  cases  could  be  due  to  high  tissue                     
heterogeneity  (as  in  blood)  or  factors  other  than  tissue-type  (e.g.  disease  status,  drug  dosage)               
being   the   dominant   signal.  
 
In  conclusion,  we  propose SampleLASSO ,  a  simple  method  for  imputing  the  expression  of              
unmeasured  genes.  Extensive  evaluations  and  analyses  demonstrate  that SampleLASSO  is           
accurate,  flexible,  and  interpretable.  We  have  made  all  the  data  and  code  from  this  study  freely                 
available  on  Zenodo  and  GitHub  (https://github.com/krishnanlab/Expresto)  to  aid  in  reproducing           
all  our  findings.  Using  a  convenient  function  in  our  code,  researchers  can  also  use               
SampleLASSO  to  readily  impute  unmeasured  genes  in  their  samples  of  interest  in  any  of  the                
following  practical  settings:  1)  Complete  the  expression  profile  of  publicly-available  microarray            
samples  from  any  platform  to  make  them  comparable  to  the  human  whole-genome  microarray,              
2)  Predict  the  expression  of  genes  absent  in  standard  microarrays  (e.g.  most  non-protein  coding               
genes)  using  RNA-seq  to  impute  microarray  samples,  and  3)  Fill  in  and  effectively  use               
genome-scale  chemical  and  genetic  perturbation  expression  data  from  LINCS  based  on  the             
measured   landmark   genes.  
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