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Abstract 
Electron−ionization mass spectrometry (EI-MS) hyphenated gas chromatography (GC) is the workhorse 

to analyze volatile compounds in complex samples. The spectral matching method can only identify 

compounds within spectral database. In response, we present a deep-learning-based approach (DeepEI) 

for structure elucidation of unknown compound with its EI-MS spectrum. DeepEI employs deep neural 

networks to predict molecular fingerprint from EI-MS spectrum, and searches molecular structure 

database with the predicted fingerprints. In addition, a convolutional neural network was also trained to 

filter the structures in database and improve the identification performance. Our method shows 

improvement on the competing method NEIMS in identification accuracy on both NIST test dataset and 

MassBank dataset. Furthermore, DeepEI (spectrum to fingerprint) and NEIMS (fingerprint to spectrum) 

can be combined to improve identification accuracy. 

Introduction 
Mass spectrometry is a widely used technique for identification compounds in biological systems [1–3]. 

GC-MS is particularly suitable for the detection of thermal-stable volatile compounds. Electron 

ionization (EI) is the most popular hard ionization method of GC-MS, which can generate extensive 

fragments for structure elucidation. Matching spectrum with database has been the routine method. The 

similarities are calculated between the spectrum of unknown and the spectra of standards in the database, 

and the structure of standard with the highest similarity is regarded as the structure of the unknown. 

Though widely used, it suffers from a coverage problem: if the compound is not in the database, it can 

never be identified correctly [4]. 

In-silicon fragmentation is an alternative approach to solve this problem. It calculates theoretical spectra 

of compounds from their chemical structures. Rule-based methods, quantum chemical calculation and 

machine learning are commonly strategies to calculate the theoretical spectra. Rule-based methods 

usually need experts to summarize the cleavage rules from large number of experimental spectra, which 

needs professional knowledge and efforts. Weissenberg and Dagan analyzed 190,825 entries in NIST 
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2005 database and found 68 ESI cleavage rules and their EI analogues [5]. Quantum chemical 

calculation methods use an equilibration and sampling strategy randomly selecting snapshots, then 

apply cascading production runs to generate fragments [6,7]. This approach has been demonstrated by a 

few representative spectra, but it needs high CPU computing power and running time. CFM-ID [8,9] is 

a machine learning method to predict ESI-MS/MS spectra, which applied a probabilistic generative 

model for evaluating the break tendency of chemical bonds, and trained the parameters of this model via 

machine learning approach. It can also be used for EI-MS, called CFM-EI [10], after some modification 

such as included odd electron fragment ions and isotope peaks. Recently, Wei et al proposed a neural 

network-based method, called NEIMS, which directly predicts EI-MS spectra from molecular 

fingerprints [4]. Comparing with CFM-EI, it not only achieves better predicting accuracy, but also runs 

much faster. 

Apart from spectra prediction, there are also other strategies for compound identification. In order to 

rank the candidate structures based on the obtained spectra, one can predict the molecular fingerprints 

from the spectra. By comparing the predicted fingerprints against the structural database, the correct 

compound should be ranked at the top of the candidate list. This strategy was initially used for 

compound identification with ESI-MS/MS, called FingerID [11]. Subsequently, it was combined with 

multi-kernel learning and fragmentation tree for better performance [12,13]. Recently, MetExpert was 

developed to predict molecular fingerprints from EI-MS spectra, combined with retention index 

prediction and compound-likeness evaluation [14]. It achieved better accuracy than CFM-EI. However, 

only 188-bits MACCS (Molecular ACCess System) fingerprint [15] was used in MetExpert, which 

leads to the low discrimination degree of similar structures. Moreover, PLS-DA (partial least 

squares-discriminant analysis) model used by MetExpert is a linear classifier. In PLS-DA method, 

high-dimensions features are projected into a low-dimensional space to find a plane to differentiate 

different classes. Therefore, PLS-DA is not be optimal, if the fingerprint is not linear separable with the 

spectra. 

In this study, a deep-learning-based approach (DeepEI) is proposed to retrieve the structure of the 

unknown compound from its EI-MS spectrum and the molecular structure database directly. Deep 

neural networks are used to predict multiple molecular fingerprints from the EI-MS spectrum (FP 

model). Then, the structure of the unknown compound can be retrieved by searching molecular structure 

database with the predicted fingerprints. In order to improve the identification performance, a 

convolutional neural network-based retention index model was trained to filter the structures in database. 

The overall workflow of DeepEI is described in Figure 1. DeepEI was tested by a subset of small 

molecules in NIST 2017 and an independent dataset from MassBank. The source code of DeepEI is 

available at https://github.com/hcji/DeepEI. 
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Methods 
Datasets and Preparation. The spectra used in this study are from two databases: NIST 2017 and 

MassBank. Spectra were obtained from NIST 2017 main library. The duplications, the compounds with 

molecular weight over 2000 Da or uncommon elements (elements except C, H, O, N, P, S, F, Cl, Br, Si) 

were excluded. Finally, 195,285 spectra were remained. A subset of 10,411 spectra were split for 

independent test for evaluating the performance of the compound identification, and it is the same as the 

independent test set in NEIMS for fairly comparison in the subsequent procedure. 

Spectra of MassBank were downloaded from the homepage of the MS-DIAL software [16,17]. The msp 

file were parser by MetGem package [18]. SMILES of a few compounds cannot be parsed by rdkit, and 

they were ignored. Finally, 13,083 spectra were obtained, and all of them were used as external test 

dataset. 

Molecular Fingerprints Prediction (FP model). The abundant fragments in EI-MS spectrum bring the 

possibility to predict the molecular fingerprint from the spectrum directly. We trained full connected 

neural network model for each bit of fingerprint, which represented the substructure information of the 

unknown compound. In this work, six kinds of substructure-related molecular fingerprints were used 

and listed in Table 1 [15,19–23]. There are 8034 fingerprint bits when combining all the six kinds of 

molecular fingerprints. However, most of the fingerprint bits are class-unbalanced. We only kept the 

fingerprint bit with positive percentage between 10 % and 90 %, and 636 bits of fingerprints were 

obtained finally. 

Since the remaining spectra in NIST 2017 are integral mass-to-charge value with molecular weights less 

than 2000 Da. As shown in Figure 2, all the spectra were converted to vectors with size=2000 as the 

inputs of the neutral networks. Each model for molecular fingerprint prediction contains three 

fully-connected layers (units=2000, 1000 and 500 respectively) with ReLU activation function. The 

output layer is a fully-connected layer (units=2) with SoftMax activation function. Categorical 

cross-entropy was used as the loss function, and Adam optimization algorithm was used as the optimizer. 

8 epochs were performed on the training dataset. 

Compound Identification. After training the FP model models, the molecular fingerprints can be 

predicted for given spectrum of unknown. In order to annotate its structure, the candidate structures 

need to be retrieved from the compound database and filtered by the retention indices and/or the 

molecular weight. In DeepEI, a convolutional neural network-based retention index predicting model 

(RI model) was provided to predict the retention index of compounds in the database, filter structures in 

the database and obtain the structure candidates. Five different deep-learning-based RI models were 

trained and compared, and multi-channel CNN have the best performance. The detailed results can be 

found in the “Retention Index Prediction” section of support information. Next, the fingerprints of the 
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candidate structures are computed and compared with the predicted fingerprints of the unknown using 

the Jaccard function. Finally, the ranked candidate list can be obtained by sorting the Jaccard similarity 

scores in descending order, which defined as follow: 

 ����������� � ������	
��, ��
 � ��� � ���/��� � ��� (1) 

where �� represents the query fingerprints predicted by DeepEI, and �� represents the fingerprints of 

the candidates in molecular structure library. 

Results 
Evaluation of FP Model. We trained totally 636 FP models and each model predicted a fingerprint bit 

related to the substructure of the compounds. The compounds were split to train, valid and test set. We 

also compared the performance of the FP model with the partial least squares-discriminant analysis 

(PLS-DA), logistic regression (LR) and gradient boosting (XGBoost). In the PLS-DA method, the 

number of components were optimized for the best performance on the validation set. The results of test 

set are shown in Figure 3. From the results, the median predicting accuracy of FP models is 90.3 %, 

which indicates the substructure information of the compounds can be well predicted by these models. 

The median F1 score of the FP models is also over 79.2 %, which indicates the FP models are reliable in 

the prediction of fingerprint bits. PLS-DA, LR and XGBoost also achieve average accuracy of 82.3 %, 

83.2 % and 86.4 %, respectively. However, their average F1 scores are much lower than DeepEI, which 

are 37.1 %, 46.3 % and 58.8 %, respectively. It means the predicting results of DeepEI are more 

meaningful. 

Compound Identification Performance. We compared the compound identification performance of 

DeepEI and NEIMS. NEIMS is a recently published method, which predicts EI mass spectra for 

enhance compound identification with neural network [4]. The model and the source code of NEIMS 

were download from https://github.com/brain-research/deep-molecular-massspec. The evaluation was 

performed with the NIST subset and the MassBank dataset. These compounds were never used for 

training, parameter tuning or model selection. Each compound with the experimental EI-MS spectrum 

was treated as the “unknown” to evaluate the identification performance. Candidate structures were 

retrieved from all compounds in NIST database. The 5 Da molecular weight filter was used, which 

means the molecular weights difference between the candidate structures and the “unknown” compound 

should be less than 5 Da. 

As described in the reference, the augmented library by NEIMS was used for identification. The 

spectrum of the “unknown” was predicted and inserted to the candidate list. If the “unknown” 

compound was already in the NIST database, we replaced the original experimental spectrum with the 

predicted spectrum. Then we used the candidate list for spectra matching. The weighted cosine 

similarity was used for ranking the candidates: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2020. ; https://doi.org/10.1101/2020.03.30.017137doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.017137
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 �����	��
� � ����������
��, ��
 �
∑ ����,�

�.��
��� · ����,�

�.�

�∑ ����,�
�.��

��� � · �∑ ����,�
�.��

��� �
 (2) 

where ��  and �� are vectors of m/z intensities representing the query spectrum and the candidate 

spectrum, respectively. ��  and ��  are the m/z value and intensity found at m/z. n is the largest m/z 

index. 

The results are listed in Table 2. For the NIST subset, the recall@1 and recall@5 of DeepEI are 36.8 % 

and 66.2 %, respectively. While the recall@5 of DeepEI is similar to NEIMS, the recall@1 is much 

higher. For the MassBank dataset, the recall@1 and recall@5 are 43.0 % and 57.5 %. The results are 

both much higher than NEIMS. The detailed identification results are available as support information. 

Overall, DeepEI is very effective for identifying the correct structure of the unknown. 

Combination with NEIMS. DeepEI is a spectrum to fingerprint method and NEIMS is fingerprint to 

spectrum method, they were supposed to be complementary for each other and may achieve a better 

identification performance if used together. Therefore, a consensus score was proposed by weighted 

averaging the scores of NEIMS and DeepEI. We also used the NIST subset and the MassBank dataset to 

compare the identification performance using the consensus score, which can be defined as: 

 �������������� � 0.7 � ����������� � 0.3 � �����	��
� (3) 

As shown in Table 2, The results of DeepEI + NEIMS have a significant improvement comparing with 

the results of NEIMS alone. Also, DeepEI + NEIMS have much better recall@1, recall@3 and recall@5 

on NIST 2017 dataset, and better recall@3 and recall@5 on MassBank dataset. 

Conclusion 
In this work, we use deep neutral networks to predict retention index and molecular fingerprint to assist 

compound identification with EI-MS. By comparing three FCNN networks and two CNN networks with 

different kinds of inputs, the multi-channel CNN achieved the best performance in predicting retention 

index of all kinds of chromatographic columns. We also compared PLS-DA, LR, XGBoost and FP 

model for molecular fingerprint prediction. The results indicated FP model has much better performance. 

The compound identification performance of DeepEI are evaluated by test dataset of NIST2017 and 

MassBank dataset. Results show that DeepEI is effective for identifying the correct structure of the 

unknown. Compared with NEIMS on NIST test dataset, DeepEI has a similar performance on recall@5, 

but significant better performance on recall@1 and recall@3. Compared with NEIMS on MassBank 

dataset, DeepEI has significant better performance on all the recall@1, recall@3 and recall@5. 

Meanwhile, the combination of DeepEI and NEIMS can improve the compound identification accuracy 

by a significant margin because of their complementarity. 
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Table 1. Types of fingerprints used by DeepEI. 

Fingerprint type Bits Reference 

CDK standard fingerprint 1024 [19] 

PubChem fingerprint 881 [20] 

Klekota-Roth fingerprint 4860 [21] 

MACCS keys 166 [15] 

Estate fingerprint 79 [22] 

Circular fingerprint 1024 [23] 

 

 

Table 2. Comparison between DeepEI and NEIMS with NIST and MassBank dataset. 

Test set Rank DeepEI NEIMS DeepEI+NEIMS 

NIST 2017 

Top 1 36.8 % 27.2 % 37.1 % 

Top 3 58.2 % 54.6 % 70.1 % 

Top 5 66.2 % 67.8 % 82.5 % 

MassBank 

Top 1 43.0 % 22.6 % 32.2 % 

Top 3 53.3 % 41.4 % 56.4 % 

Top 5 57.5 % 50.6 % 65.1 % 
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Figure 1. Workflow of the DeepMASS method. Spectra and retention indices in the database are u

for training the RI model and fingerprint models, respectively. For spectrum and RI pair of an unkno

structure candidates can be retrieved with the RI. If the molecular weight is known, the candidate 
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and the fingerprints of the candidates can be calculated. By comparing with the predicted fingerpr
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Figure 2. The neural network structure of FP model in DeepEI. 
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Figure 3. Comparison of fingerprint prediction of accuracy (A), precision (B), recall (C) and F1 score

(D) of MLP, PLS-DA, LR and XGBoost method. 
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