
Original article 1 

A bi-directional Mendelian randomization study of glycemic and anthropometric traits and 2 

Parkinson’s disease 3 

Running head: Glucose, body weight and Parkinson’s disease 4 

Sandeep Grover1, Ricarda Graf2, Alastair Noyce3, International Parkinson’s Disease Genomics 5 

Consortium (IPDGC), Manu Sharma1 
6 

1Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University 7 

of Tübingen, Tübingen, Germany  8 

2Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany 9 

3Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of 10 

London, London, UK. 11 

Corresponding Author: 12 

Dr Manu Sharma 13 

E-Mail: manu.sharma@uni-tuebingen.de 14 

Phone: 0049-7071-2978259 15 

 16 

Character count: 17 

Title: 96, Running head: 39 18 

Number of words:  19 

Abstract: 350, Body of the Manuscript: 2999 (Excluding abstract and references) 20 

Number of Figures: 2; Number of Tables: 3 21 

 22 

 23 

 24 

 25 

 26 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 1, 2020. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


Key points 27 

Question: Are glucose and obesity associated with Parkinson’s disease? 28 

Findings: Using bi-directional Mendelian randomization (MR) approach, and using Parkinson disease 29 

(PD) as an exposure, our study found that a 1-log odds increase in genetic predisposition to PD was 30 

associated with 0.0188 mmol/l increase in fasting glucose concentration. The genetic predisposition to PD 31 

was also associated with a 5.4% lower risk of type-2 diabetes (T2D). We found that a 1-SD increase in 32 

waist-hip ratio (WHR) was associated with a 26.5% lower risk of PD in the European population, likely 33 

to be mediated via body mass index.  34 

Meaning: A strong genetic predisposition towards glucose tolerance was observed in PD patients. and 35 

PD patients are protective against T2D. Further, an increase in WHR lowers the risk of PD.  Our study 36 

thereby suggests potential roles of body fat distribution and glycemic traits on PD symptomatology. 37 
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Abstract 53 

Importance: Impaired glucose and obesity are known characteristics of patients with PD, although it is 54 

unclear whether the dysfunction precedes or results from the neurodegeneration.  55 

Objective: To assess whether glycemic traits and anthropometric traits can influence the risk of PD in 56 

33,674 cases and 449,056 healthy controls using Mendelian randomization (MR) framework. 57 

Design, setting, and participants: We investigated causality with a two-sample bidirectional MR 58 

approach in the European population. We used the inverse variance-weighted (IVW), weighted median 59 

(WME), and weighted mode (MBE) methods to compute effect estimates with summary statistics from 60 

available meta-analyses of genome-wide association studies (GWAS) on glycemic and anthropometric 61 

traits that used discovery cohorts. We conducted sensitivity analyses with prioritized genetic instruments 62 

that used different study designs including employment of different study cohorts and body mass index 63 

(BMI) adjusted exposures, and exclusion of overlapping samples between risk factors and outcome 64 

datasets, and potential pleiotropic genetic instruments. 65 

Main outcome and measures: PD, glycemic and anthropometric traits 66 

Results: We observed a risky effect of PD on fasting glucose (FG) (IVW: β = 0.0188 per log-odds of PD; 67 

95% CI 0.0062–0.0313, p-value = 0.0055). We further observed a protective effect of PD on type 2 68 

diabetes (T2D) (WME: OR = 0.946 per log-odds of PD; 95% CI 0.929–0.983, p-value = 0.0051). A direct 69 

causal role of waist-hip ratio (WHR) was also observed in PD (IVW OR = 0.735; 95% CI = 0.622-0.868 70 

per 1-SD of WHR, p = 0.0003). However, the association was lost after WHR was adjusted for body mass 71 

index (BMI) (IVW OR = 0.889; 95% CI = 0.779-1.037 per 1-SD of WHR adjusted for BMI, p = 0.1429) 72 

indicating that the observed association is mediated via BMI The associations were further retained after 73 

the exclusion of overlapping UK Biobank (UKB) samples in the PD dataset. 74 

Conclusions and relevance: Our results showed that PD patients are glucose tolerant with protection 75 

against T2D. Furthermore, central obesity may be protective against PD development, independent of 76 

glucose levels.  The implication of different indices of glycemic control and body fat distribution on the 77 

PD symptomatology deserves further investigation.  78 
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 81 

Introduction 82 

The lack of neuroprotective or disease-modifying therapy has considerably hampered the management of 83 

PD. However, several recent preclinical and clinical studies have shown the potential beneficial effects of 84 

pharmacotherapy that promotes blood glucose-dependent insulin secretion and weight reduction on PD1,2. 85 

Traditionally, insulin has been implicated in the general hormonal regulation of glucose 86 

metabolism, as insulin crosses the blood-brain barrier to modulate brain energy homeostasis, with a minor 87 

contribution from internal neuronal secretion3. Several studies have demonstrated an association between 88 

impaired cortical glucose metabolism in specific brain regions and cognitive decline in patients with 89 

PD4,5. Preclinical studies in insulin-resistant models of neurodegeneration have shown the influence of 90 

insulin on dopaminergic cell death and dopamine expression, which induce severe motor and anxiety-like 91 

behavior6-8. Recently, T2D – characterized by high blood sugar, insulin resistance, and low insulin levels 92 

– was shown to be associated with higher motor scores in patients with PD 9. Change in body weight is 93 

also long known to occur during the clinical course of Parkinson’s disease (PD) and with the treatment of 94 

PD. A handful of observational studies with highly heterogeneous epidemiological study designs have 95 

investigated the association of body weight with PD, showing conflicting results10-12.  96 

Mendelian randomization (MR) has recently evolved as an alternative statistical approach that 97 

can, against potential confounding, judge potential causal relationships between risk factors (e.g. altered 98 

glucose metabolism or body mass index) and an outcome (e.g. PD)13,14. In principle, MR allows the use of 99 

genetic variants as proxy representatives of exposure from one population to test an association with an 100 

outcome in a completely independent population15. Genetic variants are randomly distributed at birth, and 101 

the process mimics the randomization of exposure in randomized controlled trials (RCTs) and, thereby, 102 

addresses hidden confounding factors16. 103 
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  To date, MR studies exploring the causal role of altered glucose or insulin homeostasis in PD are 104 

lacking. However, our previously published study explored the role of body mass index (BMI) on PD17 105 

and showed a protective role of body mass index (BMI) (OR = 0.82, 95% CI = 0.69-0.98)17. Most 106 

recently, the availability of GWAS datasets from the UK Biobank has further made possible to take 107 

advantage of increased power associated with a higher sample size by meta-analyzing it with previously 108 

existing large scale consortium datasets on various phenotypes of interest18-20. 109 

In the present study, we expanded the spectrum of assessing the impact and influence of several 110 

glycemic traits including 2-hour post-challenge glucose (2hrGlu), fasting glucose (FG), fasting insulin 111 

(FI), fasting insulin (FPI), homeostasis model assessment of β-cell function (HOMA-B); homeostasis 112 

model assessment of insulin resistance (HOMA-IR); glycated hemoglobin (HbA1c), Modified Stumvoll 113 

Insulin Sensitivity Index (ISI),  and T2D and anthropometric traits include body metabolic index (BMI), 114 

waist-hip ratio (WHR), waist circumference (WC), hip circumference (HC), adult height (AH) and birth 115 

weight (BW) on PD. We used inverse variance-weighted (IVW), MR-Egger, weighted median (WME), 116 

and weighted mode methods (MBE) to investigate the direct causal role of glycemic traits and 117 

anthropometric traits on PD18-30. As a secondary analysis, we further employed a reverse directional MR 118 

to confirm our findings. 119 

Methods 120 

Study design and identification of datasets 121 

We conducted a two-sample MR study through the use of summary estimates to examine the lifelong 122 

effect of glycemic and anthropometric traits on the risk of PD in the European population. We reviewed 123 

the most recent meta-analyses of discovery GWAS datasets in the literature and identified genetic 124 

instruments that influence glycemic traits including 2hGlu, FG, FI, HOMA-B, HOMA-IR, HbA1c, ISI, 125 

T2D and anthropometric traits including BMI, WHR, WC, HC, AH, and BW 18,20-30 (Table 1). With 126 

respect to the outcome dataset, we used the discovery cohort of a recent meta-analysis of GWAS on 127 
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33674 PD cases and 449056 controls19. We further identified genetic variants representing proxy markers 128 

of PD by using the same study to conduct a reverse directional MR. 129 

Prioritization of genetic variants  130 

We extracted significant SNPs from each GWAS dataset by employing a cutoff of 5×10−8. All SNPs with 131 

F-statistics <10 were further excluded for a possible violation of MR Assumption I31. Loci known to be 132 

directly involved in PD were also excluded for a possible violation of MR Assumption III, based on the 133 

existing evidence from previously published GWAS studies and relevant literature32.A clumping window 134 

of 10,000 kb and linkage disequilibrium (LD; i.e. r2) cutoff of 0.001 was applied in the European 135 

population in the 1000Genome Phase 3v5 dataset to identify the leading SNP that represents each 136 

significantly associated locus33. If a specific leading SNP was not available in the PD dataset, a proxy 137 

SNP (r2 > 0.8) was identified by using the European population in the 1000Genome Phase 3v5 dataset, 138 

when possible. The statistical power to detect a causal association was calculated by the method described 139 

by Brion et al 34. Based on the method, we used a sample size of outcome dataset of 482750 with a 140 

7.498% as proportion of PD patients in the dataset, a continuous exposure with a variance ≥1% and a 141 

threshold p-value of 3.3 × 10−3
 (see the section below). 142 

Effect estimation using MR and test of pleiotropy 143 

The IVW effect method with second-order weights was employed as the primary method to compute 144 

causal effect estimates35. We applied a conservative Bonferroni correction to account for 15 independent 145 

tests (threshold p-value = 3.3 × 10−3, i.e. 0.05/15). We used Cochrane Q-statistics and I2 for the IVW 146 

method as well as Rucker’s Q-statistics and the Intercept deviation test with MR-Egger’s method 36-39.  147 

Sensitivity analysis  148 

We employed MR-Egger, WME, and MBE methods to check the reliability of estimates with varying 149 

proportions of pleiotropic variants, as previously explained37,39-42. We further compared the results with 150 

genetic instruments from studies that reported discovery, replication, and pooled cohorts. The BMI has 151 

been shown to influence the role of glycemic and anthropometric traits on several diseases, including 152 

PD43. Therefore, we estimated the effect of genetic instruments adjusted for BMI for 2hrGlu, FG, FI, ISI, 153 
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T2D, and WHR to identify their overall influence on the causal effect estimates for PD.  A summary of 154 

GWAS datasets used to study the influence of GWAS study design and BMI adjusted datasets is provided 155 

in Supplementary Table 1. We employed a leave-one and leave-one-group-out cross-validation 156 

approach to check the influence of outlier variants as well as that of variants known to be associated with 157 

confounders of the relationship between glycemic, and anthropometric traits and PD. In addition, we 158 

employed graphical approaches, including a scatter plot of individual SNP-level effect estimates among 159 

exposure and outcome datasets and a funnel plot of the spread of inverse of the standard error of 160 

individual SNP-level effect estimates, around the effect estimates computed by various MR methods. We 161 

used the Phenoscanner database to identify potential pleiotropic genetic instruments that are known to be 162 

associated with potential confounders44. To avoid the overlapping of samples from UK Biobank, which 163 

has been included in recently published GWAS, we computed casual effect estimates by using PD 164 

datasets without UK biobank samples, as used in the previous study (9,581 PD cases and 33,245 165 

controls)32,45,46. 166 

Results 167 

Prioritization of genetic instruments and power analysis 168 

The depth of genomic coverage and number of individuals  in different discovery GWAS datasets on have 169 

been provided in Table 1. The table further shows variance explained by genetic instruments for different 170 

exposure datasets and availability of genetic instruments in the PD dataset. 171 

Our power analysis suggest that our study has ≈80% power to detect a true OR of 1.210 or 0.789 172 

for PD per SD of the continuous phenotype assuming that the proportion of the continuous phenotype 173 

explained by the genetic instrument is ≥1% at a type 1 error rate of 3.3 × 10−3. 174 

Effect estimation and sensitivity analysis 175 

The direct and reverse causal effect estimates of glycemic traits and anthropometric traits with PD are 176 

shown in Tables 2 and 3, both of which also provides various measures to evaluate the robustness of the 177 

effect estimates. Overall summary data used to compute effect estimates and sensitivity analysis are 178 

presented in Supplementary Table 2 179 
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Using a bidirectional MR approach, we observed a risky casual effect of PD on FG using IVW 180 

and MR Egger methods (Table 3). We observed a protective role of PD on T2D with the WME and MBE 181 

methods (Table 3). We observed high heterogeneity (76.8%) in the association of PD with T2D which 182 

could be attributed to the small number of genetic variants used as instruments for PD. However, the 183 

pleiotropic tests demonstrated there was a negligible effect on the overall results (MR-Egger intercept p-184 

value = 0.4711 and Rucker’s test statistic/Cochrane Q-statistic = 0.9685). The distribution of individual 185 

SNP-level effect estimates along with the effect estimates computed through different MR methods for 186 

the effect of PD on FG and T2D are shown as scatter and funnel plots in Figure 1. Our sensitivity 187 

analysis excluding individual SNPs in the causal effect estimation of PD on both FG and T2D failed to 188 

show the influence of outlier or potential pleiotropic SNP, thereby confirming the robustness of our 189 

findings (Supplementary Table 3). 190 

The observed findings were further confirmed by the absence of the causal effect of any of the 191 

glycemic traits, including FG and T2D on PD. This lack of association further persisted when we used 192 

genetic instruments that were prioritized from a small proportion of moderately associated SNPs which 193 

were followed up in a pooled cohort for 2hGlu, FG, FI, and FPI (Supplementary Table 4). Similarly, no 194 

association was observed for HOMA-B and HOMA-IR where genetic instruments were available for the 195 

replication cohorts.  In addition, we did not observe any influence of the BMI-adjusted instruments that 196 

were available for 2hrGlu, FG, FI, and T2D, regardless of the GWAS study cohort that was used to 197 

extract the instrument (Supplementary Table 4). With respect to other glycemic traits, we could not find 198 

genetic instruments for ISI. However, we were able to evaluate the causality using the genetic instruments 199 

for BMI adjusted ISI phenotype. We observed association using genetic instruments prioritized from the 200 

discovery cohort only. However, the observed association could not withstand the Bonferroni’s 201 

correction.  202 

Among all the anthropometric traits, we observed a significant protective effect of WHR on PD 203 

(Table 2). However, we observed loss of association when we used genetic instruments for WHR, which 204 

was adjusted for BMI, suggesting that the role of BMI in influencing genetic predisposition to PD. Using 205 
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the phenoscanner database, out of 357 SNPs WHR associated SNPs employed in causal effect analysis; 206 

we further identified a total of 127 pleiotropic SNPs that have been previously shown to be associated 207 

with non-anthropometric traits such as blood cell count, glycemic traits, lipid levels, and respiratory 208 

capacity (Data not shown). Our sensitivity analysis by excluding these pleiotropic SNPs demonstrated 209 

existence of protective trend in the effect estimate (OR = 0.801, 95% CI = 0.640-1.00, p = 0.052). 210 

However, the loss of association may be attributed to the overall loss of variance in the genetic instrument 211 

used for the sensitivity analysis. 212 

Lastly, to rule out the effect of week instrument bias on account of overlapping UKB samples, we 213 

used PD dataset without UKB samples. The protective effect of PD on T2D as well as the risky effect of 214 

WHR on PD were retained suggesting the reliability of the observed findings (PD on T2D: WME: OR = 215 

0.954, 95% CI = 0.938–0.970, p = 0.0094; MBE: OR=0.949, 95% CI = 0.916–0.983, p-value=0.0084) 216 

(Data not shown).    217 

Additional analysis  218 

Our findings further motivated us to explore the triangulation relationship between the traits shown to be 219 

related to PD using MR approach. We observed a bidirectional causal relationship between T2D and FG 220 

as well as T2D and WHR (Figure 2) (Data not shown). We further observed WHR as a risk factor for a 221 

higher FG with the absence of any effect of FG on WHR (Figure 2).                222 

Discussion 223 

The present study using a bi-directional MR aimed to understand the role of glycemic and anthropometric 224 

on PD, and observed that PD patients showed higher glucose tolerance, strong protective effect against 225 

T2D. Furthermore, an increase in WHR showed protection against PD; the observed effect is mediated 226 

via BMI.  227 

The results observed in our present study provided further evidence regarding the role of glucose 228 

metabolism in PD, and and data obtained herein is in agreement with the previously published 229 

epidemiological studies. For example, a recent study reported significantly higher blood glucose at T90 (p 230 

= 0.04) and T150 (p = 0.01)  in 50 non-diabetic PD patients compared to 50 healthy controls during a 75g 231 
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oral glucose tolerance test, with no significant increase in insulin levels43. The study also reported that 232 

higher blood glucose levels were associated with higher BMI (p<0.0001). Another recent longitudinal 233 

study identified high blood glucose as a risk marker for PD progression47.  The 48 month follow-up study 234 

exploring the role of 44 clinical variables in 135 patients with early PD, identified high FG levels 235 

(p=0.013) and T2D (p=0.033), among several other factors as significant predictors of annual cognitive 236 

decline in PD. The study further observed significant differences in the baseline levels of glucose when 237 

compared to 109 healthy controls. Our results are henceforth consent with these results suggesting that 238 

PD promotes dysregulation of glucose metabolism.  239 

Several cohort studies have previously explored the influence of pre-existing T2D on the 240 

predisposition to PD with contradictory results. A prospective follow-up of 147,096 predominantly 241 

Caucaisn participants in the Cancer Prevention Study II Nutrition Cohort from the United States found no 242 

association of the history of diabetes with PD risk (RR 0.88; 95% CI 0.62–1.25)48. Another study that 243 

comprised two large US cohorts – the Nurses’ Health Study (121,046 women) and the Health 244 

Professionals Follow-up Study (50,833 men) – observed similar results (RR 1.04, 95% CI 0.74–1.46)49. In 245 

contrast, a follow-up study in 51,552 Finnish individuals demonstrated an increased incidence of PD 246 

among patients with T2D (HR 1.85, 95% CI 1.23–2.80)50. Most recently, a meta-analysis of four cohort 247 

studies (3284 PD cases and 32, 695 diabetes cases) confirmed the finding that the onset of diabetes was a 248 

risk factor for PD (RR 1.37, 95% CI 1.21–1.55)51. However, the same study reported the absence of an 249 

association in pooled populations of five case-control studies (6487 PD cases and 1387 diabetes cases; 250 

OR 0.75, 95% CI 0.50–1.11). In summary, the findings of the association between T2D and PD have been 251 

highly heterogeneous and could be attributed to variables such as different study populations and 252 

epidemiological study designs. Our MR study further suggests that the onset of T2D has no lifetime risk 253 

in the predisposition to PD. On the other hand, we show that a genetic predisposition to PD could lower 254 

the lifetime risk to T2D by 4–5%. In conclusion, our study suggests that individuals with PD are less 255 

likely to develop T2D when compared to the general population.  256 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 1, 2020. ; https://doi.org/10.1101/2020.03.31.017566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.017566


Dopamine neurotransmission in human brain is known to modulate rewarding properties of food. 257 

Previous studies have further shown that dopamine receptors are under-expressed in obese individuals, 258 

thereby initiating a feedback look to compensate for lower dopamine secretion 52. It is however not known 259 

whether an altered dopaminergic metabolism in overweight individuals could influence the onset of PD. 260 

Numerous observational studies have previously explored the association between obesity and PD with 261 

mixed results. A recent meta-analysis of ten cohort studies with 2706 PD cases showed absence of 262 

association of BMI with PD11. In contrast, a recent nationwide health check-up data for the whole South 263 

Korean population comprising 44,205 incident cases identified risky association of abdominal obesity 264 

with PD (HR: 1.13, 95% CI: 1.10-1.16)10. In our study, we observed a risk reduction of 26.5% with every 265 

one standard deviation (SD) increase in WHR. Our results are in contrast with a previously reported 266 

protective causal association of BMI with PD, which observed a risk reduction of 18%. However, since 267 

the publication of last MR study, both exposure and outcome datasets have seen an enormous addition of 268 

new samples with increased genomic coverage.  The observation of a protective role of WHR henceforth 269 

adds novelty to our results. 270 

Despite our inability to stratify patients by age, our study has several strengths. We adopted a 271 

comprehensive approach that included several known markers of insulin metabolism, including FG, FI, 272 

2hrGlu, FPI, HOMA-B, HOMA-IR, HbA1c, ISI, and T2D. However, we observed that the genetic 273 

instruments for FI, HOMA-B, and HOMA-IR explained a very low amount of variance and, therefore, 274 

potential causation with PD might not be completely ruled out. Although we demonstrated a consistent 275 

reverse causal association of T2D with PD using different MR methods, we did not observe similar 276 

results with HbA1C, which is a known biomarker for prediabetes or diabetes. One of the reasons for this 277 

could be that the GWAS on HbA1c with 123,491 individuals from the general population was 278 

underpowered when compared to the GWAS on T2D that included 898,129 individuals22,23. Another 279 

important limitation of this study could be the unavailability of individual-level data, which could have 280 

enabled us to confirm the absence of pleiotropic variants by using various potential confounding variables 281 
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between PD and T2D. The possibility of a lack of pre-existing GWAS on some of the potential 282 

confounding variables cannot be ruled out. Lastly, we could not conduct a causal association analysis 283 

among different glycemic traits within PD patients. Nevertheless, our study suggest importance of 284 

collection of such data in near future. 285 

Despite these limitations, to the best of our knowledge, our study represents one of the most 286 

comprehensive studies, to date, that has explored the potential causal role of glycemic and anthropometric 287 

traits on PD. An extensive sensitivity analysis demonstrated the role of PD in altered glucose metabolism 288 

independent of insulin activity. Furthermore, we showed that despite high fasting glucose levels, PD 289 

patients are protective against T2D. On the contrary, anthropometric traits mainly WHR and BMI may 290 

play a role in conferring protection against PD. We further suggest the adoption of a cautionary approach 291 

when drawing clinical interpretations from the results of the current study, because additional lines of 292 

evidence may be generated, including the potential complex relationship of anthropometric, glycemic and 293 

PD with other unexplored traits.  294 
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Table 1. Details of discovery GWAS datasets explored and prioritized instruments used for direct and reverse causal analysis in the present study. Direct analysis was done using PD as an outcome and 
reverse was done using glycemic traits and modifiable anthopometric traits as outcome. 

S.No. Phenotype Source study 

Maxim
um 
sample 
size  

P  # of SNPs 
analyzed 

# of  
significant 
SNPs              

# of  
significant 
SNPs              
(post-
clumping) 
(R2 < 0.001) 

# of 
proxy 
SNPs 

# of 
SNPs in 
the 
genetic 
instrum
ent 

Average F-
statistics 
(Median 
(Range) 

R2 
(%) 

Glycemic traits 

1 2 hour glucose (2hGlu) 
Saxena et al. 2010, 
Scott et al. 2012* 

15234, 
42854 

5 x 10-8 2401708  NA 4  0  3  
48.9 

(44.8-67.4) 
1.05 

2 
Fasting glucose (FG) Manning et al. 2012 

58074 5 x 10-8 2628879 505 22 
0 22 

41.8 
(29.8-455.9) 

4.80 

3 
Fasting insulin (FI) Manning et al. 2012 

51750 5 x 10-8 2627848 34 4 
0 4 

35.6 
(32.7-40.2) 

1.20 

4 
Fasting proinsulin (FPI) Strawbridge et al. 2011 

10701 5 x 10-8 2496073 407 8 
0 8 

53.7 
(31.7-189) 

1.92 

5 
Hemoglobin A1c (HbA1c) Wheeler et al. 2017 

123491 5 x 10-8 2586698 821 38 
0 38 

46.7 
(28.7-288) 

0.48 

6 
Homeostasis model assessment of  β-
cell function (HOMA-B) Dupuis et al. 2010 

36466 5 x 10-8 2456945 119 4 
0 4 

69.8 
(33.4-123) 

0.17 

7 
Homeostasis model assessment of  
insulin resistance (HOMA-IR) Dupuis et al. 2010 37037 5 x 10-8 2458073 0 NA NA NA NA NA 

8 
Modified stumvoll insulin sensitivity 
index (ISI) Walford et al. 2016 

16753 5 x 10-8 2423410 0 NA 
NA NA 

NA NA 

9 

Type 2 Diabetes (T2D) Mahajan et al. 2018 

74123 
cases/82
4006 
controls 

5 x 10-8 23465132 19227 202 

NA 202 

47.6 
(29.2-2018) 

NA 

Anthopoimetric traits 

1 Body mass index (BMI) Pulit et al. 2019 694649  5 x 10-8 27381302  85104  548  2  548  
49.0 

(28.4-2030.6) 
5.77 

2 
Waist hip ratio (WHR) 

Pulit et al. 2019 694649 5 x 10-8 27376273 39705 358 
2 357 

44.0 
(29.0-820.0) 

3.28 
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3 
Waist circumference (WC) Shungin et al. 2015 

210088 5 x 10-8 2565407 1105 42 
0 42 

38.1 
(29.3-447.0) 

1.18 

4 
Hip circumference (HC) Shungin et al. 2015 

210088 5 x 10-8 2559738 1238 52 
0 52 

39.4 
(27.8-378.1) 

1.36 

5 
Adult height (AH) Yengo et al. 2018 

693529 5 x 10-8 2334001 130933 832 
0 831 

92.2 
(28.4-2209.0) 

24.6 

6 
Birth weight (BW) Horikoshi et al. 2016 

153781 5 x 10-8 16245523 2278 50 
3 49 

36.9 
(30.4-179.8) 

2.00 

Disease trait 

1 Parkinson's disease (PD) Nalls et al. 2019 

33,674 
cases, 
449056*
* 

5 x 10-8 
175,137,7
3 

3465 23 0-11 18-23 
43.6 
(30.0-181.5) 

NA 

*Discovery cohort (Saxena et al. 2010) was used to identify the SNPs, while effect estimates were taken from pooled cohort (Scott et al. 2012). 
** The significant SNPs were identified from the Nalls et al. 2014 but the effect estimates were derived from a sub-population (without 23andMe cohort). Two SNPs were not available in the available 
GWAS dataset. 
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Table 2a. Causal effect estimates using different  Mendelian randomization methods and heterogeneity analysis of causal effect estimates for Parkinson' disease using various glycemic traits as 
exposures.   

Trait* MR methodology # of SNPs Direct causal effect estimates Tests of heterogeneity 

      OR 95% CI p     

2 hour glucose (2hGlu) 

Inverse variance weighted (2nd order weights) 3 0.9260 0.563-1.523 0.5749 MR-Egger intecept  (p-value) 0.8253 

MR Egger   0.7160 nd 0.7786 I square (IVW) 0.0% 

Weighted median method   0.8930 0.786-1.016 0.4738 Cochrane Q-test (IVW) (p-value) 0.7984 

Weighted mode method (NOME assumptions)   0.8850 0.650-1.204 0.5173 Rucker’s Q-test (p-value) 0.5427 

            Rucker’s test statistic/ Cochrane 
Q-statistic 

0.8229 

                

Fasting glucose (FG) 

Inverse variance weighted (2nd order weights) 22 1.1810 0.858-1.624 0.2910 MR-Egger intecept  (p-value) 0.5647 

MR Egger   1.0000 0.510-1.963 0.9992 I square (IVW) 29.4% 

Weighted median method   1.1390 0.952-1.363 0.4758 Cochrane Q-test (IVW) (p-value) 0.0970 

Weighted mode method (NOME assumptions)   1.0520 0.752-1.473 0.7706 Rucker’s Q-test (p-value) 0.0834 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 

0.9823 

                

Fasting insulin (FI) 

Inverse variance weighted (2nd order weights) 4 2.4399 0.053-112.905 0.5128 MR-Egger intecept  (p-value) 0.1768 

MR Egger   nd nd 0.2085 I square (IVW) 79.0% 

Weighted median method   1.7492 0.895-3.417 0.1867 Cochrane Q-test (IVW) (p-value) 0.0025 

Weighted mode method (NOME assumptions)   1.4995 0.155-14.481 0.2864 Rucker’s Q-test (p-value) 0.0637 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 

0.3851 

                

Fasting proinsulin (FPI) 

Inverse variance weighted (2nd order weights) 8 1.0200 0.811-1.283 0.8437 MR-Egger intecept  (p-value) 0.1311 

MR Egger   0.7356 0.445-1.218 0.1865 I square (IVW) 16.7% 

Weighted median method   0.8703 0.775-0.978 0.2710 Cochrane Q-test (IVW) (p-value) 0.2984 

Weighted mode method (NOME assumptions)   0.9213 0.706-0.202 0.5641 Rucker’s Q-test (p-value) 0.4654 
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            Rucker’s test statistic/ Cochrane 
Q-statistic 

0.6705 

                

Hemoglobin A1c (HbA1c) 

Inverse variance weighted (2nd order weights) 38 0.9441 0.625-1.500 0.8005 MR-Egger intecept  (p-value) 0.1183 

MR Egger   1.7000 0.712-4.056 0.2242 I square (IVW) 24.4% 

Weighted median method   1.1540 0.879-1.517 0.6022 Cochrane Q-test (IVW) (p-value) 0.0905 

Weighted mode method (NOME assumptions)   1.1920 0.686-2.070 0.5368 Rucker’s Q-test (p-value) 0.1206 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 0.9422 

                

Homeostasis model 
assessment of  β-cell function 

(HOMA-B) 

Inverse variance weighted (2nd order weights) 4 1.0250 0.397-2.645 0.9392 MR-Egger intecept  (p-value) 0.7166 

MR Egger   0.6348 0.004-103.727 0.7382 I square (IVW) 0.0% 

Weighted median method   1.1970 0.853-1.680 0.6328 Cochrane Q-test (IVW) (p-value) 0.8413 

Weighted mode method (NOME assumptions)   1.2447 0.514-3.011 0.6605 Rucker’s Q-test (p-value) 0.7187 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 

0.7921 

                

Type 2 Diabetes (T2D) 

Inverse variance weighted (2nd order weights) 202 1.0333 0.974-1.093 0.2780 MR-Egger intecept  (p-value) 0.9723 

MR Egger   1.0300 0.911-1.165 0.6330 I square (IVW) 31.5% 

Weighted median method   1.0010 0.963-1.042 0.9700 Cochrane Q-test (IVW) (p-value) 
<0.000

1 

Weighted mode method (NOME assumptions)   1.0140 0.928-1.109 0.7580 Rucker’s Q-test (p-value) 
<0.000

1 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 

1.0000 

                

nd: Not defined 
 *No significant SNPs were identified for Homeostasis model assessment of  insulin resistance (HOMA-IR) and Modified stumvoll insulin sensitivity index (ISI). 
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Table 2b. Causal effect estimates using different  Mendelian randomization methods and heterogeneity analysis of causal effect estimates for Parkinson' disease using various anthropometric traits as 
exposures. 

Trait* MR methodology Number of 
SNPs Direct causal effect estimates Tests of heterogeneity 

      OR 95% CI p     

Body mass index (BMI) 

Inverse variance weighted (2nd order weights) 548 0.920 0.802-1.054 0.2418 MR-Egger intecept  (p-value) 0.3961 

MR Egger   0.807 0.579-1.125 0.2046 I square (IVW) 25.9% 

Weighted median method   0.957 0.856-1.069 0.6906 Cochrane Q-test (IVW) (p-value) 
<0.000

1 

Weighted mode method (NOME assumptions)   1.002 0.756-1.329 0.9875 Rucker’s Q-test (p-value) 
<0.000

1 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 

0.9988 

                

Waist hip ratio (WHR) 

Inverse variance weighted (2nd order weights) 357 0.735 0.622-0.868 0.0003 MR-Egger intecept  (p-value) 0.1508 

MR Egger   1.012 0.635-1.614 0.9602 I square (IVW) 22.0% 

Weighted median method   0.810 0.721-0.911 0.0737 Cochrane Q-test (IVW) (p-value) 0.0003 

Weighted mode method (NOME assumptions)   0.872 0.580-1.311 0.5098 Rucker’s Q-test (p-value) 0.0003 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 0.9947 

                

Waist circumference (WC) 

Inverse variance weighted (2nd order weights) 42 0.890 0.678-1.169 0.3965 MR-Egger intecept  (p-value) 0.8559 

MR Egger   0.946 0.461-1.943 0.8770 I square (IVW) 29.9% 

Weighted median method   0.944 0.797-1.118 0.7361 Cochrane Q-test (IVW) (p-value) 0.0378 

Weighted mode method (NOME assumptions)   0.985 0.695-1.396 0.9318 Rucker’s Q-test (p-value) 0.0289 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 

1.0030 

                

Hip circumference (HC) 

Inverse variance weighted (2nd order weights) 52 0.904 0.719-1.136 0.3776 MR-Egger intecept (p-value) 0.7351 

MR Egger   0.987 0.471-2.069 0.9727 I square (IVW) 34.2% 

Weighted median method   0.952 0.823-1.102 0.7402 Cochrane Q-test (IVW) (p-value) 0.0097 
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Weighted mode method (NOME assumptions)   1.009 0.715-1.424 0.9581 Rucker’s Q-test (p-value) 0.0072 

            
Cochrane Q-staitics/Rucker’s test 
statistic 

1.0029 

                

Adult height (AH) 

Inverse variance weighted (2nd order weights) 49 1.024 0.952-1.101 0.5237 MR-Egger intecept  (p-value) 0.9183 

MR Egger   1.031 0.885-1.201 0.6974 I square (IVW) 19.4% 

Weighted median method   0.965 0.911-1.021 0.5302 Cochrane Q-test (IVW) (p-value) 0.0000 

Weighted mode method (NOME assumptions)   0.883 0.721-1.082 0.2302 Rucker’s Q-test (p-value) 0.0000 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 

1.0000 

                

Birth weight (BW) 

Inverse variance weighted (2nd order weights) 831 1.198 0.926-1.549 0.1643 MR-Egger intecept  (p-value) 0.3284 

MR Egger   1.779 0.784-4.040 0.1641 I square (IVW) 38.0% 

Weighted median method   1.291 1.100-1.514 0.1164 Cochrane Q-test (IVW) (p-value) 0.0045 

Weighted mode method (NOME assumptions)   1.518 0.919-2.507 0.1093 Rucker’s Q-test (p-value) 0.0052 

            Rucker’s test statistic/ Cochrane 
Q-statistic 

0.9759 

                

*No significant SNPs were identified for Homeostasis model assessment of  insulin resistance (HOMA-IR) and Modified stumvoll insulin sensitivity index (ISI). 
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Table 3a. Causal effect estimates using different Mendelian randomization methods and heterogeneity analysis of causal effect estimates for various glycemic traits using Parkinson's disease as an exposure. 

Trait* MR methodology # of 
SNPs Reverse causal effect estimate Tests of heterogeneity 

    
  

β or OR** 95% CI p     

Fasting glucose (FG) 

Inverse variance weighted (2nd order weights) 19 0.0188 0.0062-0.0313 0.0055 MR-Egger intecept  (p-value) 0.0957 

MR Egger   0.0422 0.0117-0.0728 0.0097 I square (IVW) 0.0% 

Weighted median method   0.0150 0.0071-0.0228 0.0710 Cochrane Q-test (IVW) (p-value) 0.4555 

Weighted mode method (NOME assumptions)   0.0161 -0.0046-0.0368 0.1454 Rucker’s Q-test (p-value) 0.5934 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 0.8349 

                

Fasting insulin (FI) 

Inverse variance weighted (2nd order weights) 19 0.0099 -0.0059-0.0258 0.2035 MR-Egger intecept  (p-value) 0.1686 

MR Egger   0.0325 -0.0039-0.0690 0.0775 I square (IVW) 35.7% 

Weighted median method   0.0122 0.0041- 0.0203 0.1423 Cochrane Q-test (IVW) (p-value) 0.0621 

Weighted mode method (NOME assumptions)   0.0190 0.0014-0.0366 0.0404 Rucker’s Q-test (p-value) 0.1102 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 

0.8698 

                

Fasting proinsulin (FPI) 

Inverse variance weighted (2nd order weights) 19 0.0230 -0.0106-0.0566 0.1672 MR-Egger intecept  (p-value) 0.5022 

MR Egger   0.0503 -0.0408-0.1416 0.2590 I square (IVW) 30.7% 

Weighted median method   0.0276 0.0079-0.0472 0.1770 Cochrane Q-test (IVW) (p-value) 0.1062 

Weighted mode method (NOME assumptions)   0.0138 -0.0689-0.0967 0.7456 Rucker’s Q-test (p-value) 0.0946 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 

0.9698 

                

Hemoglobin A1c (HbA1c) 

Inverse variance weighted (2nd order weights) 19 0.0005 -0.0086-0.0096 0.9059 MR-Egger intecept  (p-value) 0.4788 

MR Egger   0.0082 -0.0160-0.0325 0.4846 I square (IVW) 37.8% 

Weighted median method   0.0023 -0.0024-0.0071 0.6483 Cochrane Q-test (IVW) (p-value) 0.0492 
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Weighted mode method (NOME assumptions)   0.0016 -0.0118-0.0151 0.8094 Rucker’s Q-test (p-value) 0.0416 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 

0.9782 

                

Homeostasis model 
assessment of  insulin 

resistance (HOMA-IR) 

Inverse variance weighted (2nd order weights) 19 0.0086 -0.0081-0.0254 0.2917 MR-Egger intecept  (p-value) 0.1701 

MR Egger   0.0335 -0.0066-0.0738 0.0960 I square (IVW) 15.7% 

Weighted median method   0.0142 0.0040-0.0244 0.2279 Cochrane Q-test (IVW) (p-value) 0.2654 

Weighted mode method (NOME assumptions)   0.0262  -0.0072- 0.0598 0.1429 Rucker’s Q-test (p-value) 0.3390 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 

0.8796 

                

Homeostasis model 
assessment of  β-cell function 

(HOMA-B) 

Inverse variance weighted (2nd order weights) 18 -0.0035 -0.0159-0.0088 0.5530 MR-Egger intecept  (p-value) 0.2189 

MR Egger   0.0122 -0.0167-0.0413 0.3827 I square (IVW) 0.0% 

Weighted median method   0.0034  -0.0046-0.0115 0.6900 Cochrane Q-test (IVW) (p-value) 0.7384 

Weighted mode method (NOME assumptions)   0.0093 -0.0120-0.0308 0.4035 Rucker’s Q-test (p-value) 0.7860 

            Rucker’s test statistic/ Cochrane 
Q-statistic 

0.8770 

                

Modified stumvoll insulin 
sensitivity index (ISI) 

Inverse variance weighted (2nd order weights) 18  -0.0491 -0.1062-0.0078 0.0866 MR-Egger intecept  (p-value) 0.4443 

MR Egger   -0.0915 -0.2200-0.0368 0.1501 I square (IVW) 43.6% 

Weighted median method   -0.0228 -0.0511-0.0055 0.4516 Cochrane Q-test (IVW) (p-value) 0.0252 

Weighted mode method (NOME assumptions)   -0.0260  -0.0996- 0.0475 0.5017 Rucker’s Q-test (p-value) 0.0238 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 

0.9622 

                

Type 2 Diabetes (T2D) 

Inverse variance weighted (2nd order weights) 23 0.9735 0.9211-1.029 0.3258 MR-Egger intecept  (p-value) 0.4711 

MR Egger   1.0180 0.886-1.170 0.7901 I square (IVW) 76.9% 

Weighted median method   0.9460 0.929-0.963 0.0051 Cochrane Q-test (IVW) (p-value) <0.0001 

Weighted mode method (NOME assumptions)   0.9430 0.904-0.983 0.0116 Rucker’s Q-test (p-value) <0.0001 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 0.9685 
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*Discovery cohort for 2 hour glucose (2hGlu) was not available.             

**OR is for T2D; β is for other outcome variables 
             
Table 3b. Causal effect estimates using different Mendelian randomization methods and heterogeneity analysis of causal effect estimates for various modifiable anthropometric traits using Parkinson's disease 
as an exposure. 
 

Trait* MR methodology 
Numbe

r of 
SNPs 

Reverse causal effect estimate Tests of heterogeneity 

      β 95% CI p     

Body mass index (BMI) 

Inverse variance weighted (2nd order weights) 23 -0.005434556 -0.0242-0.0133 0.5538 MR-Egger intecept  (p-value) 0.4102  

MR Egger   0.0129 -0.0362-0.0620 0.5910 I square (IVW) 84.6% 

Weighted median method    -0.0102 -0.0157--0.0046 0.0786 Cochrane Q-test (IVW) (p-value) <0.0001 

Weighted mode method (NOME assumptions)    -0.0144 -0.0269--0.0019 0.0344 Rucker’s Q-test (p-value) <0.0001 

            Rucker’s test statistic/ Cochrane 
Q-statistic 

1.0006 

                

Waist hip ratio (WHR) 

Inverse variance weighted (2nd order weights) 23 -0.0077 -0.0277-0.0122 0.4288 MR-Egger intecept  (p-value) 0.8462 

MR Egger   -0.0031 -0.0562-0.0500 0.9035 I square (IVW) 84.1% 

Weighted median method    -0.0019  -0.0073-0.0034 0.7276 Cochrane Q-test (IVW) (p-value) <0.0001 

Weighted mode method (NOME assumptions)   -0.0056 -0.0246-0.0133 0.5644 Rucker’s Q-test (p-value) <0.0001 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 1.0170 

                

Waist circumference (WC) 

Inverse variance weighted (2nd order weights) 19 -0.0034 -0.0277-0.0208 0.7691 MR-Egger intecept  (p-value) 0.6691 

MR Egger   0.0084 -0.0543-0.0712 0.7801 I square (IVW) 51.0% 

Weighted median method   -0.0100 -0.0214-0.0012 0.3863 Cochrane Q-test (IVW) (p-value) 0.0057 

Weighted mode method (NOME assumptions)   -0.0128 -0.0391-0.0135 0.3528 Rucker’s Q-test (p-value) 0.0038 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 

0.9960 
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Hip circumference (HC) 

Inverse variance weighted (2nd order weights) 19 0.0005 -0.0216-0.0227 0.9609 MR-Egger intecept  (p-value) 0.343 

MR Egger   0.0246 -0.0320-0.0812 0.3724 I square (IVW) 39.1% 

Weighted median method   0.0090 -0.0019-0.0201 0.4195 Cochrane Q-test (IVW) (p-value) 0.0419 

Weighted mode method (NOME assumptions)   0.0162 -0.0118-0.0442 0.2715 Rucker’s Q-test (p-value) 0.0408 

            
Rucker’s test statistic/ Cochrane 
Q-statistic 0.9598 
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