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Abstract:  Selective logging is the primary driver of forest degradation in the tropics and reduces the 26 

capacity of forests to harbour biodiversity, maintain key ecosystem processes, sequester carbon, and 27 

support human livelihoods. While the preceding decade has seen a tremendous improvement in the 28 

ability to monitor forest disturbances from space, advances in forest monitoring have almost 29 

universally relied on optical satellite data from the Landsat program, whose effectiveness is limited in 30 

tropical regions with frequent cloud cover. Synthetic aperture radar (SAR) data can penetrate clouds 31 

and have been utilized in forest mapping applications since the early 1990s, but no study has 32 

exclusively used SAR data to map tropical selective logging. A detailed selective logging dataset from 33 

three lowland tropical forest regions in the Brazilian Amazon was used to assess the effectiveness of 34 

SAR data from Sentinel-1, RADARSAT-2 and PALSAR-2 for monitoring tropical selective logging. 35 

We built Random Forest models in an effort to classify pixel-based differences in logged and 36 

unlogged areas. In addition, we used the BFAST algorithm to assess if a dense time series of Sentinel-37 

1 imagery displayed recognizable shifts in pixel values after selective logging. Random Forest 38 

classification with SAR data (Sentinel-1, RADARSAT-2, and ALOS-2 PALSAR-2) performed 39 

poorly, having high commission and omission errors for logged observations. This suggests little to 40 

no difference in pixel-based metrics between logged and unlogged areas for these sensors. In contrast, 41 

the Sentinel-1 time series analyses indicated that areas under higher intensity selective logging (> 20 42 

m
3
 ha

-1
) show a distinct spike in the number of pixels that included a breakpoint during the logging 43 

season. BFAST detected breakpoints in 50% of logged pixels and exhibited a false alarm rate of 44 

approximately 10% in unlogged forest. Overall our results suggest that SAR data can be used in time 45 

series analyses to detect tropical selective logging at high intensity logging locations within the 46 

Amazon (> 20 m
3
 ha

-1
). These results have important implications for current and future abilities to 47 

detect selective logging with freely available SAR data from SAOCOM 1A, the planned continuation 48 

missions of Sentinel-1 (C and D), ALOS PALSAR-1 archives (expected to be opened for free access 49 

in 2020), and the upcoming launch of NISAR. 50 

 51 
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1. Introduction 54 

Selective logging is the primary driver of forest degradation in the tropics (Curtis et al., 2018; 55 

Hosonuma et al., 2012). Logging reduces the capacity of forests to harbour biodiversity, maintain key 56 

ecosystem processes, sequester carbon, and support human livelihoods (Baccini et al., 2017; Barlow 57 

et al., 2016; Lewis et al., 2015). However, large uncertainties remain in assessing the true impact of 58 

selective logging because the technological advances in detecting and monitoring logging at large 59 

scales are only just emerging (Hethcoat et al., 2019). The ability to reliably map forest degradation 60 

from selective logging is a key element in understanding the terrestrial portion of the carbon budget 61 

and the role of land-use in turning tropical forests into net carbon emitters (Baccini et al., 2017). In 62 

addition, reliable forest monitoring systems are urgently needed for tropical nations and conservation 63 

groups seeking to report and/or mitigate carbon emissions through improved forest stewardship 64 

(GOFC-GOLD, 2016). 65 

While the preceding decade has seen a tremendous improvement in the ability to detect forest 66 

disturbances from space (Hansen et al., 2013; Hethcoat et al., 2019; Tyukavina et al., 2017), advances 67 

in forest monitoring have almost universally relied on optical satellite data from the Landsat program. 68 

Yet, the effectiveness of optical data is limited in tropical regions with frequent cloud cover like the 69 

northwest Amazon and central Africa. Synthetic aperture radar (SAR) data can penetrate clouds and 70 

have been utilized in forest mapping applications since the early 1990s (reviewed in Koch, 2010). 71 

However, the SAR data archives are spatially and temporally fragmented, and in many cases the data 72 

products required commercial licences for their use. Consequently, uptake by users has been more 73 

limited than optical data and the full potential of SAR has likely been under-utilized (Reiche et al., 74 

2016).  75 

SAR backscatter, particularly at L- and P-band, is sensitive to changes in carbon stocks in 76 

forests with biomass < 300 Mg ha
-1

 (Koch, 2010; Mitchard et al., 2009; Saatchi et al., 2011). This 77 

enables accurate differentiation between forested and non-forested areas and has been well studied 78 

(e.g. Shimada et al., 2014). More recently, polarimetric and interferometric methods have been 79 

developed that utilize information in the SAR signal to detect forest changes (Deutscher et al., 2013; 80 

Flores-Anderson et al., 2019; Lei et al., 2018; Mathieu et al., 2013). Yet, the limited temporal and 81 
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spatial coverage of SAR data have hampered widespread application and use of these techniques to 82 

monitor forest disturbances (e.g. single-pass interferometric SAR is only available with TanDEM-X 83 

data). Moreover, advancements in monitoring selective logging with SAR data are generally lacking, 84 

despite widespread recognition of both the need and the role it could play (Mitchell et al., 2017; 85 

Reiche et al., 2016).   86 

The launch of Sentinel-1A in mid-2014 represented the first continuous global acquisition 87 

strategy for open SAR data. Since that time two studies have exclusively used Sentinel-1 to map 88 

deforestation (Antropov et al., 2016; Delgado-Aguilar et al., 2017), with others utilizing a fusion of 89 

optical and SAR data (Joshi et al., 2016; Reiche et al., 2018a, 2018b, 2015). While methods that fuse 90 

optical and Sentinel-1 have been successful, their continued dependence on optical imagery 91 

nevertheless limits their utility in regions with frequent cloud cover. With the successful launch of 92 

SAOCOM 1A in late 2018, the planned continuation of the Sentinel-1 missions (with C and D), and 93 

the anticipated launches of SAOCOM 1B in 2019 and NISAR in 2021, vast amounts of free C- and L-94 

band SAR data will soon be available. Accordingly, methods are needed that utilize SAR data for 95 

large-scale forest monitoring, yet no study has used Sentinel-1 for detection of selective logging 96 

activities. 97 

The primary objective of this paper was to assess the ability of Sentinel-1 to detect tropical 98 

selective logging. Detailed spatial and temporal logging records from three regions in Brazil were 99 

used to develop and test the effectiveness of two different detection techniques: (1) exploiting pixel-100 

based differences between logged and unlogged locations in single images and (2) detecting change in 101 

a time series of pixels known to be logged.  102 

Pixel-based methods for detecting changes in remotely sensed imagery often utilize 103 

differences between pixel values or other mathematically derived metrics in time or space, for 104 

example before and after some disturbance or in areas known to be disturbed and undisturbed within 105 

the same image (reviewed in Hussain et al., 2013). These differences can be used for classification, 106 

employed in machine learning, or analyzed temporally to map change. Recently, the detection of 107 

selectively logged regions in single images has been demonstrated successfully with optical data from 108 

Landsat (Hethcoat et al. 2019).  Accordingly, we sought to evaluate whether similar methods could be 109 
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transferred to SAR data. The selective logging records were used to build supervised machine 110 

learning models to detect selective logging. Machine learning methods have many applications in 111 

remote sensing and have been used with increasing frequency and success (Lary et al., 2018). We 112 

performed equivalent analyses with SAR data from the C-band RADARSAT-2 and L-band PALSAR-113 

2 sensors to compare the performance of longer wavelength (i.e. L-band PALSAR-2) and higher 114 

resolution data (both RADARSAT-2 and PALSAR-2 have higher sensor resolution).  115 

In addition, we used all the available Sentinel-1 archives in a time series analysis to monitor 116 

pixel values for breakpoints in the time series of locations that had been selectively logged. Time 117 

series methods have increasingly been used for monitoring changes in pixel values, in part because of 118 

the availability of vast archives of imagery on cloud computing platforms like Google Earth Engine 119 

(Gorelick et al., 2017), but also because of the recognition that seasonal or longer term trends in pixel 120 

values can be less susceptible to erroneously characterizing change (Bullock et al., 2018; Verbesselt et 121 

al., 2012; Zhu, 2017). Given that forest disturbances from selective logging are often subtle and short-122 

lived, detecting changes with SAR data over large regions will present technological and algorithmic 123 

challenges. However, a critical assessment of detection capabilities and a careful understanding of the 124 

performance of these data types is essential for advancing forest monitoring techniques in the tropics. 125 

 126 

2. Study area and data 127 

2.1. Study area and selective logging data 128 

Selective logging data from three lowland tropical forest regions in the Brazilian Amazon were used 129 

in this study (Figure 1). The Jacunda and Jamari regions are inside the Jacundá and Jamari National 130 

Forests, Rondônia, while the Saraca region is inside the Saracá-Taquera National Forest, Pará. Forest 131 

inventory data from 14 forest management units (FMUs) selectively logged between 2012 and 2017 132 

were used, comprising over 32,000 individual tree locations. Unlogged data from three additional 133 

locations, one inside each study region, comprised over 11,500 randomly selected point locations 134 

known to have remained unlogged during the study period (Table 1). 135 

 136 

2.2. Satellite data and pre-processing 137 
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All available C-band Sentinel-1A Ground Range Detected scenes in descending orbit and 138 

Interferometric Wide mode (VV and VH) were utilized in Google Earth Engine (GEE) over the study 139 

regions through November 2018. These had incidence angles of 38.7°, and 38.7°, and 31.4° for 140 

Jacunda, Jamari and Saraca, respectively. GEE is a cloud computing platform hosting calibrated, 141 

ortho-corrected Sentinel-1 scenes that have been processed in the following steps using the Sentinel-1 142 

Toolbox: (1) thermal noise removal; (2) radiometric calibration; and (3) terrain correction using the 143 

Shuttle Radar Topography Mission (SRTM) 30 m digital elevation model (DEM). The resulting 144 

images had a pixel size of 10 m. 145 

Single Look Complex C-band RADARSAT-2 scenes in Fine mode (HH and HV) were 146 

obtained from the Canadian Space Agency. Twelve ascending scenes, with an incidence angle of 147 

30.7°, coincided with selective logging records and were acquired between 2011 and 2012. Pre-148 

processing of images was done with the Sentinel-1 Toolbox and included: (1) radiometric calibration; 149 

(2) multi-looking (by a factor of 2 in azimuth) to produce square pixels; and (3) terrain correction 150 

using the SRTM 30 m DEM. The resulting images had a pixel size of 10 m. 151 

Level 2.1 L-band PALSAR-2 scenes (HH and HV) were obtained from the Japan Aerospace 152 

Exploration Agency (JAXA) with a pixel size of 6.25 m. Four geometrically corrected scenes 153 

coincided with selective logging records and were acquired between 2016 and 2017 with incidence 154 

angles of 28.5° in ascending orbit. Image digital number was converted to normalized backscatter 155 

using the calibration factors provided by JAXA.  156 

 157 

2.3. Speckle filtering 158 

SAR data are inherently speckled from interference between scattering objects on the ground 159 

(Woodhouse, 2017) and often require reduction of speckle prior to analyses. Many speckle-reduction 160 

methods involve spatial averaging, but the associated loss of spatial resolution was likely to hinder the 161 

detection of the subtle signal from selective logging activities. Thus, following the SAR pre-162 

processing steps detailed above for each data type, the final step involved multi-temporal filtering to 163 

reduce speckle (Quegan and Yu, 2001). Multi-temporal filtering reduces speckle by averaging a 164 

pixel’s speckle through time (as opposed to a spatial average). A 7x7 pixel window was used. The 165 
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equivalent number of looks after speckle filtering for Sentinel-1, RADARSAT-2 and PALSAR-2 was 166 

approximately 15, 5 and 5, respectively. 167 

 168 

 169 

 170 

 171 

 172 

173 

Figure 1. Location of the Jacunda (circle), Jamari (square), and Saraca (diamond) study 

regions in the Brazilian Amazon.  
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Table 1.  Data used in the classification of selective logging from three study regions in the Brazilian 174 
Amazon. The forest management unit (FMU), logging intensity, sample size (pixels), and overlap 175 
with satellite data coverage are shown for Sentinel-1 (S), RADARSAT-2 (R), and PALSAR-2 (P).  176 
    

FMU 
Logging Intensity  

(m
3
 ha

-1
) 

N Coverage 

Jacunda_I_2016 6 2,290 S 

Jacunda_I_2017 9 2,822 S 

Jacunda_II_2015 15 2,613 S 

Jacunda_II_2016 10 1,815 S 

Jacunda_II_2017 7 1,310 S, R
*
 

Jacunda_Reserve  0 3,000 S
*
, R

*
 

Jamari_I_2015 22 1,094 S, R
*
 

Jamari_I_2016 10 653 S, R
*
 

Jamari_I_2017 12 911 S, R
*
 

Jamari_III_2012 10 3,071 R 

Jamari_III_2015 11 3,042 S, R
*
 

Jamari_III_2016 9 2,058 S, R
*
, P 

Jamari_III_2017 11 2,597 S, R
*
, P 

Jamari_Reserve  0 5,912 S
*
, R

*
, P

*
 

Saraca_Ia_2017 12 3,769 S 

Saraca_II_2016 25 3,223 S 

Saraca_II_2017 21 4,729 S 

Saraca_Reserve 0 3,000 S
*
 

* 
FMU was unlogged at time of acquisition and data represent unlogged observations 177 

 178 

 179 

 180 

 181 

 182 
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3. Methods 183 

3.1. Supervised classification with Random Forest 184 

3.1.1. Data inputs for classifying selective logging 185 

For each satellite data type (Sentinel-1, RADARSAT-2, and PALSAR-2) data were extracted at each 186 

pixel where logging occurred and randomly selected pixels in nearby regions that remained unlogged. 187 

Thus, the data inputs for logged and unlogged observations came from a single scene for each study 188 

region (i.e. a space-for-time study design in contrast to images before and after logging from the same 189 

location). Selective logging at the study areas only occurred during the dry season, approximately 190 

June-October in a given year, and data were extracted from images acquired as late into the logging 191 

period as possible (Table S1) to ensure the majority of pixels had been subjected to logging, but also 192 

before the onset of the rainy season (Hethcoat et al., 2019). In addition, logging activities tend to be 193 

accompanied by surrounding disturbances (canopy gaps, skid trails, patios, and logging roads) 194 

resulting in forest disturbances beyond just the pixels where a tree was removed. Accordingly seven 195 

texture measures were calculated for each polarization (sum average, sum variance, homogeneity, 196 

contrast, dissimilarity, entropy, and second moment) to provide a local context for each pixel 197 

(Haralick et al., 1973). These were calculated within a 7x7 pixel window, chosen as a trade-off 198 

between minimizing window size while still capturing the variability in selectively logged forests 199 

compared to unlogged forests. Finally, a composite band was calculated as the ratio of the co- 200 

polarized channel to the cross-polarized channel (i.e. HH/HV or VV/VH). Each dataset thus 201 

comprised a 17-element vector (2 polarization bands, their ratio composite band, and 7 texture 202 

measures for each polarization) for each pixel where logging occurred and randomly selected pixels 203 

that remained unlogged.  204 

 205 

3.1.2. Random Forests for classification of selective logging 206 

We built Random Forest (RF) models using the randomForest package in program R version 3.5.1 207 

(Liaw and Wiener, 2002; R Development Core Team, 2018). The RF algorithm (Breiman, 2001a) is 208 

an ensemble learning method for classification. Each dataset was split into 75% for training and 25% 209 

was withheld for validation. In order to further ensure the independence of training and validation 210 
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datasets, the validation data were spatially filtered such that no observations in the training dataset 211 

were within 90 m of an observation in the validation dataset. RF models have two tuning parameters: 212 

the number of classification trees grown (k), and the number of predictor variables used to split a node 213 

into two sub-nodes (m). We used a cross-validation technique to identify the number of trees and the 214 

number of variables to use at each node that minimized the out-of-bag error rate on each training 215 

dataset (Table S2). The importance of each predictor variable was assessed during model training, 216 

using Mean Decrease in Accuracy, defined as the decrease in classification accuracy associated with 217 

not utilizing that particular input variable for classification (Breiman, 2001b). 218 

 219 

3.1.3. Model validation: assessing accuracy 220 

RF models were validated using a random subset of the full dataset for each sensor (described in 221 

Section 3.1.2). By default, RF models assign an observation to the class indicated by the majority of 222 

decision trees (Breiman, 2001a). However, the proportion of trees that voted for a particular class 223 

from the total set of trees can be obtained for each observation and a classification threshold can be 224 

applied to this proportion (Hethcoat et al., 2019; Liaw and Wiener, 2002). We adopted such an 225 

approach, wherein the proportion of trees that predicted each observation to be logged, informally 226 

termed the likelihood a pixel was logged, was used to select the classification threshold. A threshold, 227 

T, was defined such that if likelihood > T the pixel was classified as logged (Figure 2).  228 

The confusion matrix then has the form: 229 

 Reference 

L UL 

Predicted L DL DUL 

UL NL – DL NUL – DUL 

 230 

where L and UL refer to logged and unlogged classes, NL and NUL are the numbers of logged and 231 

unlogged observations in the reference dataset, and DL and DUL are the numbers of logged and 232 

unlogged pixels detected as logged, respectively. We defined the detection rate 𝐷𝑅 = 𝐷𝐿/𝑁𝐿 and 233 

false alarm rate 𝐹𝐴𝑅 =  𝐷𝑈𝐿/𝑁𝑈𝐿 as the frequency that a logged or unlogged pixel was classified as 234 

logged, respectively. Thus, the DR is equivalent to 1 minus the omission error of the logged class and 235 
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the FAR is the omission error of the unlogged class. In addition, we defined the false discovery rate 236 

(FDR): 237 

 FDR =
𝐷𝑈𝐿

𝐷𝐿+𝐷𝑈𝐿
 = 1 − 

1

1+(
𝑁𝑈𝐿

𝑁𝐿
)(

FAR

DR
)
 .        (1) 238 

The FDR is the proportion of all observations that were detected as logged that were actually 239 

unlogged, and is equivalent to the commission error of the logged class. The FDR is an assessment of 240 

the rate of prediction error (i.e. type I) when labelling pixels as logged and can be used in detection 241 

problems with rare events or unbalanced datasets, such as selectively logged pixels within the 242 

Amazon Basin (Benjamini and Hochberg, 1995; Hethcoat et al., 2019; Neuvial and Roquain, 2012). A 243 

high DR and low FDR is clearly desirable, but these cannot be fixed independently in two-class 244 

detection problems and both depend on the threshold value (Figure 2). For example, if achieving a 245 

95% detection rate led to a FDR of 50%, then half of all predictions of logging would be incorrect. 246 

This level of performance would make estimates of selective logging extremely uncertain. The value 247 

of the classification threshold (T) therefore represents a trade-off between true and false detections. In 248 

practice, a viable detection method would expect to achieve a DR > 50% while limiting the FDR to 249 

10-20% to have any value for widespread forest monitoring. The performance of each sensor was 250 

assessed by plotting the DR, FAR and FDR values as T varied from 0 to 1 to facilitate discussion of 251 

model performance. 252 

 253 
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 254 

 3.1.4. Sentinel-1 classification of high intensity logging  255 

Most of the selective logging data in this study were low-intensity (<15 m
3
 ha

-1
) and we anticipated 256 

the logging signal to be weak and difficult to detect. Consequently, we also considered a reduced 257 

Sentinel-1 dataset that included only those FMUs with logging intensities above 20 m
3
 ha

-1
 (n = 3 258 

sites) and the unlogged data (n = 3 sites) to assess if Sentinel-1 could be used for detecting selective 259 

logging activities near the legal limit within the Brazilian Legal Amazon. Unfortunately 260 

RADARSAT-2 and PALSAR-2 imagery did not cover the highest intensity logging sites, so we could 261 

not perform equivalent analyses with these datasets. RF classification and validation was performed 262 

on this subset of the Sentinel-1 data in the manner detailed above for the full dataset.  263 

 264 

3.2. Time series analyses 265 

We tested whether a time series of Sentinel-1 data displayed discernible changes in pixel values after 266 

selective logging with the BFAST algorithm (Verbesselt et al., 2012, 2010) in program R (R Core 267 

Figure 2. Diagram representing the trade-off between the detection rate (DR) and the false alarm 

rate (FAR) associated with using a threshold T (vertical black line) to label pixels as logged and 

unlogged based upon the proportion of votes that each observation was predicted to be logged. The 

purple and yellow colors correspond to density plots for hypothetical logged and unlogged 

observations, respectively. Thus, the areas A and B are the portions of the observations from 

unlogged and logged pixels, respectively, that will be labelled as unlogged. Similarly, C and D 

represent the portions of the observations from logged and unlogged pixels, respectively, that will 

be labelled as logged. 

𝑪     
𝑩     

𝑨     

𝑫     

DR  =  
𝑫

𝑩 + 𝑫
  

  

FAR  =  
𝑪 

𝑨 + 𝑪
 

  

FDR =
𝑪 

𝑪 + 𝑫 
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Team, 2018). BFAST estimates the timing of abrupt changes within a time series (breakpoint 268 

hereafter) and has been successfully utilized with a range of data types (e.g. Landsat, MODIS, SAR, 269 

etc.). The metrics used in searching for breakpoints in the full Sentinel-1 time series (approximately 270 

55 scenes from October 2016 – August 2018) were the two most important predictor variables 271 

identified from RF models. The limited temporal coverage of RADARSAT-2 and PALSAR-2 at our 272 

study sites precluded time series analyses with these datasets. BFAST was used to assess if a suitable 273 

model with one or no breakpoints was appropriate and included tests for coefficient and residual-274 

based changes in the expected value (i.e. the conditional mean). Where breakpoints were identified, 275 

we determined if they coincided with the timing of selective logging activities (June – October) and 276 

regarded these as true detections. Breakpoints in unlogged areas and breakpoints outside the timing of 277 

logging activities were considered false detections. In addition, the relationship between the frequency 278 

of breakpoints within an FMU and its logging intensity was examined to understand potential 279 

thresholds in logging intensity above which variables could be used to monitor selective logging 280 

activities through time series analyses.  281 

Finally, we examined if the relationship between logging intensity and the rate of detections 282 

and false alarms was consistent between logging locations (i.e. a scattered subset of pixels in an area) 283 

and an entire region (i.e. all pixels within a bounding box). The timing of breakpoints was mapped for 284 

two 500 m X 500 m test regions within the Saraca study area (one logged and one unlogged). A 285 

limited number of small test regions were chosen because of the computationally expensive nature of 286 

the pull request in Earth Engine (e.g. two 1 km regions query > 1 million records for export). Only 287 

breakpoints during the time period associated with logging were mapped (June – October). 288 

 289 

4. Results  290 

4.1. Random Forest classification of selective logging  291 

The single-image detection results for all sensors revealed that in order to get false discovery rate 292 

(FDR) values sufficiently low (e.g. 10-20%), the corresponding detection rates (DR) of selective 293 

logging were of almost no value (< 5%) for reliably forest monitoring. In general, the following 294 

results suggest that regions that have experienced selective logging do not show consistent differences 295 
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from unlogged areas in the metrics we used for classification. The second analysis (section 4.2) 296 

therefore deals with detection of selective logging with time series data and provides better results.  297 

 298 

4.1.1. Sentinel-1 299 

Random Forest detection performance for Sentinel-1 is shown in Figure 3 (top). Both the detection 300 

and false alarm rates were close to 1 until the threshold exceeds ~0.4, meaning almost every pixel in 301 

an image would be detected as logged. This suggests difficulty distinguishing logged and unlogged 302 

observations, and many unlogged observations were being misclassified as logged (Figure S1). In 303 

general, the detection, false alarm, and false discovery rates (across the range of threshold values) 304 

were insufficient for reliable classification of selective logging with Sentinel-1 data at the intensities 305 

within our study areas (6-25 m
3
 ha

-1
). For example, even if a FDR of 30% were acceptable, this would 306 

yield a detection rate < 20%, which would be of little practical value. Thus, attempts to strongly limit 307 

the false discovery rate (commission error of logged observations) would require a high threshold 308 

value and result in very few detections. Overall, this suggests that using single images from Sentinel-309 

1on their own to detect and map selective logging activities would be fraught with error with the 310 

classification approach used here.  311 

 312 

4.1.2 .RADARSAT-2  313 

Random Forest performance for RADARSAT-2 is shown in Figure 3 (middle). Both the false alarm 314 

rate and the detection rate rapidly declined as the threshold value was initially increased, again 315 

suggesting difficulty in distinguishing logged and unlogged observations. In contrast to Sentinel-1, 316 

RADARSAT-2 was less likely to label an observation as logged and very few observations had 317 

likelihood values above 0.5 (Figure S2). It should be noted that the logging records that coincided 318 

with RADASAT-2 data were from a single FMU that was relatively low intensity (10 m
3
 ha

-1
). 319 

Consequently, the performance displayed here may not be a full appraisal of RADARSAT-2 320 

capabilities. Given how poorly the model performed, however, it is uncertain that a vast improvement 321 

would occur with better training datasets. Overall, our results suggest that RADARSAT-2 data cannot 322 

be used to effectively monitor low-intensity selective logging activities using pixel-based differences 323 
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between logged and unlogged areas. However, additional tests with data at higher logging intensities 324 

should be pursued. 325 

 326 

4.1.3. PALSAR-2 327 

Random Forest classification performance for PALSAR-2 is shown in Figure 3 (bottom). In general, 328 

the performance of PALSAR-2 was equally poor at distinguishing logged and unlogged observations 329 

as RADARSAT-2 and Sentinel-1 (Figure S3). The final rise in the false discovery rate in Figure 3, 330 

before it drops to zero, is the result of calculating proportions from very small sample sizes (e.g. 5 of 331 

10 observations predicted logged were actually unlogged). Similar to RADARSAT-2, the selective 332 

logging data that coincided with PALSAR-2 imagery was from two relatively low-intensity FMUs (9 333 

- 11 m
3
 ha

-1
). Again, however, more data at higher logging intensities seems unlikely to improve 334 

classification performance to the desired level. For example when the data from Sentinel-1 was 335 

restricted to just the low intensity sites used in the PALSAR-2 analyses, there was effectively no 336 

change in the rates of detection and false discovery compared to the results from all logging 337 

intensities with Sentinel-1 (Figures S4 and Table S7). Thus, the lack of higher intensity logging data 338 

probably had little impact on the results for PALSAR-2. In general, this suggests that the limitations 339 

in distinguishing logged and unlogged pixels are inherent in the data and metrics we used for 340 

classification (for all three data sets). 341 

 342 

 4.1.4. Sentinel-1 classification of high intensity logging   343 

Detection performance of Sentinel-1 data for the highest intensity FMUs is shown in Figure 4. 344 

Despite limiting the detection task to the most intensively logged FMUs (as well as unlogged 345 

observations), the detection rate and false discovery rate values were comparable to the results that 346 

used the full range of logging intensities. Instead, improvement in model performance was associated 347 

with better discrimination of unlogged observations (i.e. compare the commission and omission errors 348 

for the unlogged class between Tables 2 and 5). Essentially, the model was able to better identify 349 

unlogged forest, presumably because the more “confusing” observations (i.e. the low intensity FMUs) 350 

were absent and could not muddle the distinction between logged and unlogged observations (Figures 351 
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S5). Overall, our results suggest Sentinel-1 data cannot be used in the classification of pixel-based 352 

differences to monitor selective logging activities with reasonable precision, even at the most 353 

intensively logged regions within the Amazon.  354 
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355 

Figure 3. Random Forest model performance across the range of threshold values (T) for 

classification with SAR data. The Detection Rate (DR) and False Alarm Rate (FAR) are the solid 

and dashed black lines, respectively. Also shown are the corresponding values of the False 

Discovery Rate (FDR) and Cohen’s kappa (k) as solid and dotted grey lines, respectively. 

Sentinel-1 

RADARSAT-2 

PALSAR-2 
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 356 

 357 

4.2. Sentinel-1 time series analyses 358 

The two most important predictor variables from the Sentinel-1 RF model were the Sum Average 359 

metric (Haralick 1973) on the VV and VH bands (Figure S6, Equation S1). A plot of VV sum average 360 

values through time for six randomly selected tree harvest locations at the Saraca site is shown in 361 

Figure 5 and suggests selective logging decreased the value of this metric. In addition, histograms of 362 

the timings associated with all breakpoints at three FMUs are shown in Figure 6 and indicates the time 363 

frame of the breakpoints mainly occurred within the logging season for those FMUs logged above 20 364 

m
3
 ha

-1
. In contrast, the time periods associated with breakpoints at lower logging intensities were 365 

shifted toward the onset of the rainy season in late 2017 – early 2018, however, all FMUs showed an 366 

uptick in breakpoints associated with the rainy season (Figure 6). This suggests that Sentinel-1 time 367 

series data could be used to detect and monitor selective logging activities from areas that have 368 

experienced logging close to the legal limit in Brazil (30 m
3
 ha

-1
), particularly if the detection time-369 

frame is narrowed to within the known logging season. 370 

Figure 4. Random Forest model performance across the range of threshold values (T) for 

classification of Sentinel-1 data with a subset of the most intensively logged sites. The Detection 

Rate (DR) and False Alarm Rate (FAR) are the solid and dashed black lines, respectively. Also 

shown are the corresponding values of the False Discovery Rate (FDR) and Cohen’s kappa (solid 

and dashed grey lines, respectively). 

High intensity Sentinel-1 
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 371 

Figure 5. Breakpoint dates identified by the BFAST algorithm from six randomly selected points 

within the Saraca study region. The time series of the VV sum average texture measure is plotted 

in black, the selective logging period is shaded in grey, and the identified breakpoint date is 

labelled with a vertical dashed line. 
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 372 

 373 

 374 

Figure 6. Histograms of breakpoint dates associated with time series analyses of the Sentinel-1 sum average 

texture measure for three study regions in the Brazilian Amazon for the VV (top row) and VH (bottom row) 

bands. The logging intensity and the proportion of observations with breakpoints in the data are in the upper 

left of each panel. The time period coinciding with logging activities is shaded in grey.  
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When the value of the VV sum average metric was monitored through time in pixels known 375 

to be logged and unlogged, the proportion of pixels with a significant breakpoint in their time series 376 

increased as the logging intensity of the FMU increased (Figure 7A). Approximately 70% of logged 377 

pixels in high logging intensity FMUs had a breakpoint, however, nearly 25% of unlogged pixels 378 

showed a breakpoint in their time series (i.e. 25% false alarm rate). This false alarm rate was 379 

generally consistent through logging intensities approaching 15 m
3
 ha

-1
 and suggests no signal in 380 

pixels logged at low to moderate intensities (Figure 7A). When the breakpoints were assessed only 381 

over the time period associated with logging (to remove the false peak associated with the rainy 382 

season), the relationship showed a similar pattern whereby the FMUs logged at the highest intensities 383 

showed a large rise in breakpoints above a background false alarm rate that was relatively constant up 384 

through moderate logging intensities (Figure 7B). At the highest intensities, the detection rate was > 385 

50% and the false alarm rate was approximately 10%. These results further support the idea that 386 

FMUs logged at low to moderate intensities do not show a distinct time series signal whereas FMUs 387 

logged at higher intensities do. Overall, this suggests that FMUs logged at intensities closer to the 388 

legal limit within the Brazilian Legal Amazon (30 m
3
 ha

-1
) should show a noticeable spike in the 389 

number of breakpoints within its time series above a background false alarm rate and could be used to 390 

detect logging activities in the dry season. 391 

Approximately 55% and 20% of pixels in the logged and unlogged test regions had a 392 

breakpoint during the logging season (Figure 8A and B). These values are generally in agreement 393 

with our prior results from the subset of pixels where trees were removed (see Figure 7B). While 55% 394 

of the pixels in the logged test region did not have a tree removed, selective logging is associated with 395 

forest disturbances that go beyond the individually logged pixels (e.g. canopy gaps, skid trails, 396 

logging roads, etc.) and additional detections are expected. Only about 5% of the pixels in the logged 397 

test region were actually logged, however, it is clear from the Planet imagery (Figure 8C and D; 398 

Planet Team 2017) that more than 5% of the forest patch was disturbed by logging activities. Given 399 

the false alarm rate was around 20%, the difference between detections and false alarms might 400 

represent a value comparable with the amount of forest disturbance expected at this intensity (i.e. 401 

about 30%). 402 
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 403 

Figure 7. The relationship between the proportion of observation within a Forest Management 

Unit (FMU) that had a breakpoint identified within its Sentinel-1 VV sum average texture measure 

time series and the logging intensity of the FMU. The proportion of all observations (A) and the 

proportion that had a breakpoint that coincided with the logging season (B) are shown separately. 

The circle size corresponds to number of observations at each FMU and yellow, green, and purple 

colors represent the Saraca, Jamari, and Jacunda sites, respectively. See the supplementary 

material for the same analyses with the second and third best metric from Random Forest (Figure 

S7). 
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 404 

 405 

 406 

Figure 8. Map of predicted breakpoint dates for two 500m X 500m test regions, one logged (A) and 

one unlogged (B), in the Saraca National Forest, Para, Brazil. Logged tree locations are black crosses 

and the date of the breakpoint for each pixel is color coded by week, with white representing no 

breakpoint. Planet imagery (3 m) from 28 August 2017 overlaid with and without breakpoint locations 

(C and D) for the logged area (trees in white). Approximately 54% and 21% of the pixels in the logged 

and unlogged regions had breakpoints, respectively. 
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5. Discussion 407 

We present the first multi-sensor comparison of SAR data for monitoring a range of selective logging 408 

intensities in the tropics. We demonstrated that L-band PALSAR-2, C-band RADARSAT-2, and C-409 

band Sentinel-1 data performed inadequately at detecting tropical selective logging when using pixel-410 

based attributes for classification. However, when analysing a time series of Seninel-1 texture 411 

measures, logged pixels displayed a strong tendency for a breakpoint in their time series as the 412 

logging intensity of the FMU increased. Moreover, the timing associated with the identified 413 

breakpoint generally coincided with active logging at the highest logging intensities. Overall, our 414 

results suggest that Sentinel-1 data could be used to monitor the most intensive selective logging, but 415 

a time series approach would be required to detect change. A number of studies have used Sentinel-1 416 

time series data to monitor deforestation (Bouvet et al., 2018; Reiche et al., 2018a, 2018b), often in 417 

combination with optical data, however our study is the first to show it has the potential to be used 418 

exclusively to monitor selective logging. 419 

 420 

5.1. Variable importance 421 

In a number of cases the most important predictor variables from RF models involved the co-422 

polarized channel (Figure S1), despite the generally accepted view that the cross polarized channel is 423 

best for detecting changes in forest cover (Joshi et al., 2016; Reiche et al., 2018a; Ryan et al., 2012; 424 

Shimada et al., 2014). The HH polarization of PALSAR-2 data has previously been shown to be 425 

sensitive to the early stages of deforestation, resulting from single-bounce scattering from felled trees 426 

(Watanabe et al., 2018). Our results support the idea that the co-polarized channel (for L- and C- band 427 

SAR) is useful and should not be ignored in forest disturbance detection analyses (e.g. Reiche et al., 428 

2018a). While shorter wavelength SAR data, like C- and X-band, are known to be less sensitive to 429 

forest structure, because the radar signal mainly interacts with the forest canopy (Woodhouse, 2017;  430 

Flores-Anderson et al., 2019), the higher backscatter values in the co-polarized channel for all three 431 

sensors suggests predominantly rough surface backscattering from the forest canopy (as volume 432 

scattering generally results in roughly equal backscatter between co- and cross-polarized channels). 433 

This suggests that forest tracts subjected to more intensive selective logging than we studied 434 
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(conventional logging permits with larger canopy gaps, large road networks, and many log landing 435 

areas) should possess a signal in the co-polarized channel that could be used to detect changes in 436 

canopy cover and should not be discarded (e.g. Reiche et al., 2018a). 437 

Random Forest models offer an objective approach to selecting important variables for use in 438 

time series analyses. The Mean Decrease in Accuracy rankings were used to select the sum average 439 

texture measure in the time series results, corroborate their rankings (see Figures 7 and S7). The 440 

detection rate was highest with the best, lower with the second best, and lower still with the third.  441 

SAR data often has fewer bands than optical data, for example, so the choice of which metric to use in 442 

time series analyses may be more straightforward. However, many studies do not compare the results 443 

among metrics to select an optimal, relying instead on supposition (e.g. Reiche et al., 2018a). Our 444 

findings suggest Mean Decrease in Accuracy is useful for variable selection, even if the Random 445 

Forest models themselves are of little practical use (e.g. Figure 3). 446 

 447 

5.2. Texture measures and detecting selective logging  448 

In all cases the texture measures had the highest variable importance rankings (Figure S6). This 449 

corresponds with previous results with optical data, where detection of selective logging relied on the 450 

contextual information embodied within their calculation (Hethcoat et al. 2019). Similar to their 451 

results, the predictions of logging in our test areas were spatially correlated, presumably a 452 

consequence of the spatial window used in the calculation. Again, however, extra detections are 453 

expected from the accompanying forest disturbances associated with logging. Yet, in the context of 454 

accuracy assessment, an issue that has not received much attention within the remote sensing 455 

literature is how to report selective logging detections in the absence of robust field data on canopy 456 

gaps, roads networks, skid trails, log landing decks, etc. Others have shown that selective logging can 457 

be associated with 30-70% forest disturbance,  despite the proportion of pixels having had a tree 458 

removed being closer to 10% (Asner et al., 2004, 2002; Putz et al., 2019), depending on the intensity 459 

and logging practices (reduced impact versus conventional). Clearly Figure 8A has false discoveries 460 

associated with the breakpoint detections, but some of the detections that do not occur at a tree 461 

location undoubtedly correspond with canopy gaps seen in the Planet imagery. 462 
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While the texture information clearly helped with detection of selective logging, a coherent 463 

understanding of what the sum average metric means, in terms of characterizing forest disturbances 464 

from selective logging or understanding the structural changes to forests associated with increasing 465 

and decreasing values, remains unknown. Attempts to generalize and interpret the meaning of textures 466 

have proven difficult over the years. However, some have suggested that high values in measures like 467 

variance, dissimilarity, entropy, and contrast were associated with visual edges whereas average, 468 

homogeneity, correlation, and angular second moment were associated with subtle irregular variations 469 

from continuous regions like forests or water (Hall-Beyer, 2017). More work is needed to understand 470 

the interpretation of textures measures that are so often employed in remote sensing classifications. 471 

 472 

5.3. Combining sensors for classification 473 

We chose not to combine any of the data types used here, partly because the inconsistent spatial and 474 

temporal coverage precluded such an analysis, but also because we wanted to assess the detection 475 

capabilities of each sensor on its own. Methods that combine data from multiple sensors (both other 476 

SAR platforms and/or optical data from Landsat or Sentinel-2) would likely perform better, 477 

corresponding with results for monitoring deforestation (Mercier et al., 2019; Reiche et al., 2018b, 478 

2016, 2015). Indeed, prior work with Landsat data has shown strong detection of selective logging at 479 

similar intensities (Hethcoat et al., 2019), yet this work sought to establish a baseline with the SAR 480 

sensors available. The general direction and momentum for the advancement of detecting subtle forest 481 

disturbances from spaceborne SAR will likely require time series, polarimetric, and data fusion 482 

approaches, particularly in light of our findings that pixel-based differences between logged and 483 

unlogged areas with SAR backscatter alone cannot do the job effectively.  484 

 485 

5.4. Longer time series in the tropics 486 

Sentinel-1A began acquiring imagery regularly (approximately every 12 days) in late 2016 for most 487 

of Brazil, with Sentinel-1B following in late 2018. Consequently, a time series assessment was only 488 

possible for a single calendar year (roughly 2017) with the logging data sets we had access to. The 489 

BFAST algorithm is generally flexible and can be tuned with a baseline period if sufficient data are 490 
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available, enabling assessments of longer and more variable time series (Verbesselt et al., 2010). The 491 

limited time series available is likely the reason many breakpoints for the less intensively logged sites 492 

occurred in December, presumably with the onset of the rainy season in earnest and an uptick in 493 

backscatter associated with moisture. Our analysis, however, was limited to a simpler test of one or no 494 

breakpoints – future work should explore how longer time series might improve detection of lower 495 

intensity logging, where seasonal patterns in backscatter can be established as a baseline to help 496 

reduce false alarms. 497 

 498 

6. Conclusion 499 

Tropical selective logging is fundamentally connected to global climate, biodiversity conservation, 500 

and human wellbeing (Lewis et al., 2015). Selective logging is often the first disturbance to affect 501 

primary forest (Asner et al., 2009), with road networks and ease of access facilitating further 502 

disturbances (e.g. increased fires, hunting or illegal logging). Efforts to detect and map selective 503 

logging with Sentinel-1, because of its global coverage and anticipated continuation missions (i.e. 504 

Sentinel-1C and D), are urgently needed to understand the capabilities this data stream might offer at 505 

advancing detection of tropical selective logging activities. With the successful launch of SAOCOM 506 

1A in late 2018, the planned continuation of Sentinel-1 (with C and D), the opening of the ALOS 507 

PALSAR-1 archives, and the anticipated launches of SAOCOM 1B in 2019 and NISAR in 2021, an 508 

immense volume of freely available C- and L-band SAR data will, hopefully, usher in a new era of 509 

forest monitoring from space with SAR data. Our findings suggest that time series methods should be 510 

effective at detecting the most intensive selective logging in the Amazon with these data sets. 511 

Moreover, if a distinct dry season is characteristic of the study region, focusing detecting during this 512 

time frame can further bolster detection by removing false positive detections associated with 513 

seasonal rainfall. 514 

 515 

 516 

 517 

 518 
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