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SUMMARY

Under-sampling RNA molecules and low-coverage sequencing in some single cell sequencing
technologies introduce zero counts (also known as drop-outs) into the expression matrices. This
issue may complicate the processes of dimensionality reduction and clustering, often forcing
distinct  cell  types  to  falsely  resemble  one  another,  while  eliminating  subtle,  but  important
differences.  Considering  the  wide  range  in  drop-out  rates  from  different  sequencing
technologies, it can also affect the analysis at the time of batch/sample alignment and other
downstream analyses. Therefore, generating an additional harmonized gene expression matrix
is important. To address this, we introduce two separate batch alignment methods: Combined
Coverage  Correction  Alignment  (CCCA)  and  Combined  Principal  Component  Alignment
(CPCA). The first method uses a coverage correction approach (analogous to imputation) in a
combined or joint fashion between multiple samples for batch alignment, while also correcting
for drop-outs in a harmonious way. The second method (CPCA) skips the coverage correction
step and uses k nearest neighbors (KNN) for aligning the PCs from the nearest neighboring
cells in multiple samples. Our results of nine scRNA-seq PBMC samples from different batches
and technologies  shows the effectiveness of  both these methods.  All  of  our algorithms are
implemented in R, deposited into CRAN, and available in the iCellR package.

INTRODUCTION

Single-cell sequencing of transcripts (RNAs) has become extremely popular in recent years [1],
and many large-scale projects such as Human Cell Atlas (HCA) [2] and Mouse Cell Atlas (MCA)
[3] are examples of accelerating growth. While many labs produce such data, integrating these
data and correcting for batch differences has emerged as a crucial step in the process. Thus,
researchers have developed a variety of methods, such as Mutual Nearest Neighbors (MNN)
[4],  Batch  Balanced  K  Nearest  Neighbors  (BBKNN)  [5],  Harmony  [6] and  Seurat  Multiple
Canonical  Correlation  Analysis  (MultiCCA)  [7], to  correct  batch  effects  by  aligning  different
samples. 

In addition, single-cell sequencing technologies suffer from low capture rates or under-sampling
of RNA molecules, also known as drop-outs [8]. Different sequencing technologies have varying
drop-out  and gene coverage rates.  Although,  some labs have developed methods,  such as
Markov  Affinity-based  Graph  Imputation  of  Cells  (MAGIC)  [8],  DrImpute  [9],  Variability-
preserving ImPutation for  Expression Recovery (VIPER)  [10] and scImpute  [11],  none have
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developed a method to simultaneously harmonize the drop-out and gene converge rates across
different technologies and batches. 

Here, we introduce a method to solve both problems in one step. Our Combined Coverage
Correction Alignment (CCCA) algorithm not only performs an accurate batch alignment but also
harmonizes the gene coverage and drop-out rates. Our Coverage Correction (CC) algorithm is
analogous to imputation and performs with a higher accuracy than the other methods mentioned
above.  Furthermore,  we  also  introduce  Combined  Principal  Component  Alignment  (CPCA),
which skips coverage correction and employs principle components for alignment instead of
imputed expression matrix. 

METHODS

Coverage Correction (CC)
To fill the drop-outs using this method, we perform a Principle Component Analysis (PCA) on
the expression matrix and then calculate the distances (Euclidian by default) between the cells
using  the  first  few  PCs  (10  PCs  by  default).  Then,  we  use  KNN  [12] to  find  the  nearest
neighboring cells (k=10 by default) per each cell (root cell). We then average the expression
values of  neighboring cells  and apply  the averaged values to the root  cell.  This  process is
repeated  for  each  single  cell,  creating  a  high-resolution  expression  smoothing.  Unlike  the
current  imputation  methods  where  the  resulted  matrices  have  multiple  layers  of  data
transformation (scaling, log, etc.), coverage correction has expression values very close to the
ones in  the original  matrix.  This  means that  fold changes remain similar  (in the concept  of
differential expression analysis) and the data follows a similar pattern. This can be useful if one
chooses the option of using coverage corrected data for differential expression and downstream
analyses.  

Combined Coverage Correction Alignment (CCCA)
Here, we use coverage correction as an alignment technique and a coverage harmonization
method. To do this, we perform a Principle Component Analysis (PCA) on the expression matrix
and then calculate the distances (Euclidian by default) between the cells using the first few PCs
(30 PCs by default). Then, we collect ‘equal’ numbers of nearest neighboring cells (k=10 by
default) for each cell (root cells) ‘from every batch’ and then average the expression values and
apply  them to the root  cell.  This  is  repeated for  all  the cells.  In  this  process,  every cell  is
considered a root cell only once. This method results in a harmonization among the expression
values and gene coverages from different batches and ensures that the drop-out rates are much
improved. 

Combined Principle Component Alignment (CPCA)
This method is similar to CCCA; however, it  skips the coverage correction part  and instead
aligns the Principle Components (PCs). In the CPCA method, the expression matrix is replaced
with the PC matrix, and PCs are averaged instead of the expression values. CPCA is faster
than CCCA,  and the batch alignment  results  are  similar.  However,  CPCA will  not  create a
coverage corrected matrix. 

RESULTS

Coverage Correction performs better than Markov Affinity-based Graph Imputation of 
Cells and a few other imputation methods
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MAGIC (Markov Affinity-based Graph Imputation of Cells) is a widely used imputation method
which employs diffusion data to denoise the expression matrix by filling the drop-outs [8]. To
compare CC with MAGIC, we used a commonly analyzed PBMC sample dataset provided by
10x Genomics. Comparing heatmaps of gene expression matrices showed denoising for drop-
outs with MAGIC introduced additional noise in a way that the resulting matrix does not show
similar expression patterns seen in the original data (Figure 1).  Furthermore, MAGIC failed to
accurately measure a true gene-gene correlation. For instance, NKG7 and GNLY, two highly
correlated genes, are expressed in NK cells and CD8-positive cells and not the other cell types.
This pattern can be seen in the original data which includes drop-outs and is much improved
using CC, but after MAGIC imputation CD8-positive cells seem to be mixed with other cells
(Figure 2). Because the expression matrices imputed with MAGIC undergo a few levels of data
transformation, such matrices cannot be used to calculate true fold changes in the concept of
differential expression analysis. Our results also show that coverage corrected data, if used for
clustering and dimensionality  reduction,  can illuminate more details  by separating more cell
types and clusters. For instance, it can separate CD8-positive T cells with distinctive distance
from CD4-positive T cells (Figure 2). A few other imputation methods were also compared to CC
and while some performed better than others CC was most consistent in following the patterns
seen in the original data (Figure S2). 

Combined Coverage Correction normalizes for gene coverage difference across different
technologies
We analyzed  nine  PBMC sample  datasets  provided  by  the Broad  Institute  to  detect  batch
differences  [13].  These  datasets  were  generated  using  varying  technologies,  including  10x
Chromium v2  (3  samples),  10x  Chromium  v3,  CEL-Seq2,  Drop-seq,  inDrop,  Seq-Well  and
SMART-Seq  [13].  Comparing  the  gene  coverages  across  these  technologies  shows  that
combined coverage correction not only corrects for drop-outs but also harmonizes the gene
coverages across different technologies (Figure 3). 

CCCA and CPCA are both effective at batch alignment 
All nine PBMC sample datasets mentioned above were used to perform both CPCA and CCCA
alignment.  We first  performed Principal  Component  Analysis  (PCA)  then calculated cell-cell
distance for all the cells in the nine samples. Each cell was considered a root cell once and then
ten neighboring cells from each sample were found for each root cell. For CCCA, the expression
matrix from the 10 samples was used to average the expression values. While for CPCA, the
PCs were used. All the averaged values were then applied to the root cell, and this data was
then used to perform PCA, T-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform
Manifold Approximation and Projection (UMAP). After performing batch alignment using both
CCCA and CPCA,  we observed that  both methods could align  the cell  types from different
technologies correctly  (Figure 4 and S3).  This  was also evident  in  the heatmaps of  marker
genes (Figure S1). 

Data Accession and Codes 

All the PBMC data we used for batch alignment is available from the Broad Single Cell Portal
(https://singlecell.broadinstitute.org/single_cell).

The PBMC data  used  for  coverage  correction  can be downloaded  from the 10x  genomics
website (https://support.10xgenomics.com/single-cell-gene-expression/datasets). 
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For  connivance  all  these  datasets  can  also  be  downloaded  from  here
(https://genome.med.nyu.edu/results/external/iCellR/data/). 

All the codes and algorithms are written in R and are available from iCellR package from CRAN
(https://cran.r-project.org/package=iCellR). 

In addition, the pipelines generating the figures in the results are in supplementary R scripts and
the GitHub page for iCellR is (https://github.com/rezakj/iCellR).
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Figures  

Figure 1
A) UMAP plot of a sample PBMC data showing 8 clusters/cell types.
B) Boxplot showing the expression of MS4A1 in the raw expression matrix. Big blue dots in

the box plots are mean and the green lines show the median. This plot is indicating
many cells with zero expression (drop-outs) and comparable average expressions in all
the clusters except cluster one as seen in the red box. 

C) Boxplot showing the expression of MS4A1 in the coverage corrected (CC) data showing
similar average expression points (blue dot) and medians (green line) as seen in the red
box. Only cluster five is out of the red box and it’s because there are only seven cells in
this cluster. 

D) Boxplot  showing the expression of MS4A1 in the data imputed with MAGIC showing
varying average expression points (blue dot) and medians (green line). As seen in the
plot the means and medians don’t fit in the red box. 
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E) Heatmap showing the expression patterns of the top 5 markers per cluster in the raw
data which includes many drop-outs. 

F) Heatmap  showing  the  expression  patterns  of  the  top  5  markers  per  cluster  in  the
coverage corrected (CC) data showing similar patters to the raw data. 

G) Heatmap showing the expression patterns of the top 5 markers per cluster in the data
imputed with MAGIC showing differing patters to the raw data. As shown, markers for
clusters 4, 6 and 8 are not distinguishable, and the markers for cluster 8 are expressed
more in cluster 3. This indicates that MAGIC imputation introduces noise to the data. 

Figure 2
A) Gene-gene correlation for GNLY and NKG7 in the raw data showing many genes with

zero counts making it hard to calculate correlation. 
B) Gene-gene correlation for GNLY and NKG7 in the data imputed with MAGIC showing

that NK cells and CD8+ T cells are mixed with other clusters.
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C) Gene-gene  correlation  for  GNLY  and  NKG7  in  the  coverage  corrected  (CC)  data
showing that NK cells and CD8+ T cells could be clearly distinguished as they express
these genes at much higher levels compared to other clusters.  

D) UMAP plot showing the expression of CD8A gene in the raw data which includes many
drop-outs.

E) UMAP plot  showing the expression of CD8A gene in the data imputed with MAGIC,
showing that it is hard to distinguish CD8-positive cells from other cells.

F) UMAP plot showing the expression of CD8A gene in the coverage corrected (CC) data,
showing CD8-positve T cells can be clearly distinguished. 

G) UMAP plot showing the clustering based on non-imputed data. 
H) UMAP plot showing the clustering based on imputed data using MAGIC. As seen in the

plot CD8-positive T cells are mixed with CD4-positive T cells. 
I) UMAP plot showing the clustering based on coverage corrected (CC) data using iCellR.

As seen in the plot CD8-positive T cells are well distinguished from CD4-positive cells
also showing more resolution so if  clustered again more clusters and details can be
seen. 
 

Figure 3
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A) Box  plots  of  the  gene  coverages  per  cell  in  the  raw  data,  showing  that  some
technologies have more coverage. 

B) Box plots of the gene coverages per cell in the coverage corrected (CC) data, showing
that the coverages are higher but similar patterns or trends are maintained. For instance,
Cel-Seq2 and SMART-Seq2 have the highest coverages. 

C) Box plots of the gene coverages per cell in the combined coverage corrected (CCCA)
data, showing that the coverages across all the technologies are harmonized. 

Figure 4
A) UMAP plot of unaligned data, showing the clusters and technologies. 
B) UMAP plot of unaligned data, showing the cell types from different technologies are not

aligned and some colors are seen in multiple clusters.
C) UMAP plot of CPCA aligned data, showing that cell types from different technologies are

well aligned. 
D) UMAP plot of CCCA aligned data, showing that cell types from different technologies are

well aligned. 
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Figure S1
UMAP plots of some gene markers after alignment (CPCA) showing that the samples
are properly aligned based on cell types. 
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Figure S2
Heatmaps of marker genes before (with high drop-outs) and after imputation (reduced
drop-outs). As shown in the figure, iCellR not only fills more drop-outs but also follows
similar expression patterns as seen in the original data (Drop-outs). 
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Figure S3

UMAP plots showing the alignments of the nine samples.
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Supplementary Codes 1

sample.file.url = 
"https://genome.med.nyu.edu/results/external/iCellR/data/pbmc3k_
filtered_gene_bc_matrices.tar.gz"

# download the file
download.file(url = sample.file.url, 
     destfile = "pbmc3k_filtered_gene_bc_matrices.tar.gz", 
     method = "auto")  

# unzip the file. 
untar("pbmc3k_filtered_gene_bc_matrices.tar.gz")

library("iCellR")
my.data <- load10x("filtered_gene_bc_matrices/hg19/")

my.obj <- make.obj(my.data)

my.obj <- qc.stats(my.obj,
s.phase.genes = s.phase, 
g2m.phase.genes = g2m.phase)

png('plot1_QC_stats.png',width = 15, height = 6, units = 'in', 
res = 300)
stats.plot(my.obj,

plot.type = "all.in.one",
out.name = "UMI-plot",
interactive = FALSE,
cell.color = "slategray3", 
cell.size = 1, 
cell.transparency = 0.5,
box.color = "red",
box.line.col = "green")

dev.off()

my.obj <- cc(my.obj, s.genes = s.phase, g2m.genes = g2m.phase)

png("cellCycle.png")
pie(table(my.obj@stats$Phase))
dev.off()

# filter 
my.obj <- cell.filter(my.obj,
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min.mito = 0,
max.mito = 0.05 ,
min.genes = 200,
max.genes = 4000,
min.umis = 0,
max.umis = Inf)

# normalize
my.obj <- norm.data(my.obj, norm.method = "ranked.glsf", 
top.rank = 500) 

################################################################
# make model
my.obj <- gene.stats(my.obj, which.data = "main.data")
#head(my.obj@gene.data[order(my.obj@gene.data$numberOfCells, 
decreasing = T),])
my.gene.data <- my.obj@gene.data
head(my.gene.data)
write.table((my.gene.data), file="gene.data.tsv", sep="\t", 
row.names =F)

png('plot4_gene.model.png',width = 6, height = 6, units = 'in', 
res = 300)
make.gene.model(my.obj, my.out.put = "plot",

dispersion.limit = 1.5, 
base.mean.rank = 500, 
no.mito.model = T, 
mark.mito = T, 
interactive = F,
no.cell.cycle = T,
out.name = "gene.model")

dev.off()

my.obj <- make.gene.model(my.obj, my.out.put = "data",
dispersion.limit = 1.5, 
base.mean.rank = 500, 
no.mito.model = T, 
mark.mito = T, 
interactive = F,
no.cell.cycle = T,
out.name = "gene.model")

# run PCA
my.obj <- run.pca(my.obj, method = "gene.model", gene.list = 
my.obj@gene.model,data.type = "main")
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png('plot5_Opt_Number_Of_PCs.png',width = 6, height = 6, units =
'in', res = 300)
opt.pcs.plot(my.obj)
dev.off()

#### run 2 pass PCA 
####
length(my.obj@gene.model)
my.obj <- find.dim.genes(my.obj, dims = 1:20,top.pos = 20, 
top.neg = 20)
length(my.obj@gene.model)

# second round PC
my.obj <- run.pca(my.obj, method = "gene.model", gene.list = 
my.obj@gene.model,data.type = "main")

# cluster
library(Rphenograph)
my.obj <- run.phenograph(my.obj,k = 100,dims = 1:10)

# tSNE, UMAP
my.obj <- run.pc.tsne(my.obj, dims = 1:10)
my.obj <- run.umap(my.obj, dims = 1:10) 
my.obj <- run.impute(my.obj,dims = 1:10,data.type = "pca", nn = 
10)
########################### cluster avrage expression
my.obj <- clust.avg.exp(my.obj)
head(my.obj@clust.avg)
write.table((my.obj@clust.avg),file="clust.avg.tsv",sep="\t", 
row.names =F)

# save object
save(my.obj, file = "my.obj.Robj")

# you can load object to continue in the future! 
load("my.obj.Robj")

# plot 

A= cluster.plot(my.obj,plot.type = "pca",interactive = 
F,cell.size = 0.2) 
B= cluster.plot(my.obj,plot.type = "tsne",interactive = 
F,cell.size = 0.2) 
C= cluster.plot(my.obj,plot.type = "umap",interactive = 
F,cell.size = 0.2)
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D= cluster.plot(my.obj,plot.type = "umap",col.by = 
"conditions",interactive = F,cell.size = 0.2)

library(gridExtra)
png('AllClusts.png', width = 8, height = 8, units = 'in', res = 
300)
grid.arrange(A,B,C,D)
dev.off()

### plot markers
png('heatmap_gg.png', width = 20, height = 20, units = 'in', res
= 300)
heatmap.gg.plot(my.obj, gene = readLines("genes.txt"), 
interactive = F, cluster.by = "clusters", cell.sort = TRUE)
dev.off()

png('heatmap_gg_imputed.png', width = 20, height = 20, units = 
'in', res = 300)
heatmap.gg.plot(my.obj, gene = readLines("genes.txt"), 
interactive = F, cluster.by = "clusters", data.type = "imputed",
cell.sort = TRUE)
dev.off()

png('heatmap_gg_imputed_sudo.png', width = 20, height = 20, 
units = 'in', res = 300)
heatmap.gg.plot(my.obj, gene = readLines("genes.txt"), 
interactive = F, cluster.by = "none", data.type = "imputed", 
cell.sort = TRUE)
dev.off()

### more plots

A <- gene.plot(my.obj, gene = "MS4A1", 
plot.type = "scatterplot",
interactive = F,
data.type = "imputed",
out.name = "scatter_plot")

# PCA 2D
B <- gene.plot(my.obj, gene = "MS4A1", 

plot.type = "scatterplot",
interactive = F,
out.name = "scatter_plot",
data.type = "imputed",
plot.data.type = "umap")

# Box Plot
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C <- gene.plot(my.obj, gene = "MS4A1", 
box.to.test = 0, 
box.pval = "sig.signs",
col.by = "clusters",
plot.type = "boxplot",
interactive = F,
data.type = "imputed",
out.name = "box_plot")

# Bar plot (to visualize fold changes)
D <- gene.plot(my.obj, gene = "MS4A1", 

col.by = "clusters",
plot.type = "barplot",
interactive = F,
data.type = "imputed",
out.name = "bar_plot")

library(gridExtra)
png('gene.plots.png', width = 8, height = 8, units = 'in', res =
300)
grid.arrange(A,B,C,D)
dev.off()

###################
dir.create("MAGIC")
setwd("MAGIC/")

DATA <- my.obj@main.data
DATA <- DATA[ rowSums(DATA) > 0, ]
DATA <- as.data.frame(t(DATA))
library(Rmagic)
library(phateR)
library(viridis)
data_MAGIC <- magic(DATA,
                        genes = "all_genes", k = 10, alpha = 15,
                        init = NULL, t.max = 20,
                        verbose = 1, n.jobs = 1,
                        seed = NULL)
DATA <- as.data.frame(t(data_MAGIC$result))
DATA <- round(DATA, digits = 3)
my.obj@imputed.data <- DATA
save(my.obj, file = "my.obj.Robj")

pdf("MS4A1.pdf")
gene.plot(my.obj, gene = "MS4A1", 

plot.type = "boxplot",

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2020. ; https://doi.org/10.1101/2020.03.31.019109doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.019109
http://creativecommons.org/licenses/by-nc-nd/4.0/


interactive = F, data.type = "imputed")
dev.off()

pdf("CD8A.pdf")
gene.plot(my.obj, gene = "CD8A",plot.data.type = "umap", 

interactive = F, data.type = "imputed")
dev.off()

png('heatmap_gg_imputed_genes.png', width = 20, height = 20, 
units = 'in', res = 300)
heatmap.gg.plot(my.obj, gene = readLines("genes.txt"), 
interactive = F, cluster.by = "clusters", data.type = 
"imputed",cell.sort = F)
dev.off()
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Supplementary Codes 2

sample.file.url = 
"https://genome.med.nyu.edu/results/external/iCellR/data/pbmc_da
ta/my.obj.Robj"

# download the file
download.file(url = sample.file.url,
     destfile = "my.obj.Robj",
     method = "auto")

library(iCellR)
load("my.obj.Robj")

my.obj

#####
#### QC 
my.obj <- qc.stats(my.obj,
s.phase.genes = s.phase, 
g2m.phase.genes = g2m.phase, which.data = "raw.data")

summary(my.obj@stats)

png('plot1_QC_stats.png',width = 15, height = 6, units = 'in', 
res = 300)
stats.plot(my.obj,

plot.type = "all.in.one",
out.name = "UMI-plot",
interactive = FALSE,
cell.color = "slategray3", 
cell.size = 1, 
cell.transparency = 0.5,
box.color = "red",
box.line.col = "green")

dev.off()
###

my.obj <- cc(my.obj, s.genes = s.phase, g2m.genes = g2m.phase)

png("cellCycle.png")
pie(table(my.obj@stats$Phase))
dev.off()
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########## PCA
my.obj <- run.pca(my.obj, top.rank = 2000)

my.obj <- find.dim.genes(my.obj, dims = 1:30,top.pos = 20, 
top.neg = 20)
length(my.obj@gene.model)

########### Batch alignment

my.obj <- iba(my.obj,dims = 1:30, k = 10,ba.method = "CPCA", 
method = "gene.model", gene.list = my.obj@gene.model)

my.obj <- run.impute(my.obj,dims = 1:10,data.type = "pca", nn = 
10)

# or CCCA
# my.obj <- iba(my.obj,dims = 1:30, k = 10, ba.method = "CCCA", 
method = "gene.model", gene.list = my.obj@gene.model)

# or PCA
# my.obj <- run.pca(my.obj, method = "gene.model", gene.list = 
my.obj@gene.model,data.type = "main")

##############################################
####

my.obj <- run.pc.tsne(my.obj, dims = 1:10)
my.obj <- run.umap(my.obj, dims = 1:10)

save(my.obj, file = "my.obj.Robj")

 library(gridExtra)
A= cluster.plot(my.obj,plot.type = "umap",interactive = 
F,cell.size = 0.1)
B= cluster.plot(my.obj,plot.type = "tsne",interactive = 
F,cell.size = 0.1) 
C= cluster.plot(my.obj,plot.type = "umap",col.by = 
"conditions",interactive = F,cell.size = 0.1)
D=cluster.plot(my.obj,plot.type = "tsne",col.by = 
"conditions",interactive = F,cell.size = 0.1)

png('AllClusts.png', width = 12, height = 12, units = 'in', res 
= 300)
grid.arrange(A,B,C,D)
dev.off()
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png('AllConds_clusts.png', width = 15, height = 15, units = 
'in', res = 300)
cluster.plot(my.obj,
              cell.size = 0.5,
              plot.type = "umap",
              cell.color = "black",
              back.col = "white",
              cell.transparency = 1,
              clust.dim = 2,
              interactive = F,cond.facet = T)
dev.off()

png('AllConds_clusts_tsne.png', width = 15, height = 15, units =
'in', res = 300)
cluster.plot(my.obj,
              cell.size = 0.5,
              plot.type = "tsne",
              cell.color = "black",
              back.col = "white",
              cell.transparency = 1,
              clust.dim = 2,
              interactive = F,cond.facet = T)
dev.off()

genelist = 
c("PPBP","LYZ","MS4A1","GNLY","FCGR3A","NKG7","CD14","S100A9","C
D3E","CD8A","CD4","CD19","IL7R","FOXP3","EPCAM")

rm(list = ls(pattern="PL_"))

conds.to.plot = NULL

for(i in genelist){
MyPlot <- gene.plot(my.obj, gene = i, 
interactive = F,
conds.to.plot = conds.to.plot,
cell.size = 0.1,
data.type = "main",
plot.data.type = "umap",
scaleValue = T,
min.scale = -2.5,max.scale = 2.0,
cell.transparency = 1)
NameCol=paste("PL",i,sep="_")
eval(call("<-", as.name(NameCol), MyPlot))
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}

UMAP = cluster.plot(my.obj,plot.type = "umap",interactive = 
F,cell.size = 0.1, anno.size=5)
library(cowplot)
filenames <- ls(pattern="PL_")
filenames <- c("UMAP", filenames)

png('genes.png',width = 18, height = 15, units = 'in', res = 
300)
plot_grid(plotlist=mget(filenames))
dev.off()
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