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Abstract 
 

Pioneering studies have shown that individual correlation measures from resting-state 

functional magnetic resonance imaging studies can identify another scan from that same 

individual. This method is known as “connectotyping” or functional connectome “fingerprinting”. 

We analyzed a unique dataset of 12-30 years old (N=140) individuals who had two distinct 

resting state scans on the same day and again 12-18 months later to assess the sensitivity and 

specificity of fingerprinting accuracy across different time scales (same day, ~1.5 years apart) 

and developmental periods (youths, adults).  Sensitivity and specificity to identify one’s own 

scan was high (average AUC=0.94), although it was significantly higher in the same day 

(average AUC=0.97) than 1.5-year years later (average AUC=0.91). Accuracy in youths 

(average AUC=0.93) was not significantly different from adults (average AUC=0.96). Multiple 

statistical methods revealed select connections from the Frontoparietal, Default, and Dorsal 

Attention networks that enhanced the ability to identify an individual. Identification of these 

features generalized across datasets and improved fingerprinting accuracy in a longitudinal 

replication data set (N=208). These results provide a framework for understanding the 

sensitivity and specificity of fingerprinting accuracy in adolescents and adults at multiple time 

scales. Importantly, distinct features of one’s “fingerprint” contribute to one’s uniqueness, 

suggesting that cognitive and default networks play a primary role in the individualization of 

one’s connectome.  
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Introduction  

 Accumulating evidence from resting-state functional magnetic resonating imaging 

(rsfMRI) indicates that brain network architecture is highly individualized [Gordon et al., 2017; 

Gratton et al., 2018; Laumann et al., 2015a; Laumann et al., 2015b]. Improving our 

understanding of individual-level brain activity is leading to a mechanistic understanding of how 

neural activity contributes to individual differences, extending to individual differences in 

behavior. Furthermore, advances using individual-level neuroimaging markers to reflect 

indicators of pathology could, in the future, significantly improve our ability to make informed 

clinical decisions.  A first step towards achieving this “personalized neuroscience” is to 

understand normative variation in individual-level features of brain activity, particularly through a 

developmental period when psychiatric illness typically emerges. 

In participants with high-quality, densely sampled neuroimaging information, within-

subject variability explained approximately one third of the variance in the data and is similar in 

magnitude to the explanatory power of the average or canonical network structure [Gratton et 

al., 2018; Power et al., 2011; Yeo et al., 2011]. Using alternative methods, others have also 

obtained similar estimates of intra- and inter-subject variation in rsfMRI data [Betzel et al., 2019; 

Mueller et al., 2013].  While these studies have produced important insights, such large 

amounts of neuroimaging data (~5-84 hours of data per individual, see [Gratton et al., 2019] for 

a review) may be infeasible for clinical samples.  

In a related line of research, several studies show that individuals’ patterns from one 

scan can identify another scan from that same individual at a high level of accuracy [Finn et al., 

2015; Horien et al., 2019; Miranda-Dominguez et al., 2014]. This method is known as 

“connectotyping” [Miranda-Dominguez et al., 2014] or functional connectome “fingerprinting” 

[Finn et al., 2015]. This analytic framework is effective with smaller amounts of rsfMRI data (3-

15 minutes). Understanding the individual-level network measurement characteristics in a 
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normative sample could provide a foundation for later parsing out meaningful differences in 

behavior and/or pathology. 

 Here, we aimed to build on initial findings indicating individualized brain functional 

architectonics [Finn et al., 2015; Miranda-Dominguez et al., 2014; Waller et al., 2017; Xu et al., 

2016] to characterize how and which brain patterns are unique to an individual and to what 

extent this pattern is stable or changes over time. First, we assessed the sensitivity of 

fingerprinting measures , i.e. the likelihood of obtaining a true positive, and the specificity of 

these measures, i.e. the probability of distinguishing true negatives [Florkowski, 2008; 

Youngstrom, 2014]. To determine the specificity and sensitivity of fingerprinting, we applied a 

classification procedure. Scans from the same individual were viewed as positive pairs while all 

of the others were considered negative pairs. The area under the curve (AUC)-receiver 

operating characteristics (ROC) curve was utilized as a performance measurement to identify 

the sensitivity (true positive rate) and specificity (1-false positive rate) of fingerprinting at 

different thresholds and time scales. To measure group-level influences, we first identified 

predictive edges from a discovery sample and then examined to what extent these edges 

improved fingerprinting in a replication sample. 

The majority of psychiatric disorders emerge during adolescence [Paus et al., 2008], a 

period of remarkable neuroplasticity and change [Larsen and Luna, 2018; Luna et al., 2015; 

Murty et al., 2016]. Thus, is it important to establish individualized brain markers of fingerprinting 

accuracy in this period and contrast them to that of adults. The extent to which there are age-

associated differences in fingerprinting measures is an open question, given inconsistent 

findings in the literature [Demeter et al., 2019; Horien et al., 2019; Kaufmann et al., 2017]. One 

study used a combination of resting-state and task-based MRI scans to assess fingerprinting 

accuracy from same day scans and found that fingerprinting accuracy significantly improved 

from late childhood through adulthood [Kaufmann et al., 2017]..  However, others found that 

fingerprinting accuracy is not affect by age in adolescents when scans were months to years 
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apart [Horien et al., 2019] and fingerprinting accuracy in pediatric and adult samples is quite 

similar within a 5-18 month time frame [Demeter et al., 2019]. Insofar as we are aware, there 

has not yet been a direct comparison of scans completed on the same day versus those 

completed much later (i.e., a year), and to what extent this direct comparison changes or 

remains the same across adolescence. It is possible that the neuroplasticity observed in resting 

state scans during adolescence [Calabro et al., 2019; Jalbrzikowski et al., 2017] and/or motion 

artifact known to be more predominant in youth [Power et al., 2011; Satterthwaite et al., 2012]; 

reduces the ability to accurately identify an individual’s scan.  Alternatively, “functional 

fingerprinting” of an individual’s resting state scan could be robust to these changes. 

In our discovery sample, we leveraged a unique, two-time point data set that had two 

resting state scans from the same individual conducted on the same day (Visit 1, V1), and two 

resting state scans from the same individual collected on the same day 12-18 months later (Visit 

2, V2; henceforth 1.5 years). We then assessed the level of sensitivity and specificity of 

fingerprinting accuracy; compared whether it is as stable for the same day as it is 1.5 years 

later; and determined if sensitivity and specificity at these different time scales were similar in 

youths and adults. We also used multiple statistical methods to determine connections that are 

“predictive” of individuals’ scans, reflecting one’s uniqueness. Finally, we explored how these 

edges performed in a replication sample.   

Participants 
 

The final discovery sample consisted of 140 participants (1-2 visits, mean time between 

visits: 18 months, range of time between visits: 17-25 months). To test the generalizability of the 

predictive edges identified in our discovery sample, we tested the extent to which the previously 

identified features from each method improved fingerprinting accuracy in a replication sample 

with longitudinal data (N=208, 1-3 visits, mean time in between visits: 20 months, range of time 

between visits: 12 -50 months). 
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All participants were recruited from the greater Pittsburgh metro area. Participants and 

their first-degree relatives did not have a psychiatric disorder, as determined by phone screen 

and a clinical questionnaire. Exclusion criteria for all participants included any drug use within 

the last month, history of alcohol abuse, medical illness affecting the central nervous system 

function, IQ lower than 80, a first-degree relative with a major psychiatric disorder, or any MRI 

contraindications.  There are previous publications using rsfMRI data from individuals within the 

replication sample addressing separate questions [Jalbrzikowski et al., 2019, in press; 

Jalbrzikowski et al., 2019; Marek et al., 2015].  

Demographic information for both samples is reported in Table 1. Detailed 

inclusion/exclusion criteria are reported in the Supplemental Material. 

MR Data Acquisition: Discovery Sample 

Data were acquired using a Siemens 3 Tesla mMR Biograph with a 12-channel head 

coil. Subjects’ heads were immobilized using pillows placed inside the head coil, and subjects 

were fitted with earbuds for auditory feedback to minimize scanner noise. For each rsfMRI run, 

we collected eight minutes of resting-state data, eyes open.  Resting state data were collected 

using an echo-planar sequence sensitive to BOLD contrast (T2*). rsfMRI parameters were 

Repetition Time/Echo Time=1500/30.0 ms; flip angle=50°; voxel size = 2.3×2.3×2.3 mm. 

Structural images were acquired using a T1 weighted magnetization-prepared rapid gradient-

echo (MPRAGE) sequence (TR/TE = 2300/2.98 ms; flip angle=9°; voxel size = 1.0×1.0×1.0 

mm). 

Participants completed a unique two-visit scan protocol. In the first visit, individuals 

participated in a MRI protocol (Visit 1, V1) that included two rsfMRI runs (Pre-Task, Post-Task), 

with an fMRI reward learning task (~40 minutes) conducted between these two runs. 

Approximately 1.5 years later, the same individuals returned and completed an identical MRI 

protocol (Visit 2, V2), which also included two rsfMRI runs (Pre-Task, Post-Task) separated by 
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the same fMRI task. A visual depiction of the scan protocol, along with the respective names 

given to each run or scan, are presented in Figure 1. 

 

Figure 1. Visualization of protocol set-up. The colors refer to comparisons that will be made throughout the manuscript 
(oranges: same day comparisons, blues: 1.5 year comparisons). 

MR Data Acquisition: Replication Sample   

Scan parameters for the replication sample are detailed in Supplementary text. 

rsfMRI Processing  

First, we performed simultaneous slice-timing and motion correction of all functional 

images. Then, we implemented wavelet despiking to remove non-stationary events in the fMRI 

time series [Patel and Bullmore, 2015]. Third, functional images were warped into MNI standard 

space using a series of affine and nonlinear transforms. Then, after normalization, functional 

images were spatially smoothed using a 5-mm full width at half maximum Gaussian kernel. ICA-

Aroma was then implemented to remove any remaining motion artifacts [Pruim et al., 2015a; 

Pruim et al., 2015b]. Finally, to control nuisance-related variability [Hallquist et al., 2013], we then 

conducted simultaneous multiple regression of nuisance variables and bandpass filtering at 0.009 

Hz  < f < 0.08. Nuisance regressors included were non-brain tissue (NBT), average white matter 

signal, average ventricular signal, six head realignment parameters obtained by rigid body head 
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motion correction, and the derivatives of these measures. NBT, average white matter, and 

average ventricular signal nuisance regressors were extracted using MNI template tissue 

probability masks (>95% white mater, >98% cerebral spinal fluid, [Fonov et al., 2009].  

For all subjects, we calculated a quality control measure with respect to head motion, 

namely volume-to-volume frame displacement (FD). Consistent with recent developmental 

cognitive neuroscience publications [Bathelt et al., 2019; Calabro et al., 2019; Hafeman et al., 

2019; Li et al., 2019], subjects were removed from rsfMRI analyses if the average frame 

displacement across the run was > 0.5mm (N=5).  

Functional Network Parcellation 

We applied a previously-defined, functional connectome parcellation of 333 functional 

regions of interest (ROIs) across cortical structures [Gordon et al., 2016] to each participant’s 

rsfMRI data (Figure 2A). This parcellation consists of 13 reliable rsfMRI networks, many of which 

have been identified in other studies, including the Frontoparietal, Default, and Visual networks 

[Glasser et al., 2016; Power et al., 2011; Shen et al., 2013].  See Supplementary Table S1 for a 

list of 13 networks and details about them (for each network: number of nodes, number of within-

connectivity edges, and number of between-connectivity edges). 

For each participant, we computed Pearson’s correlation of each ROI’s time series with 

that of every other ROI, producing a 333 x 333 correlation matrix (Figure 2B). The upper diagonal 

of the correlation matrix for each individual was stacked into a vector (55278 edges), and each 

vector was normalized to a mean of zero and variance of one (Figure 2C). We performed this 

procedure for each subject’s rsfMRI run, resulting in four normalized vectors for the majority of 

participants. The correlation between any two of these normalized vectors, 𝑉𝑉 and 𝑈𝑈, was their dot 

product: 

𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜(𝑉𝑉,𝑈𝑈) =  �𝑉𝑉(𝑒𝑒)𝑈𝑈(𝑒𝑒)
𝐸𝐸

𝑒𝑒=1

/𝐸𝐸 

 
where 𝐸𝐸 is the total number of edges and 𝑒𝑒 is an individual edge. 
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Figure 2. (A) After resting-state fMRI data were processed, we extracted out the time series from an established parcellation and 
(B) calculated a correlation matrix for each individual and their respective scan visit. (C) For each scan at each visit, we stacked 
a vector from the upper diagonal of the correlation matrix. Each stacked vector represents a scan from one person.  The stacked 
vectors could be a separate scan from the same individual or a separate scan from a different individual.  We computed correlations 
between each vector for all possible pairs and non-pairs. (D) By varying the threshold of the correlation values to determine what 
was a true-or false-positive, we developed ROC curves for each comparison, with a total of four comparisons: same day visit 1, 
same day visit 2, 1.5 years apart pre-task 1.5 years apart post-task. We then used DeLong’s method to compare the ROC curves.  
(E) For each of the four comparisons, we compared the ROC curves of youths vs. adults. 

 
Identification Accuracy 

Next, we sought a classifier to identify resting state fMRI-measured connectomes that 

“match”; ideally these would be connectomes from the same subject. To do so, we first computed 

the correlation of normalized vectors, 𝑉𝑉 and 𝑈𝑈, for all possible pairs of subjects, as described 

above (Figure 2C). The classifier seeks a threshold t for these correlation values that yields a high 

rate of true positive identification, namely connectomes from the same subject, while minimizing 

the number of false positive identifications, connectomes from different subjects labeled as from 

the same subject. We varied t from interval of zero to one to create a receiver operating 

characteristic (ROC) curve. We then estimated the area under the curve to determine the 
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accuracy of the classifier (Figure 2D).  The t that maximized true positive rate-false positive rate 

(TPR-FPR) was chosen for reporting. ROC curves were generated for the entire sample for 1) 

same day identification accuracy (Pre-Task vs. Post-Task) and 2) identification accuracy 1.5 

years apart (V1 vs. V2). To compare identification accuracy for same day vs. 1.5 years later, we 

compared ROC curves to each using DeLong's test for two ROC curves ([DeLong et al., 1988; 

Robin et al., 2011], Figure 2D).  

To determine whether fingerprinting accuracy was affected by age, we split the entire 

sample of 12-30 year olds by the median age (20.4 years), considering the participants “youths” 

if they were under the median age (V1 N=70) or “adults” if they were over the median age (V1 

N=70). We then calculated ROC curves for youths and adults separately for 1) same day 

fingerprinting (Pre-Task vs. Post-Task) and 2) fingerprinting 1.5 years apart (V1 vs. V2). To test 

for significant differences in identification between youths and adults, we used DeLong’s test for 

two ROC curves (Figure 2E). We also assessed the effects of sex on fingerprinting accuracy by 

calculating ROC curves for each sex separately for each visit and session.  

Identification of Predictive Edges 

Next, we sought to determine which edges contribute most to fingerprinting accuracy.  We 

made four comparisons to assess identifiability of each subject (V1, pre versus post; V2, pre 

versus post; V1 pre versus V2 pre and V1 post versus V2 post) and the same comparisons among 

non-pairs, resulting in 98790 comparisons (same subject pairs=532, non-pairs=98258). Because 

there was an over-representation of non-pairs (two scans, one from individual s and another from 

individual j) , we used synthetic minority over-sampling technique to reduce bias when selecting 

the predictive features [Chawla et al., 2002] and selected 532 pairs and 1596 non-pairs. This 

method uses Euclidean distance to select non-pairs closest to the pairs (Chawla et al., 2002). We 

then split the discovery sample into a training (2/3 of the data: 355 pairs, 1064 non-pairs) and test 

set (1/3 of the data: 177 pairs, 532 non-pairs). For each method, described below, we used 10-

fold cross validation to identify the number of edges that gives the highest AUC. The terms of the 
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dot product (i.e., from 52,278 edges) for each comparison were the input features.  

Finn Method: We used the method that Finn et al. described a method to calculate the 

most predictive edges [Finn et al., 2015]. We then ranked all edges from most predictive to least 

predictive and we successively decreased the threshold of “most predictive” edges to develop the 

ROC curve. Through cross-validation in the training set, we determined that the optimal TPR-FPR 

rate was when we included the five percent “most predictive” edges. Then, in the test data set, 

we selected only these predictive edges and calculated a correlation between each scan and all 

other scans (sum of the dot product). We then used the correlation threshold to develop the ROC 

curve in the test data set.  

Support Vector-Machine Learning and Elastic Net Regression Methods: Both of these 

methods are common tools for model selection. Here, the goal was to choose a set of predictive 

edges that differentiated same-subject pairs from other pairs. For both methods, the input 

information was the terms of the dot product between two scans. We developed optimal tuning 

parameters in the training data set and obtained weights for the selected edges. Elastic net 

regression was implemented using R package glmnet [Friedman et al., 2009]. The support-vector 

machine (SVM) analysis was implemented in R package, sparseSVM ([Yi and Zeng, 2018], with 

an elastic net penalty.  For both methods, we implemented fivefold cross-validation and the tuning 

parameters were chosen from this procedure. We set 𝛼𝛼 = 0.1 and chose the penalty parameter 

(𝜆𝜆) with the minimal cross-validation error. Within the discovery sample, we then applied the 

model developed in the training set to the test data set.  By weighting the individual product of the 

selected edges, we obtained a predicted value, 𝑌𝑌�, for which 𝑌𝑌 − 𝑌𝑌� ranges from -1 to 1.  We 

developed ROC curves by changing the threshold of 𝑌𝑌 − 𝑌𝑌� to determine what constituted a “pair” 

in the test data.  

Assessing over-representation of network connectivity in predictive edges 

To identify network representation in the predictive edges for each method identified 
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above, we conducted Chi-square tests to assess whether there was over-representation of 1) 

between (e.g. Frontoparietal-Default edges; the off-diagonal edges) or within-network connectivity 

(e.g., Frontoparietal-Frontoparietal edges; the block structure on the diagonal) and 2) specific 

within-network connectivity networks, and/or 3) distinct between-network connections. We used 

the standardized residuals (>3.0) to determine networks that contributed to one’s uniqueness.  

Performance of predictive edges in replication sample 

 To test the generalizability of the predictive edges identified in our discovery sample, we 

tested the extent to which the previously identified features from each method improved 

fingerprinting accuracy in a replication sample with longitudinal data. 

Effects of Possible Confounds 

 Because motion is a well-known confound in rsfMRI studies of development [Satterthwaite 

et al., 2012], we calculated multiple measures of motion: framewise displacement (FD) as 

described by Power et al [Power et al., 2012] , as well as mean head displacement, maximum 

head displacement, the number of micro movements (N > 0.1 mm), and head rotation as 

described by Van Dijik et al [Van Dijk et al., 2012]  we assessed whether motion differs between 

sessions or visits by running within-subjects t-tests of the motion variable between session (pre-, 

post-task) and visit (V1, V2). To assess the effects of age on motion, we conducted an 

independent samples t-test between group  (youths 12.0-20.39 years old vs. adults 20.4-30 years 

old) for each session and visit. 

Because “same day” scans were acquired within the same MRI session, improved same 

day fingerprinting accuracy could be due to better-quality registration from the same scan session. 

A subset of the participants (ages 18-30 years, N=76) participated in an additional scan on the 

same day, but in a different scan session (i.e, the participant came out of the MRI scanner and a 

few hours later participated in another MRI session). This subset of participants participated in a 

position emission tomography study that included an additional MRI scan with each visit. 

Classification as detailed previously was performed, using the separate scans at each visit to 
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predict identification accuracy from this additional MRI session. See Supplementary Table S2 for 

details on this subset of participants.  

Results 

 Participant information for both visits is presented in Table 1. Participant information for 

youth and adult groups are reported in Supplementary Table S3.  

Table 1. Participant Information for discovery and replication samples. Detailed exclusion criteria are provided in Figure S1. 

 

Same Day vs. 1.5 years later 
 

Across the entire sample, identifiability on the same day was quite high (Average AUC: 

0.94). Identification accuracy between scans 1.5 years apart was also high (Average AUC: 0.91, 

Figure 3A).  However, same day accuracy was significantly higher than identification of scans 1.5 

years apart (Figure 3A, Table 2A). Differences in fingerprinting accuracy on the same day 

compared to scans 1.5 years apart were observed for both youth (Figure 3B, Table 2B) and adult 

groups (Figure 3C, Table  2C). 

 

 

 

 

 

Discovery Sample  
  Pre-task Post-task 

  N M/F 

Mean 
Age 
[SD] 

Age 
Range 

Mean 
FD 

[SD] N M/F 
Mean 

Age [SD] 
Age 

Range 
Mean 

FD [SD] 

Visit 1 140 67/73 
19.7 
[5.0] 

12.0-
31.0 

0.24 
[0.1] 126 57/69 

20.1 
[4.9] 

12.0-
31.0 

0.25 
[0.1] 

Visit 2 93 48/45 
22.2 
[5.0] 

13.5-
32.6 

0.22 
[0.1] 86 45/41 

22.3 
[4.9] 

13.5-
32.6 

0.23  
[0.1] 

Replication Sample  
 N M/F Mean age Age Range Mean FD 
Visit 1 208 104/104 18.5 [4.4] 10.1-25.9 015 [0.05] 
Visit 2 85 45/40 17.0 [2.8] 11.9-21.8 0.12 [0.03] 
Visit 3 59 32/27 18.2 [2.7] 13.3-23.0 0.14 [0.03] 
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Table 2. A) Across the entire sample, same-day identification accuracy was significantly higher than identification accuracy 1.5 
years apart. The D-value represents the test statistic for the respective comparison. This pattern remained when youth (B) and 
adults (C) were assessed separately. 

 

Fingerprinting accuracy of youth vs. adults 
 
Table 3. A) Same-day fingerprinting accuracy is similar for youth and adults. B) Fingerprinting accuracy 1.5 years apart is similar 
for youth and adults in three out of four comparisons. 

 

Same day accuracy was not statistically different between youths and adults. The two 

groups exhibited similar levels of same-day identification accuracy (Table 3A).  The same pattern 

of results emerged when comparing youths and adults on fingerprinting accuracy 1.5 years apart 

for three out of four of the comparisons (Table 3B). ROC Curves are presented in Figure 3. We 

also found a similar pattern of results when we split youths and adults by the mean age (20.8 

years, 5 participants changed age group membership) and when we considered individuals as 

  
Group 

  

  
Same Day 

  

1.5 years apart 

1.5 YR Pre-Task 1.5 YR Post-Task 

D P D P 

A. Entire Sample 
Same Day V1  4.1 2.70E-05 4.1 3.80E-05 
Same Day V2 2.7 0.02 2.9 0.003 

 B. Youths 
Same Day V1  3.2 0.001 2 0.04 
Same Day V2 2.7 0.008 1.1 0.24 

 C. Adults 
Same Day V1  2.8 0.008 3.2 0.001 
Same Day V2 1.8 0.07 2 0.04 

 

Comparison Adults vs. Youth 

D P 

A. Same Day V1 -1.7 0.08 

Same Day V2 0.16 0.87 

B. 1.5 YR: Pre-task V1 vs. Pre-task V2 -2.7 0.006 

1.5 YR: Pre-task V1 vs. Post Task V2 -0.42 0.67 

1.5 YR: Post-task V1 vs. Post-task V2 -0.7 0.46 

1.5 YR: Post-task V1 vs. Pre-Task V2 -1.7 0.09 
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“adults” at age 18 (21 participants changed age 

group membership). Finally, we obtained a 

comparable pattern of results when we tested 

fingerprinting accuracy in males and females 

separately (Supplementary Table S3).  

All model selection methods tested improve 

identification accuracy in the test portion of the 

discovery  sample 

As seen in Figure 4A, the fingerprinting 

accuracy significantly improved when we used 

predictive edges selected by the Finn method, 

SVM, or Elastic Net to predict identification 

accuracy.  The three model selection 

techniques performed similarly to one another 

(Supplementary Table S4). When we used only 

the predictive edges identified by these 

methods to re-assess fingerprinting accuracy in 

all previous comparisons, each method 

improved fingerprinting accuracy but did not 

change reported results.  

Predictive edges from discovery sample 
improves accuracy in replication sample 
 
 Similar to previous results [Finn et 

al., 2015; Waller et al., 2017], we found 

lower identification accuracy in a replication 

sample with more “standard” MRI 

Figure 3. A) Across the entire sample, identification accuracy was 
higher for same day (orange) vs. 1.5 years later (blue). This pattern 
of results remained when youth (B) and adults (C) were assessed 
separately. The asterisk in each for each curve refers to the point 
when of optimal trade-off between sensitivity and specificity. AUC= 
Area under the curve, Thr=threshold at which optimal true positive 
rate was obtained. Sen=sensitivity, Spec=specificity 
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parameters (e.g., longer TR, shorter 

length of scan, fewer number of head 

coils, Figure 4B, pink ROC curve). When 

we applied the most predictive edges 

from previously applied model selection 

techniques, however, fingerprinting 

accuracy significantly improved (Figure 

4B, Supplementary Table S5). When we 

omitted pairs from scans conducted on 

the same day in the discovery sample 

and focused our analyses on identifying 

predictive edges from pairs that were 1.5 

years apart, we obtained the same 

pattern of results (Supplementary Table 

S6).  The weights for predictive edges 

from Elastic Net and SVM are provided 

in Supplementary Tables S7-8.  

Optimal thresholds were 

determined separately in the discovery 

and validation sample prior to generating 

an AUC. This is necessary because of 

differences in the nature of the data. As 

shown in Figure S2, the distributions of the correlations between pairs were quite different in the 

two samples, precluding use of the selected discovery threshold for the validation threshold. 

Despite these differences, when the predictive edges derived from the discovery sample were 

Figure 4. A). When edge selection was performed via various 
methods (Finn method (green), Elastic Net (orange), and SVM 
(purple)), identification accuracy was significantly improved in 
comparison to using all edges (pink) for identification accuracy.  B. 
When we applied predictive edges previously identified in the 
training sample to an independent sample, all methods significantly 
improved identification accuracy. 
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applied to the validation sample, fingerprinting accuracy improved, suggesting that edges 

important for prediction are similar across samples. 

Predictive edges are over-represented in Frontoparietal, Default, and Dorsal Attention Networks 
 

 
Figure 5. A) The ratio of predictive edges to non-predictive edges in each network connection, normalized for total number of 
edges in each connection for the three different methods.  Warmer colors on the heatmap indicate that edges from a particular 
network are more important for identification accuracy. B) Within-network connections that are particularly important for 
identification accuracy in all three methods examined. In all methods, within connectivity edges in Frontoparietal (yellow), 
Default (red), and Dorsal Attention (bright green) networks are considered predictive. In the Finn method and SVM, within 
connectivity connections in the Ventral Attention network were also predictive of identification accuracy. C) Between-network 
connections that are particularly important for identification accuracy. The colors around the circle reflect the different networks 
examined. Thicker bands of color indicate a greater number of edges from that particular network were considered predictive. 
The between connectivity edges (lines going across the circle) were randomly chosen from one of the two connected networks 
(e.g., Between network connectivity between the Default and Cingulo-Opercular network is red, but between network 
connectivity between the Default and Ventral Attention network is green).  

Figure 5A-C shows the relative contribution, normalized for number of edges in each 

network (or off/diagonal edge group) and number of edges determined to be predictive by each 

method. Across all methods, in comparison to between-connectivity edges (e.g., Frontoparietal-
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Visual connections, Supplementary Table S9), within-connectivity edges (e.g., Frontoparietal-

Frontoparietal connections) were relatively more important in predicting identification accuracy.  

More specifically, within-connectivity edges from the Frontoparietal, Default, and Dorsal 

Attention networks drove this finding (Figure 5B). These networks had standardized residuals 

greater than 3.0 in all comparisons (Supplementary Table S10). A With SVM and Elastic Net, 

edges from the Ventral Attention network were also considered important predictors for 

fingerprinting accuracy. similar pattern emerged when we examined same-day and 1.5-year 

comparisons separately (Supplementary Table S10) and youth and adults separately 

(Supplementary Tables S12-13).   

We also examined which between-network connectivity edges were relatively important 

for fingerprinting accuracy. Across all three methods, connections between the Frontoparietal-

Default, Frontoparietal- Dorsal Attention, Ventral Attention-Cingulo-opercular, and 

Frontoparietal-Ventral Attention networks were over-represented in comparison to other 

connections (Figure 5C).  See Supplementary Table S14 for standardized residuals from chi-

square test of between-network connectivity and Supplementary Table S15 for standard 

residuals from chi-square test of over-representation of all network connections. Similar patterns 

emerged when we examined same-day and 1.5-year comparisons separately (Supplementary 

Table S16) and youth and adults separately (Supplementary Table S17).   

Testing Effects of Possible Confounds. 
 

To ensure that the improved same-day accuracy was not because individuals were in the 

same scan session and benefiting from improved MRI registration, we examined a subset of 

individuals (N=76) who completed an additional MRI session on V1 and V2 after being taken out 

of the scanner and repositioned.  Supplementary Table S18 reports similar AUC, threshold levels, 

and sensitivity/specificity for identification accuracy within the same MRI session (V1 Pre-Task 

predicting accuracy of V1-Post-Task) and different MRI session on the same day (e.g., V1 Pre-

Task predicting identification of extra session V1). 
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When we compared head motion between sessions, one out of two of the session 

comparisons (pre-task V1 versus post-task V1) was statistically significant. Individuals had higher 

FD during post-task V1 in comparison to pre-task V1; t=-2.5, p=0.01). One out of two of the visit 

comparisons (post-task V1 vs. post-task V2) was also statistically significant. FD at post-task V2 

was lower in comparison to FD at post-task V1 (t=2.8, p=0.006). Notable, while FD was elevated 

in post-task V1 in comparison to other sessions/visits, the impact of visit and session on fingerprint 

accuracy was similar in other comparisons, suggesting that motion differences were not driving 

our results.  A similar pattern of findings was observed in other motion metrics (Supplementary 

Table S19). 

There were no statistically significant differences between youths and adults at any 

session or visit in FD, mean head displacement, maximum head displacement, or number of 

micromovements (all p>0.05). Results are reported in Supplementary Table S19.  

To ensure that our results were not driven by parcellation choice, we also re-ran all 

analyses after extracting ROIs from two separate parcellations (Power et al., 2011; Shen et al., 

2013) and obtained a similar pattern of results. 

 
Discussion 
 
 For neuroimaging to have clinical utility, it is essential to understand what to expect from 

an individual’s network characteristics in multiple contexts. Here we show that identification 

accuracy of one’s resting state scan – how much it reflects a “functional fingerprint” – depends 

on the timespan between assessments. We provide supporting evidence that adolescents have 

similar levels of fingerprinting accuracy to adults when visits are years apart [Horien et al., 2019; 

Miranda-Dominguez et al., 2018] and extend this literature to show that this finding is consistent 

on a same-day visit. Furthermore, we used multiple methods to identify a  small number of 

edges consistently predictive of an individual’s scan. These edges are more likely to be in the 

Frontoparietal, Default, and Dorsal Attention networks. We identified these edges in a discovery 
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sample and then used these edges to improve identification accuracy in a replication sample.  

We propose that particular edges in the Frontoparietal, Default, and Dorsal Attention networks 

contribute to an individual’s “uniqueness” and are similar in youths and adults. These results 

bring us a fuller understanding of functional networks in the human brain. 

Stability of identification accuracy across time   

Our results indicate a high level of subject identification accuracy even after 18 months. 

although the greater time interval incurred a significant decrease in identification. This result 

provides compelling evidence that there are extant foundational properties to individualized 

resting state network organization that are persistent and specific to each individual. The 

significant degradation in identification after 18 months is not driven by registration, which we 

tested and found to not be a contributor. Reduced fingerprinting accuracy with time could reflect 

greater noise between two scans; alternatively, or in addition to, the small but significant 

degradation in identification could reflect inherent plasticity in network organization in both 

youths and adults.   

Networks that Underlie Prediction 

 We found evidence that identification was driven by edges particularly in the 

Frontoparietal, Dorsal Attention, and Default mode networks and were consistently identified by 

different analytical approaches. This is a striking result that identifies networks critical for higher-

order cognitive processing and endogenous self-referential processing. Thus, these results 

provide suggestive evidence that how we engage foundational cognitive and endogenous 

processes may contribute to demarcating individuality. This finding also has the potential to 

inform our understanding of impaired development in psychopathology that may be particularly 

represented in these networks.  

Predictive edges from the discovery sample improve fingerprinting accuracy in the validation 

sample 
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We also show that predictive edges identified in one sample can be applied to an 

independent sample to improve identification accuracy, even then the validation sample has 

somewhat different properties than the discovery sample (Figure S2). Sets of edges making 

dominant contributions to fingerprinting accuracy vary amongst individuals. Though the original 

goal of fingerprinting accuracy was, in part, to identify the specific predictive edges to identify 

specific individuals [Finn et al., 2015], we implemented a different approach. In dermal 

fingerprinting, approximately thirty islets or forks on the ridges or “identification points” are used 

to demonstrate uniqueness [Galton, 1892; Stigler, 1995]. It is highly unlikely that any other 

individual will have the same patterns from combination of these distinct ridges. By showing 

predictive edges from one data set improve fingerprinting accuracy in an independent data set, 

we demonstrate that a similar phenomenon is taking place with rsfMRI fingerprinting. 

Multiple methods performed quite well in the discovery sample; however, as is 

consistent with the literature, a reduction in sensitivity and specificity in the replication  sample 

suggests some over-fitting in this sample. On the other hand, our replication sample is a 

strength of our study, because the majority of fingerprinting accuracy studies have not tested 

the utility of predictive edges in another data set. The robustness of these results demonstrates 

that particular edges carry the most information for identifiability. This is a first, important step 

for understanding how fingerprinting accuracy can be used in a clinical context. However, as 

observed in the two separate samples, the distributions of correlations for pair identification 

between the two samples are remarkably different (Figure S2).  In line with other fields of 

medicine that use a biological measure to detect risk or disease status [Greenwood et al., 

2012], it will be important to determine the quality of the rsfMRI scans to ensure valid analyses. 

The lower sensitivity and specificity in our replication sample is consistent with reports of 

fingerprinting accuracy in lower quality rsfMRI protocols [Finn et al., 2015; Waller et al., 2017]. A 

number of factors could be contributing to the degradation in fingerprinting accuracy, including a 

shorter scan time [Finn et al., 2015] or decreased resolution of the rsfMRI scan. Additionally, the 
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discovery sample had higher resolution structural scans to assist with accurate registration of 

the rsfMRI data. Partial volume effects could also be contributing the degradation in 

fingerprinting accuracy. In the future, it will be informative to test if incorporating methods to 

correct for partial volume effects [Dukart and Bertolino, 2014] will improve rsfMRI fingerprinting 

accuracy in less optimized rsfMRI protocols. 

Identification accuracy is similar in youths and adults 

We did not observe differences in the fingerprinting accuracy between youth and adults, 

for both same day and 1.5-year comparisons. Indeed, others have recently found that 

identification accuracy is similar in youth and adults [Demeter et al., 2019; Horien et al., 2019].  

We extend these findings by showing accuracy is high both for same day and longer-term (1.5 

years) intervals in the same sample. Furthermore, because identification accuracy in both youth 

and adults was lower across a longer period of time and similar edges contributed to same day 

and 1.5-year identification accuracy, our results suggest that this reduction is not solely due to 

known developmental changes. Significant cognitive development occurs through adolescence 

[Larsen and Luna, 2018; Luna et al., 2015; Steinberg, 2005], in the context of evidence for 

stability at the group level in network properties [Hwang et al., 2013; Jalbrzikowski et al., 2019; 

Marek et al., 2015; Marek et al., 2019]. The stability in identification accuracy across 

development further supports that implication that network properties contain individualized 

foundational properties that define uniqueness.  

In one case, we did find that youths had significantly worse identification accuracy in 

comparison to adults (Table 3B: 1.5 YR: Pre-task V1 vs. Pre-task V2) when the scans were 1.5 

year apart. However, in three out of four similar relevant comparisons, we did not observe 

differences in fingerprinting accuracy between youths and adults. In this particular comparison 

(i.e., Pre-Task V1 to Pre-Task V2 ), reduced accuracy in these youths was driven by the lower 

identification accuracy in the pre-task scans: we speculate that youths are more variable and 

excitable when first getting in a scanner, perhaps because they have had less experience with 
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life events akin to an MRI scan than do adults. Furthermore, we know that identification 

accuracy is reduced with increased head motion [Horien et al., 2018], and youth have greater 

levels of head motion in comparison to adults [Satterthwaite et al., 2012].  However, in our 

sample, we did not see a statistical difference between head motion in these two groups and 

our results remain stable when we use more conservative framewise displacement thresholds 

(FD < .3). 

An Improved Statistical Framework for Identification Accuracy 

We show that edges important for identification accuracy are similar across different 

methods used to identify them. Furthermore, predictive edges identified in one sample can be 

applied to an independent sample to improve identification accuracy. The robustness of these 

results demonstrates that particular edges carry the most information for identifiability.  

 We also believe this statistical framework also improves upon the majority of previous 

methods used in this area. Previous methods, for instance, presume there is a “match” for each 

respective scan in the data set (i.e., each individual has at least two scans in the pool of 

available data) and do not consider false positives. Furthermore, given that research shows that 

identifiability of individuals decreases as the sample size increases [Waller et al., 2017], it is 

important to account for sample size in the model. Additionally, while many studies show that 

the identification test metric for individual identifiability is significantly greater than would be 

expected by chance, it is difficult to know how meaningful this metric is when identification 

accuracy is in the range of ~40-60% (e.g., [Horien et al., 2019]. Additionally, we were interested 

in understanding how feature selection approaches (e.g., elastic net and SVM) compare to the 

original method presented by Finn and colleagues (2015). Similar to our approach, SVM has 

also recently been successfully applied to better understand genetic similarity in fingerprinting 

accuracy [Demeter et al., 2019]. Finally, we assured that our statistical procedures were both 

replicable and generalizable to a replication data set.  We 1) trained a portion of our data to 

identify predictive edges (i.e., 75% of discovery sample, the training data), 2) assessed the 
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performance of the training set in a test portion of the training data (i.e., 25% of discovery 

sample, the test data), and 3) determined the generalizability of our results in an independent 

replication sample.    

A Framework for Future Investigations in Psychiatric Research 

We also provide a statistical framework that can be used to assess the clinical utility of 

identification accuracy and to identify specific connections within and among brain networks of 

import. Viewing identification accuracy of rsfMRI scans as a classification problem is useful to 

other relevant questions in neuropsychiatric research. To improve early identification and 

detection of those at risk for psychiatric disorders, we need to answer questions such as, do 

people with similar connectivity profiles share common psychiatric features? Does reduced 

accuracy in functional connectome fingerprinting indicate risk for psychiatric disorders? These 

questions all fall within the realm of a classification problem, and the framework that we  present 

here can be applied to relevant data to answer these questions. 

There is work showing that distinct fingerprinting patterns map onto particular 

phenotypes or outcomes of interest. While, two studies report that fingerprinting accuracy is 

reduced in psychiatric samples [Kaufmann et al., 2017; Kaufmann et al., 2018], these were 

cross-sectional and relied upon comparison of already established clinical phenotypes (i.e., 

level of fingerprinting accuracy did not determine a future variable of interest). In the future, it 

will be important to use a sensitivity-specificity analytic framework to test our ability to identify 

sub-groups of individuals, such as adolescents who eventually go on to develop a psychiatric 

disorder or to predict treatment response in a group of patients.  

Limitations 

 As with any study, there are limitations present in our design.  First, we split our sample 

by the median age and identified the two groups as “youths” and “adults” and this approach 

could obscure subtle differences in identification accuracy that occur across adolescent 

development.  We chose this approach because identification accuracy increases with smaller 
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sample sizes, and our sample size would be quite small if we split our sample into more age 

groups, as we have done in previous publications. Another approach could be to view age as a 

continuous variable; however, this imposes a strong linear assumption, when we know that 

development through adolescence is curvilinear in nature as stability is reached. In the future, 

examining identification accuracy in large samples of youth (i.e., the Adolescent Brain Cognitive 

Development Study, [Casey et al., 2018] in comparison to large samples of adults (e.g., Human 

Connectome Project, [Van Essen et al., 2013] may prove to be the most fruitful in terms of more 

fully understanding identification accuracy across development. Additionally, although we made 

all attempts remove noise in our processing steps (e.g., wavelet despiking and ICA-Aroma), we 

did not adjust for physiological noise (e.g., cardiac and respiratory cycles) in our analyses. Thus, 

we cannot rule out the possibility that this source affected our results. Physiological noise could 

be obscuring results in our data; it is even possible it could be generating part of the signal. In 

the future, it will be important to test fingerprinting accuracy after regressing out physiological 

influences or implementing analytic approaches to account for this noise in the data [Aslan et 

al., 2019]. 

 Conclusions and Future Directions 

 In this study, we showed that identification accuracy is high in both youths and adults at 

both short (same-day) and extended (1.5 years apart) periods of time. Importantly, our results 

suggest that networks properties may have an individualized foundational characterization that 

may be inherent to individuation with some room for flexibility in expression. In the future, we 

predict that combined use of group- and individual level data will become the sine qua non for 

identifying meaningful relationships between brain and behavior.   
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