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Abstract

A major challenge with modelling non-additive genetic variation is that it is hard to separate non-
additive variation from additive and environmental variation. In this paper, we describe how to alleviate
this issue, and improve genomic modelling of additive and non-additive variation, by leveraging the ample
expert knowledge available about the relative magnitude of the sources of phenotypic variation. The
method is Bayesian and uses the recently introduced penalized complexity and hierarchical decomposition
prior frameworks, where priors can be specified and visualized in an intuitive way, and be used to induce
parsimonious modelling. We evaluate the potential impact for plant breeding through a simulated case
study of a wheat breeding program. We compare different models and different priors with varying
amounts of expert knowledge. The results show that the proposed priors and expert knowledge improved
the robustness of the genomic modelling and the selection of the genetically best individuals in the
breeding program. We observed this improvement in both variety selection on genetic values and parent
selection on additive values, but the variety selection benefited the most. An improvement was not
observed in the overall accuracy of estimating genetic values for all individuals and variance components.
Finally, we discuss the importance of expert-knowledge priors for genomic modelling and breeding, and
point to future research areas of easy-to-use and parsimonious priors in genomic modelling.

Introduction

In this paper, we describe the use of expert knowledge to improve genomic modelling of additive and non-
additive variation, and evaluate its potential impact for plant breeding with a simulated case study. Plant
breeding programs are improving productivity of a range of crops and with this addressing the global and
rising hunger problem that impacts 820 million people across the world (FAO et al., 2019). One of the most
important food sources in the world is wheat (Shewry and Hey, 2015), however, recent improvements in
wheat yield are smaller than the projected requirements (Ray et al., 2013) and might become more variable
or even decrease due to climate change (Asseng et al., 2015). This trend is in stark contrast to the United
Nation’s Sustainable Development Goals that aim to end hunger and malnutrition by 2030 (General Assemby
of the United Nations, 2015). Breeding has contributed significantly to the improvement of wheat yields in
the past (e.g., Mackay et al., 2011; Rife et al., 2019), and the recent adoption of genomic selection could
enable further significant improvements (Gaynor et al., 2017; Belamkar et al., 2018; Sweeney et al., 2019).
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Breeding programs generate and evaluate new genotypes with the aim to improve key characteristics such
as plant height, disease resistance and yield. Nowadays, a key component in breeding is genomic modelling,
where we aim to reduce environmental noise in phenotypic observations and associate the remaining variation
with variation in individual genomes. We use these associations to estimate genetic values for phenotyped
or even non-phenotyped individuals and with this identify the genetically best individuals (Meuwissen et al.,
2001). Improving this process involves improving the methods for disentangling genetic variation from
environmental variation.

Genetic variation can be decomposed into additive and non-additive components (Fisher, 1918; Falconer
and Mackay, 1996; Lynch et al., 1998; Mäki-Tanila and Hill, 2014). Additive variation is defined as variation
of additive values, which are sums of allele substitution effects over the unobserved genotypes of causal
loci. Statistically, the allele substitution effects are coefficients of multiple linear regression of phenotypic
values on causal genotypes coded in an additive manner. Non-additive variation is defined as the remaining
genetic variation not captured by the additive values. It is commonly partitioned into dominance and
epistasis values. Dominance values capture deviations from additive values at individual loci. Epistasis values
capture deviations from additive and/or dominance values at combinations of loci. Statistically, dominance
and epistasis values capture deviations due to allele interactions at individual loci and combinations of
loci, respectively. Modelling interactions between two loci at a time gives additive-by-additive, additive-by-
dominance and dominance-by-dominance epistasis. Modelling interactions between a larger number of loci
increases the number of interactions.

Estimates of genetic values and their additive and non-additive components have different applications
in breeding (Acquaah, 2009). Breeders use estimates of additive values to identify parents of the next
generation, because additive values indicate the expected change in mean genetic value in the next generation
under the assumption that allele frequencies will not change. Breeders use estimates of genetic values to
identify individuals for commercial production, because genetic values indicate the expected phenotypic
value. Estimates of genetic values are particularly valuable in plant breeding where individual genotypes
can be effectively cloned. While genomic modelling currently focuses on additive values (Meuwissen et al.,
2001; Varona et al., 2018), the literature on modelling non-additive variation is growing (Oakey et al., 2006;
Wittenburg et al., 2011; Muñoz et al., 2014; Bouvet et al., 2016; Martini et al., 2017; Vitezica et al., 2017;
Varona et al., 2018; de Almeida Filho et al., 2019; Santantonio et al., 2019; Tolhurst et al., 2019; Martini
et al., 2020). Notably, modelling non-additive variation has been shown to improve the estimation of additive
values in certain cases (Varona et al., 2018).

A challenge with modelling non-additive variation is that it is difficult to separate non-additive variation
from additive and environmental variation even when large datasets are available (e.g., Misztal, 1997; Zhu
et al., 2015; de los Campos et al., 2019). This suggests that genomic models should be robust in the sense that
spurious non-additive values are not estimated. One way to handle partially confounded sources of variation
is to include expert knowledge on their absolute or relative sizes. For small datasets, it is particularly
important to supplement the limited information in the data with expert knowledge to achieve robustness.

There is ample information about the relative magnitude of the sources of phenotypic variation that has
been collated since the seminal work of Fisher (1918). The magnitude of genetic variation for a range of
traits is well known (e.g., Houle, 1992; Falconer and Mackay, 1996; Lynch et al., 1998). Data and theory
indicate that the majority of genetic variation is captured by additive values (Hill et al., 2008; Mäki-Tanila
and Hill, 2014), while the magnitude of variation in dominance and epistasis values varies considerably due
to a range of factors. For example, there is no dominance variation between inbred individuals by definition.
Further, model specification has a strong effect on the resulting estimates (e.g., Huang and Mackay, 2016;
Martini et al., 2017; Vitezica et al., 2017; Martini et al., 2020). With common model specifications, additive
values capture most of the genetic variation because they capture the main effects (in the statistical sense),
while dominance and epistasis values capture interaction deviations from the main effects (Hill et al., 2008;
Mäki-Tanila and Hill, 2014; Hill and Mäki-Tanila, 2015; Huang and Mackay, 2016).

In a Bayesian setting, expert knowledge on the different sources of variation can be included in the
model through prior distributions (e.g., Sorensen and Gianola, 2007). Prior distributions reflect beliefs and
uncertainties about unknown quantities of a model and should be elicited from an expert in the field of interest
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(O’Hagan et al., 2006; Farrow, 2013). However, the ability to use external information with the Bayesian
approach is seldomly exploited or even discouraged. One reason is the lack of intuitive methods that could
utilize the elicited information in an analysis. Here, we show how to use the recently developed penalized
complexity (PC) prior framework (Simpson et al., 2017) to facilitate robust modelling, and the hierarchical
decomposition (HD) prior framework (Fuglstad et al., 2020) to incorporate the wealth of knowledge about
the magnitude of genetic and environmental variation as well as of additive and non-additive variation in an
intuitive way. An advantage of these prior frameworks over the standard priors used in quantitative genetics
(e.g., Sorensen and Gianola, 2007) is that both use simple rules to choose priors on the scale of the expert
knowledge.

The aim of this paper is to introduce the penalized complexity and hierarchical decomposition prior
frameworks for robust genomic modelling and to evaluate the potential impact of using these priors along
with expert knowledge in plant breeding with a simulated case study. We compare settings with different
models and different priors incorporating varying amounts of expert knowledge, and evaluate their effect on
the robustness of estimation, accuracy of selecting the genetically best individuals, accuracy of estimating
the different genetic values, and accuracy of estimating variance parameters.

We first describe the genomic model and how to incorporate the expert knowledge in this model using
the penalized complexity and hierarchical decomposition prior frameworks, followed by a description of the
simulated case-study, model fitting and analysis. Our key focus is to demonstrate how an analyst can take
advantage of expert knowledge from literature or domain experts to enable robust genomic modelling of
additive and non-additive variation. This focus involves specifying and visualizing the expert knowledge in
an intuitive way. We then present the results and discuss the relevance of our work.

Materials and Methods

Genomic model

We model observed phenotypic values of n individuals y = (y1, . . . , yn) with the aim to estimate their genetic
values and their additive and non-additive components. To this end we use the genomic information about the
individuals contained in the observed single nucleotide polymorphism (SNP) matrix Z, where row i contains
SNP marker genotypes for individual i coded additively with 0, 1, 2. We let Za be the column-centered Z
where we have removed markers with low minor allele frequency, and let Zd be the column-centered matrix
obtained from Z after setting heterozygote genotypes to 1 and homozygote genotypes to 0.

We model the phenotypic observation yi of individual i as

yi = µ+ gi + ei, i = 1, . . . , n, (1)

where µ is an intercept, gi is genetic value and ei environmental residual. We model the environmental
residual as an independently and identically distributed Gaussian random variable, e = (e1, . . . , en) ∼
N (0, σ2

eIn), where σ2
e is the environmental variance and In is the n× n identity matrix.

Let a = (a1, . . . , an), d = (d1, . . . , dn) and x = (x1, . . . , xn) be vectors of the additive, the dominance
and the epistasis values for the individuals, respectively. We consider the simple additive model where
gi = ai (Model A) and the comprehensive additive and non-additive model where gi = ai + di + xi (Model
ADX ). We model these values as a ∼ N (0, σ2

aA), d ∼ N (0, σ2
dD) and x ∼ N (0, σ2

xX), where σ2
a , σ2

d and
σ2
x are the additive, dominance and epistasis variances, respectively. We specify the covariance matrices

as A = ZaZ
T
a /Sa, D = ZdZ

T
d /Sd and X = A � A/Sx (we consider only additive-by-additive epistatis),

where � is the Hadamard product (Horn, 1990; Vitezica et al., 2017). The scaling factors Sa, Sd, and Sx are
selected such that the mean of the diagonal of each covariance matrix is 1, which means that the variance
parameters describe the typical variances of the random variables (Legarra, 2016; Vitezica et al., 2017; Sørbye
and Rue, 2018; Fuglstad et al., 2020). Finally, phenotypic variance is σ2

p = σ2
g + σ2

e = σ2
a + σ2

d + σ2
x + σ2

e .
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Expert knowledge about variance components

As highlighted in the introduction, we have ample prior information about the relative magnitude of the
genetic and environmental variation and the relative magnitude of the additive, dominance and epistasis
variation that can guide the construction of prior distributions. We can summarize this expert knowledge in
a hierarchical manner:

EK1 Proportion of genetic to phenotypic variation is R g
g+e

= 1−R e
g+e

EK2 Proportion of non-additive to genetic variation is R d+x
g

= 1−R a
g

EK3 Proportion of epistasis to non-additive variation is R x
d+x

= 1−R d
d+x

Values for the relative magnitudes R∗ will vary between study systems and traits in line with the expert
knowledge. In this study we assume R g

g+e
= 0.25 (so R e

g+e
= 0.75), R d+x

g
= 0.15 (so R a

g
= 0.85), and

R x
d+x

=∼ 0.33 (so R d
d+x

=∼ 0.67, R d
g

=∼ 0.15 · 0.67 =∼ 0.10 and R x
g

=∼ 0.15 · 0.33 =∼ 0.05). We

emphasise that we use this information to construct prior distributions, i.e., these relative magnitudes are
only taken as a guide and not as the exact magnitude of variance components.

We present two approaches for constructing a prior that includes EK1, EK2 and EK3: independently for
each variance parameter – component-wise (CW) prior – and jointly for all variance parameters – model-wise
(MW) prior. We contrast these two priors, which includes the expert knowledge (exp), against default priors
(def) that do not use any expert knowledge. The default priors are priors from the literature, which are
not specific for the problem at hand. For the component-wise expert knowledge prior we need additional
information on the expected magnitude of the phenotypic variance Vp. We summarize the resulting priors
in Table 1 and describe them in detail in the next sections.

We do not include expert knowledge about the intercept because it is typically well-identified from the
data, and we specify the nearly translation-invariant prior µ ∼ N (0, 1000). For the same reason, we do
not include expert knowledge about the total variance (corresponding to the phenotypic variance) in the
model-wise priors, and we use the non-informative and scale-invariant Jeffreys’ prior σ2

p ∼ 1/σ2
p.

We use the penalized complexity (PC) prior framework of Simpson et al. (2017) where the prior is
intuitive and shrinks the parameters of a complex model to a simpler (base) model unless the data provides
other information. In this framework, the prior on a parameter is controlled by two elements: a preferred
parameter value and an idea on how strongly we believe in this preferred value. This parameter could be
either a standard deviation or variance, a proportion of variances, or other parameters such as correlations
(Guo et al., 2017).

In our component-wise prior we use a PC prior for each variance parameter in the model. These PC
priors shrink towards variance equal to 0, i.e., towards a simpler model without the corresponding effect.
The PC prior for a standard deviation is denoted as σ ∼ PC-SD0(

√
V , α) and the analyst has to specify an

upper variance value V and a tail probability α such that the upper-tail probability P(σ >
√
V ) = α. We use

an expert-expected value for V and α = 0.25 so the prior distributions are weakly-informative towards the
expert knowledge, but prefers variance equal to zero unless the data informs otherwise. See examples below.
The PC prior for a variance parameter corresponds to an exponential distribution on standard deviation.

In our model-wise prior we use the hierarchical decomposition (HD) prior framework of Fuglstad et al.
(2020). The HD prior is constructed hierarchically following a tree structure, where we use expert knowledge
to attribute the total variance in the model to the different effects. We can do this with splits at one or more
levels in the tree structure where we attribute the proportion of variance p to different effects. See Figure
3, and Fuglstad et al. (2020) for examples. We can choose to be ignorant about splits or to provide expert
knowledge. We specify ignorance between splits among the m model components by using a symmetric
Dirichlet prior p ∼ Dirichlet(m).

In the HD prior framework, we can use expert knowledge in two different ways. We can prefer one effect
to the others, or we can prefer a specific proportion of variance attributed to each effect. The use of PC

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.01.019497doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019497
http://creativecommons.org/licenses/by/4.0/


Table 1: Summary of the prior distributions. σ ∼ PC-SD0(
√
V , α) describes a penalized complexity (PC)

prior for a standard deviation where P(σ >
√
V ) = α. p ∼ PC-P0(R∗) describes a PC prior for a variance

proportion that has median equal to R∗ and a preference for the variance proportion being equal to 0.
p ∼ PC-PM(R∗) describes a PC prior for a variance proportion with median R∗ and a preference for the
variance proportion being equal to R∗, and 75% probability in [logit(R∗)−1, logit(R∗)+1] around the median
on logit-scale. The tree structure for the model-wise (MW) priors is shown in Figure 3. The dependence
of the MW priors on this structure is suppressed in the notation. The values for A-CW-def are taken from
Simpson et al. (2017).

Additive
(Model A, gi = ai)

Additive and non-additive
(Model ADX, gi = ai + di + xi)

Default (def) Expert (exp) Expert (exp)

C
o
m
p
o
n
e
n
t-

w
is
e
(C

W
)

A-CW-def:
σe ∼ PC-SD0 (0.968, 0.01)

σa ∼ PC-SD0 (0.968, 0.01)

A-CW-exp:

σe ∼ PC-SD0

(√
R e

g+e
Vp, 0.25

)
σa ∼ PC-SD0

(√
R g

g+e
Vp, 0.25

)

ADX-CW-exp:

σe ∼ PC-SD0

(√
R e

g+e
Vp, 0.25

)
σa ∼ PC-SD0

(√
R a

g
R g

g+e
Vp, 0.25

)
σd ∼ PC-SD0

(√
R d

g
R g

g+e
Vp, 0.25

)
σx ∼ PC-SD0

(√
R x

g
R g

g+e
Vp, 0.25

)

M
o
d
e
l-

w
is
e
(M

W
)

A-MW-def:
p g

g+e
∼ Dirichlet (2)

σ2
p ∼ Jeffreys’

A-MW-exp:

p g
g+e

∼ PC-P0

(
R g

g+e

)
σ2
p ∼ Jeffreys’

ADX-MW-exp:

p g
g+e

∼ PC-P0

(
R g

g+e

)
p d+x

g
∼ PC-PM

(
R d+x

g

)
p d

d+x
∼ PC-PM

(
R x

d+x

)
σ2
p ∼ Jeffreys’

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.01.019497doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019497
http://creativecommons.org/licenses/by/4.0/


Figure 1: The prior used for the A-CW-exp (left) and A-CW-def (right) settings. For A-CW-exp, we use
R g

g+e
= 0.25. We have plotted the priors for Vp = 1. For A-CW-def, additive and environmental variances

have the same prior.

priors will then shrink the model towards the preferred effect or preferred attribution of variance to the
effects.

For a variance proportion with shrinkage towards one of the effects, we denote the PC prior as p ∼
PC-P0(R), where R encodes the expert knowledge about the relative magnitude of variances such that R
is the median (P(p > R) = 0.5)). For a variance proportion with shrinkage towards a specific proportion
of variance assigned to each effect, we denote the PC prior as p ∼ PC-PM(R), where R has the same
interpretation as for PC-P0(R), but in addition encodes the preferred variance attribution (see examples
below). For PC-PM(R), we need to specify how concentrated the distribution is on logit-scale in the interval
[logit(R) − 1, logit(R) + 1] around the median (see Fuglstad et al. (2020) for details). We allocated 75%
probability to this interval.

The PC prior for a variance proportion depends on the structure of the two effects through their covariance
matrices. We omit this in the notation for simplicity, and to emphasize that the priors on proportions are
independent of each other. As the PC prior on proportions depends on the covariance matrix structure,
it is application specific, and the priors do not correspond to common families of distributions such as the
exponential or normal distributions (see Fuglstad et al. (2020) for more details).

Component-wise prior

We first calculate the empirical phenotypic variance (total variance) Vp from a separate dataset, which is a
trial study or a study believed to exhibit similar phenotypic variance as the study at hand. In this study, we
use Vp = 1.86. This empirical phenotypic variance is combined with the expert knowledge in EK1, EK2 and
EK3 to compute expected variances for the model effects. Following EK1 we expect genetic variance around
R g

g+e
Vp and environmental variance around R e

g+e
Vp. Following EK2 and EK3 we expect additive variance

around R a
g
R g

g+e
Vp, dominance variance around R d

g
R g

g+e
Vp and epistasis variance around R x

g
R g

g+e
Vp. We

use this expert knowledge in the PC prior by setting the upper variance values. For example, for Model A

we get σa ∼ PC-SD0

(√
R g

g+e
Vp, 0.25

)
and σe ∼ PC-SD0

(√
R e

g+e
Vp, 0.25

)
(Table 1).

Combining the above expert knowledge procedure with the two different genomic models (Model A and
Model ADX) gave us settings we denote as A-CW-exp and ADX-CW-exp. We have contrasted these settings
with a default PC prior proposed by Simpson et al. (2017) with U = 0.968 and α = 0.01 on all variances,
which gave us settings denoted as A-CW-def and ADX-CW-def. Preliminary analyses showed that the
inference for ADX-CW-def is not robust and we do not present results from this setting. The priors for
A-CW-exp and A-CW-def are plotted in Figure 1 and for ADX-CW-exp in Figure 2, using R g

g+e
= 0.25,

R d+x
g

= 0.15, R x
d+x

=∼ 0.33 and Vp = 1. If Vp takes another value, we simply rescale the x- and y-axes; the

shape of the prior stays the same.
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Figure 2: The prior used for the ADX-CW-exp setting. We use R g
g+e

= 0.25, R d+x
g

= 0.15, and R x
d+x

=∼
0.33. We have plotted the priors for Vp = 1.

Model-wise prior

To incorporate the expert knowledge in a model-wise way we utilize the expert knowledge in a hierarchical
manner following the tree structure in Figure 3. We can now assume the scale of the phenotype is unknown.
To construct the HD prior we follow the tree structure from the bottom nodes and continue in a conditional
fashion upwards in the tree (Fuglstad et al., 2020). In this study we assumed that at the top level model
shrinks the genetic effect unless the data indicates otherwise to reduce overfitting. Further, at the lower
levels the model shrinks towards the expert knowledge EK2 and EK3. Note that we could have chosen
different assumptions. To obtain a prior fulfilling our assumptions, we follow four steps:

1. we use a PC-PM prior for the proportion of epistasis to non-additive variance with median of R x
d+x

(EK3),
2. we use a PC-PM prior for the proportion of non-additive to genetic variance with median of R d+x

g

(EK2),
3. we use a PC-P0 prior for the proportion of genetic to phenotypic variance with the median of R g

g+e

(EK1), and
4. we achieve scale-independence through a scale-invariant prior for phenotypic variance (defined before).

This differs from the component-wise prior where we need to use a dataset to inform about the scale of
variances, and that we now use parameters on the same scale as the expert knowledge. This construction
gives the joint prior π(σ2

p, p g
g+e

, p d+x
g
, p x

d+x
) = π(σ2

p)π(p g
g+e

)π(p d+x
g

)π(p x
d+x

). We show this prior in Figure 4

for R g
g+e

= 0.25, R d+x
g

= 0.15 and R x
d+x

=∼ 0.33 and denote this setting as ADX-MW-exp. Note that the

model-wise priors with expert knowledge are dependent on the covariance matrices of the modelled effects
and are therefore dataset specific (Fuglstad et al., 2020), and the plots of these priors thus pertain to one
specific dataset. The spike at p = 1 for p g

g+e
in Figure 4 is an artifact of the parameterization chosen for

visualization and does not induce overfitting; see Fuglstad et al. (2020) for details.
We explored the influence of alternative expert knowledge. In addition to the previously stated EK1,

EK2 and EK3 we also tested R g
g+e

= 0.25 (so R e
g+e

= 0.75), R d+x
g

= 0.95 (so R a
g

= 0.05), and R x
d+x

=∼ 0.89

(so R d
d+x

=∼ 0.11, R d
g

=∼ 0.95·0.11 =∼ 0.10 and R x
g

=∼ 0.95·0.89 =∼ 0.85). The constructions follows the

description above but with these medians instead. We denote this setting as ADX-MW-opp, as it expresses
almost opposite or ”wrong” beliefs compared to ADX-MW-exp setting, and show the prior in Figure S1 in
File S1 in the Supplemental materials.

For Model A the genetic variance is not decomposed to different sources and the distribution of the
phenotypic variance can be visualized using the top split in Figure 3. We use the expert knowledge in
EK1 to construct a prior for the proportion of genetic to phenotypic variance and denote this setting as
A-MW-exp. We show this prior in Figure 5.
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Phenotypic (EK1)

EnvironmentalGenetic

Genetic (EK2)

Additive Non-additive (EK3)

Dominance Epistasis

R
eg+

eR
g

g+
e

R
a

g

R
d
+
xg

R
d

d
+
x

R
xd
+
x

Figure 3: Tree structure describing the expert knowledge on the decomposition of phenotypic variance used
in the HD prior. Edge labels indicate the expert motivated relative magnitude of variances used as a median
proportion of the variance in the parent node attributed to each child node. For the top split we use the
PC-P0 prior (shrinking to environmental noise), while for splits two and three we use the PC-PM prior.

We compared the model-wise prior with expert knowledge to a prior with no expert knowledge by
constructing an HD prior using the exchangeable Dirichlet prior on the proportion of phenotypic variance
attributed to each of the sources of variance following Fuglstad et al. (2020). For Model A we use a uniform
prior, which is a special case of the symmetric Dirichlet(m) prior with m = 2, on the proportion of genetic
to phenotypic variance p g

g+e
and denote this setting as A-MW-def (see Figure 5). For Model ADX we use a

Dirichlet(4) prior on the proportions, and denote this ADX-MW-def. Due to the lack of expert knowledge
this model was not robust and we do not show results from this setting. The tree structure and prior for
ADX-MW-def can be seen in Figures S2 and S3 in File S1, respectively.

Simulation case-study and experimental setup

We applied the described genomic model (1) with different priors to a simulated case study that mimics a
wheat breeding program. We simulated the breeding program using the R package AlphaSimR (Faux et al.,
2016; Gaynor, 2019) and closely following descriptions of Gaynor et al. (2017) and Selle et al. (2019).

Specifically, we simulated a wheat-like genome with 21 chromosomes, selected at random, 1, 000 SNP
markers and 1, 000 causal loci from each chromosome and used this genome to initiate a breeding program
with breeding individuals. Every year we have used 50 fully inbred parents to initiate a new breeding cycle
with 100 random crosses. In each cross we have generated 10 progenies and selfed them to generate 1, 000 F2
individuals, which were selfed again to generate 10, 000 F3 individuals. We reduced the 10, 000 F3 individuals
in four successive selection stages (headrow, preliminary yield trial, advanced yield trial and elite yield trial)
with 10% selection intensity in each stage. In the headrow stage, we simulated a visual selection on a
phenotype with the heritability of 0.03. For the preliminary, advanced and elite yield trials we respectively
simulated selection on phenotype with heritability 0.25, 0.45 and 0.62. We used the 50 individuals with the
highest phenotype values from the last three selection stages as parents for the next breeding cycle.
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Figure 4: The HD prior used in the ADX-MW-exp setting with the proportion of genetic to phenotypic
variance p g

g+e
, non-additive to genetic variance p d+x

g
, and epistasis to non-additive variance p x

d+x
. We use

R g
g+e

= 0.25, R d+x
g

= 0.15, and R x
d+x

=∼ 0.33. This is a dataset specific prior.

Figure 5: The prior for the proportion of genetic to phenotypic variance p g
g+e

for the A-MW-exp (left) and

A-MW-def (right) settings. We use R g
g+e

= 0.25. A-MW-exp is a dataset specific prior.

We ran the simulation for 30 years. At year 1, we set the following variances for the population of the
50 parents: additive variance of 1.0, dominance variance of 0.5, and epistasis variance of 0.1. We set the
environmental variance to 6.0 for all stages and years. We ran the simulation for 20 years as a ”burn-in” to
obtain realistic breeding data under selection. We then ran the simulation for another 10 years with selection
on phenotype and evaluated the fit of the models at the third selection stage. We did not use the models
for selection. At this stage we had 100 individuals each with five replicates and the goal was to select the
10 genetically best individuals for the fourth, last, stage. Prior to fitting the models we removed the SNP
markers with minor allele frequency below 5%.

Model fit and analysis

We fitted the models with a Bayesian approach (for the {A,ADX}-{CW,MW}-{def,exp,opp} settings)
through the R package RStan (Carpenter et al., 2017; Stan Development Team, 2019) that uses the No-
U-Turn sampler, a variant of Hamiltonian Monte Carlo. Sampling methods such as Markov Chain Monte
Carlo and Hamiltonian Monte Carlo have guaranteed asymptotic accuracy as the number of drawn samples
go to infinity. However, in an applied context with finite computational resources, it is hard to assess this
accuracy. Betancourt (2016) developed a diagnostic metric for the Hamiltonian Monte Carlo, called diver-
gence, that indicates the robustness of a model fit to a specific dataset. This metric indicates whether the
sampler is able to explore the posterior effectively or not, where in the latter case the results might be biased
(we show an example on this in the results).

We also fitted Model A and Model ADX with the maximum likelihood (ML) approach using the low-
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storage BFGS algorithm through the R package nloptr (Nocedal, 1980; Liu and Nocedal, 1989; Johnson,
2020). These approaches do not use priors. We denote them as A-ML and ADX-ML and use them as a
base-line for comparison because maximum likelihood is a common approach in the literature. Inference
for ADX-ML was, just like for ADX-MW-def and ADX-CW-def, not robust, and we do not present results
from this setting. At last, we compared the model results to the performance of selection based solely on
phenotype.

We ran the breeding program simulation 4,000 times and fitted the model and prior settings in each of
the last 10 years of simulation (40,000 model fits in total), and evaluated the fits against the true (simulated)
values. For each model fit we evaluated: (i) robustness, (ii) the accuracy of selecting the genetically best
individuals, (iii) the accuracy of estimating the different genetic values and (iv) the accuracy of estimating
the variance parameters.

For the robustness of the Bayesian approach we used the proportion of datasets that had robust inference
(which we define as at least 99% non-divergent samples) for each model and prior setting. For the robustness
of the maximum likelihood approach we used the proportion of datasets where the optimizer converged.

For the accuracy of selecting the genetically best individuals we ranked the best 10 individuals based
on the estimated genetic value or estimated additive value, and counted how many were among the true
genetically best 10 individuals based on the true genetic value or true additive value. We used the posterior
mean of the effects as estimated values for ranking. Selection on the genetic value indicated selection of new
varieties, while the selection on the additive value indicated selection of new parents.

For the accuracy of estimating the different genetic values we used Pearson correlation and continuous
rank probability score (CRPS, Gneiting and Raftery, 2007). With the correlation we measured how well
posterior means correlated with true values (high value is desired). This metric works with point estimates
and ignores uncertainty of inferred posterior distributions of each individual genetic value. With the CRPS
we measured a combination of bias and sharpness of the posterior distribution (Gneiting and Raftery, 2007)
compared to true values (low value is desired). For the CRPS we used the posterior distribution of the
estimated genetic values. In the case of phenotypic selection, we have a point estimate, and the CRPS
reduces to the mean absolute error between the true genetic values and the phenotype. We extract the
true genetic, additive, dominance and epistasis values from the breeding program and compare with the
corresponding estimates from the models.

For the accuracy of estimating the variance parameters we compared estimated variance components to
true values. We collected posterior medians and divided them by true genetic variances for each of the 10
years from the simulated breeding program (a value close to 1 is desired). This is not done for phenotype
selection.

We provide example code to fit the models presented in this paper together with an example dataset
(this dataset is not used in the analysis); see File S2 in the Supplemental materials for details.

Data availability

All data used in the case study is simulated according to the previous description, and are available upon
request. One example data set is included in File S2 the Supplemental materials, but we do not include
all datasets due to the size required to store them. The Supplemental materials are available at figshare:
https://doi.org/10.6084/m9.figshare.12040716.v2.

Results

In the case study the model-wise priors and expert knowledge improved the robustness of non-additive
models and the selection of the genetically best individuals, but did not improve the accuracy of estimating
different genetic values for all individuals or for variance components.

The model-wise priors combined with expert knowledge improved robustness of the non-additive model
to the level of robustness of the additive model and phenotypic selection. We show this in Table 2 with
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Table 2: Robustness by model and prior setting.

Setting Robustness
Phenotype selection 1.00
A-MW-exp 1.00
A-MW-def 0.99
ADX-MW-exp 0.98
A-ML 0.94
A-CW-exp 0.94
A-CW-def 0.86
ADX-MW-opp 0.86
ADX-CW-exp 0.80
ADX-ML 0.76
ADX-MW-def 0.23
ADX-CW-def 0.04

the proportion of robust model fits by model and prior setting. Phenotypic selection does not depend on
a model fit to a dataset and therefore had the highest robustness by definition. This maximum level of
robustness was matched by fitting the simple additive model and model-wise prior with and without using
expert knowledge (A-MW-exp and A-MW-def). This high model robustness was followed closely by fitting
the more complicated non-additive model with model-wise prior and expert knowledge (ADX-MW-exp) as
well as fitting the simple additive model with the standard maximum-likelihood approach (A-ML) and with
the Bayesian approach using component-wise priors with and without expert knowledge (A-CW-exp and
A-CW-def). The proportion of robust model fits then started to decrease for the other settings. For the non-
additive model the standard maximum-likelihood approach (ADX-ML) was improved by using the Bayesian
approach with either the component-wise prior with expert knowledge (ADX-CW-exp) or the model-wise
prior with wrong/opposite expert knowledge (ADX-MW-opp). Literature default priors used with the non-
additive model (ADX-MW-def and ADX-CW-def) had the lowest robustness.

The reason for deteriorated robustness of some model and prior settings is that genetic and environmental
effects can be partially confounded, which limits the exploration of the posterior when using the Bayesian
approach or limits convergence of mode-seeking algorithms when using the maximum likelihood approach.
We show the partial confounding with images of the covariance matrices for additive, dominance, epistasis
and environmental sources of variation for one dataset in Figure S4 in File S1 in the Supplemental materials.
In Figure S5 we show joint posterior samples for the epistasis and environmental variance for the ADX-MW-
def and ADX-MW-exp settings for one dataset. We see that without a robust model (this includes both
the likelihood and the prior), the posterior becomes difficult to explore, and this is also supported by the
divergence diagnostics (Table 2). The posterior of the model-wise prior without expert knowledge (ADX-
MW-def) is bimodal and the sampler has not been able to sample with convergence due to confounding.

Due to the lack of robust inference with the ADX-CW-def, ADX-MW-def and ADX-ML settings we do
not present their results in the following.

The model-wise priors exploiting expert knowledge improved the selection of the genetically best individ-
uals significantly, and the model choice was important for different breeding aims. We show this in Figure
6 where we display the accuracy of selecting individuals with the highest genetic value (variety selection,
Figure 6a) and with the highest additive value (parent selection, Figure 6b). The settings with the non-
additive model and expert knowledge (ADX-CW-exp and ADX-MW-exp) performed significantly better for
selection of new varieties than the others, which followed in order from A-MW-def, A-MW-exp, A-CW-exp,
A-CW-def, A-ML to ADX-MW-opp. The differences between these settings were small, but they all per-
formed significantly better than sole phenotype selection, which is sensitive to environmental noise. For the
selection of new parents the simpler additive model performed the best and model-wise priors improved its
performance (A-MW-def, A-MW-exp and A-CW-exp). Wrong expert knowledge harmed the parent selection
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(a) Genetic value (variety selection).

(b) Additive value (parent selection).

Figure 6: Accuracy of selecting individuals with the highest (a) genetic value (for variety selection) and (b)
additive value (for parent selection) by model and prior setting - measured with the number of the top 10
true best individuals among the top 10 selected individuals (average ± two standard errors over replicates).

(ADX-MW-opp), but it still outperformed sole phenotype selection.
In the following we focus only on results for ADX-MW-exp, ADX-CW-exp, A-MW-def, A-ML and phe-

notype selection, and show the result of the remaining settings in the File S1 of the Supplemental materials
(Figures S6-S8).

While using the model-wise priors and expert knowledge significantly improved the selection of the
genetically best individuals compared to the maximum-likelihood approach, it did not significantly improve
the accuracy of estimating different genetic values across all individuals. We show this in Figure 7 with the
correlation between the true values and corresponding posterior means and in Figure 8 with the continuous
rank probability score (CRPS) between the true values and corresponding posterior distributions. We show
this for the genetic, additive, dominance and epistasis values separately. While there was a tendency of more
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Figure 7: Accuracy of estimating the different genetic values for all individuals by model and prior setting
- correlation (high value is desired, boxplots show variation over replicates). Genetic (upper left) means the
sum of estimated additive, dominance and epistasis values for Model ADX, and estimated additive values
for Model A.

Figure 8: Accuracy of estimating the different genetic values for all individuals by model and prior setting
- continuous rank probability score (CRPS; low value is desired, boxplots show variation over replicates).
Genetic (upper left) means the sum of estimated additive, dominance and epistasis values for Model ADX,
and estimated additive values for Model A.

favourable correlation and CRPS for certain model and prior settings, the variation between replicates was
much larger than variation between the model and prior settings. The model-wise prior tended to perform
better than the component-wise prior, expert knowledge tended to perform better than the default non-
informative prior knowledge and use of prior knowledge via the Bayesian approach tended to perform better
than the maximum likelihood. All models performed better in estimating the genetic and additive values,
especially in the terms of CRPS, than the phenotype selection.

Variance component estimates varied considerably around the true values for all models and prior settings,
but the estimates from the Bayesian inference showed slightly larger biases and smaller variances than
maximum likelihood estimates. We show this in Figure 9 with the ratio of estimated to true variances (value
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(a) Environmental and genetic variance.

(b) Additive, dominance and epistasis variance.

Figure 9: Accuracy of estimating (a) environmental and genetic variance and (b) additive, dominance and
epistasis variance by model and prior setting - expressed as the estimated posterior median divided by the
true value (a value close to 1 is desired, boxplots show variation over replicates, x-axes have a log-scale
(except for environmental variance) and is focused on area around 1 with some outliers excluded).

close to 1 is desired and values below/above 1 denote underestimation/overestimation). Of the model and
prior settings in Figure 9, the maximum likelihood approach (A-ML) was the closest to the true value on
average in estimating the genetic variance, but also had the largest variation between replicates. Bayesian
analysis with the additive model, model-wise prior and non-informative knowledge (A-MW-def) reduced
variance between replicates, but did not improve bias. The non-additive model and expert knowledge
(ADX-CW-exp and ADX-MW-exp) further increased the bias (underestimation) compared to A-ML and A-
MW-def, and the model-wise prior (ADX-MW-exp) tended to perform better than the component-wise prior
(ADX-CW-exp). When estimating dominance and epistasis variance the model-wise prior (ADX-MW-exp)
tended to perform better than component-wise prior (ADX-CW-exp). Estimates for epistasis variance were
considerably more underestimated than for the dominance variance.

Discussion

In this study we have introduced new priors for robust genomic modelling of additive and non-additive
variation based on the penalized complexity prior (Simpson et al., 2017) and hierarchical decomposition
prior (Fuglstad et al., 2020) frameworks. In the case study, the new priors enabled straightforward use of
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expert knowledge, which in turn improved the robustness of genomic modelling and the selection of the
genetically best individuals in a breeding program. However, it did not improve the overall accuracy of
estimating genetic values for all individuals or for variance components. These results highlight three points
for discussion: (i) expert-knowledge priors for genomic modelling, (ii) the importance of priors for breeding
and (iii) limitations of our work.

Expert-knowledge priors for genomic modelling

Genomic modelling is challenging due to inherent high-dimensionality and pervasive correlations between
loci and therefore requires substantial amounts of information for robust estimation. Most genomes harbour
millions of segregating loci that are highly or mildly correlated. While estimating additive effects at these loci
is a challenging task in itself (e.g., Visscher et al., 2017; Young, 2019), estimating dominance and epistasis
effects is an even greater challenge (e.g., Misztal, 1997; Zhu et al., 2015; de los Campos et al., 2019). One
challenge in estimating the interactive dominance and epistasis effects is that they are correlated with the
main additive effects and all these effects are further correlated across nearby loci (Mäki-Tanila and Hill,
2014; Hill and Mäki-Tanila, 2015; Vitezica et al., 2017). Information to estimate all these locus effects and
corresponding individual values has to inherently come from the data, but could also come in a limited extent
from the expert knowledge. There is a wealth of expert knowledge in genetics (e.g., Houle, 1992; Falconer
and Mackay, 1996; Lynch et al., 1998), however, this expert knowledge is seldom used because it is not clear
how to use it in a credible and a consistent manner.

We showed how to use the expert knowledge about the magnitude of different sources of variation by
leveraging two recently introduced prior frameworks (Simpson et al., 2017; Fuglstad et al., 2020). While
the penalized complexity priors are parsimonious and intuitive, they require absolute prior statements when
used in a component-wise approach, which are challenging to elicit for multiple effects. The hierarchical
decomposition framework imposes a tree structure according to a domain model, and the intuitive penalized
complexity prior can be used in the hierarchical decomposition prior framework to ensure robust modelling.
This model-wise approach enables the use of relative prior statements, which are less challenging to elicit
than the absolute prior statements. The presented priors therefore pave a way for a fruitful elicitation
dialogue between a geneticist and a statistician (Farrow, 2013). In particular, the hierarchical decomposition
prior framework provides both a method for prior construction and a platform for communication among
geneticists and statisticians. Further, the graphical representation allows a description of a joint prior in a
visual way with minimal statistical jargon (Figure 3).

The hierarchical decomposition prior framework enabled us to use expert knowledge on relative additive
and non-additive variation. In the simulated case study this information improved the robustness of the
Bayesian approach over the maximum likelihood approach and improved the selection of the genetically best
individuals. This improvement was due the additional information that alleviated the strong confounding
between the non-additive (particularly epistasis) and environmental variation.

The hierarchical decomposition prior framework is also useful when expert knowledge is only available
on parts of the model. For example, an expert may not have a good intuition about the level of broad-sense
heritability, say for a new trait, but will likely have a good intuition on how the genetic variance decomposes
into additive, dominance and epistasis components, simply due to the model specification (Hill et al., 2008;
Mäki-Tanila and Hill, 2014; Hill and Mäki-Tanila, 2015; Huang and Mackay, 2016). In those cases, we can
use weakly-informative default priors on the parts of the model where expert knowledge is missing, and priors
based on expert knowledge for the rest of the model. The component-wise specification of expert knowledge
with the standard (Sorensen and Gianola, 2007) or the penalized complexity (Simpson et al., 2017) priors
is infeasible in this context, and does not admit a simple visualization of the implied assumptions on the
decomposition of the phenotypic variance. Further, the component-wise specification of expert knowledge is
particularly challenging when phenotypic variance is unknown or when collected observations are influenced
by a range of effects which can inflate sample phenotypic variance. The model-wise approach with the
hierarchical decomposition prior can address these situations.

There exists previous work on penalized estimation of genetic covariances (e.g., Meyer, 2016, 2019) that
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also uses Bayesian principles and scale-free penalty functions to reduce variation of the estimates from small
datasets and for large numbers of traits. Our proposed priors and expert knowledge also reduced variation
of estimates in the simulated case study. However, our estimates were biased, which is expected given the
small sample size and that the Bayesian approach induced bias towards a lower variance (e.g, Sorensen and
Gianola, 2007). It is worth noting that the maximum likelihood estimates of genetic variance also were
largely underestimated, which we believe is due to the small sample size and a large number of parameters
to estimate. Further, for some datasets we could not obtain the maximum likelihood estimates, while priors
robustified the modelling. We note, however, that genomic models are inherently misspecified by trying to
estimate the effect of causal loci through correlated marker loci (Gianola et al., 2009; de los Campos et al.,
2015).

Future research could expand the hierarchical decomposition prior framework to other settings. For
example, to multiple traits or modelling genotype-by-environment interactions, which are notoriously noisy,
and we aim to find parsimonious estimates (e.g., Meyer, 2016, 2019; Tolhurst et al., 2019). Also, expand
to model macro- and micro-environmental effects (e.g., Selle et al., 2019) and to model multiple layers of
sparse, yet high-dimensional, ”omic” data from modern biological experiments using network-like models
(Damianou and Lawrence, 2013).

Importance of priors for breeding

Robust genomic modelling of non-additive variation is important for breeding programs. There is substantial
literature indicating sizeable non-additive genetic variation (e.g., Oakey et al., 2006; Muñoz et al., 2014;
Bouvet et al., 2016; Varona et al., 2018; de Almeida Filho et al., 2019; Santantonio et al., 2019; Tolhurst
et al., 2019), but robust modelling of this variation is often challenging. We have shown how to achieve
this robust modelling with the proposed priors and expert knowledge. We evaluated this approach with a
simulated wheat breeding program where we assessed the ability to select the genetically best individuals
on their genetic value (variety selection) and additive value (parent selection). The results showed that
the proposed priors and the expert knowledge improved variety and parent selection. We observed more
improvement in the variety selection, which is expected because there is more variation in genetic values
than its first-order approximation additive values. However, this additional non-additive variation is hard
to model due to a small signal from the data relative to environmental variation and confounding with the
environmental variation. The proposed priors and the expert knowledge helped us to model the non-additive
variation in a robust way.

Importantly, all models improved upon sole phenotypic selection, which shows the overall importance of
genomic modelling. While the differences between the different models and priors were small, the improved
genomic modelling can contribute to the much needed improvements in plant breeding (Ray et al., 2013;
Asseng et al., 2015). Also, even a small improvement in the variety selection has a huge impact on production,
because varieties are used extensively (Acquaah, 2009). In the terms of model complexity, the answer to
whether to use the additive model or the non-additive model depended on the aim of the analysis. The
non-additive model was the best in selecting the genetically best individuals on genetic value, whereas the
additive model performed best in selecting the genetically best individuals on additive value. The reason for
this is likely the small sample size and large number of parameters to estimate with the non-additive model
(Varona et al., 2018).

Of note is the observation that the proposed priors and the expert knowledge improved the selection of
the genetically best individuals, but not the estimation of the different genetic values. We did not expect
this difference. In principle both of these metrics are important, but for breeding the ability to select the
genetically best individuals is more important (de los Campos et al., 2013). A possible explanation for the
difference between the two metrics is that the top individuals deviated more from the overall distribution
and the overall metrics do not capture well the tail-behaviour.

The importance of the proposed priors and the expert knowledge will likely vary with the stage and size
of a breeding program. Prior importance is known to decrease as the amount of data increases (Sorensen
and Gianola, 2007), but the required amount of data for accurate estimation of non-additive effects is
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huge compared to the size of most breeding programs. Therefore the proposed penalized complexity and
hierarchical decomposition priors could be helpful also in large breeding programs as they enforce shrinkage
according to the expert knowledge unless the data indicates otherwise, reducing the risk of estimating
spurious effects.

Limitations of our work

The aim of this paper was to describe the use of the expert knowledge to improve genomic modelling, which
we achieved through two recently introduced prior frameworks (Simpson et al., 2017; Fuglstad et al., 2020),
and demonstrated their use in a simulated case study of a wheat breeding program. There are multiple other
possible uses of the proposed priors in genomic modelling. The case study is small with only 100 individuals in
the advanced stages of a wheat breeding program. We have chosen this stage for computationally simplicity
and speed because we evaluate the robustness of estimation over many replicates. Also, a small number
of individuals and a limited genetic variation at this stage made a good case study to test the importance
of priors. Finally, we could have tested more prior options, in particular the shrinkage of the non-additive
values towards the additive values, i.e., the PC-P0 versus the PC-PM prior. More research is needed in the
future to see how the expert knowledge can improve genetic modelling further.

Interesting areas for future research are also in other breeding domains with the recent rise in volumes
of individual genotype and phenotype data, which provide power for estimating dominance and epistasis
values (e.g., Alves et al., 2020; Joshi et al., 2020). The ability to estimate the non-additive values would be
very beneficial in breeding programs that aim to exploit biotechnology (e.g., Gottardo et al., 2019). Finally,
an exciting area for estimating non-additive individual values is in the area of personalized human medicine
(Mackay and Moore, 2014; Sackton and Hartl, 2016; de los Campos et al., 2018; Begum, 2019).

The proposed priors are novel and require further computational work to facilitate widespread use.
The penalized complexity priors (Simpson et al., 2017) are increasingly used in the R-INLA software (Rue
et al., 2009, 2017), while hierarchical decomposition priors (Fuglstad et al., 2020) have been implemented
with the general purpose Bayesian software Stan (Carpenter et al., 2017; Stan Development Team, 2019).
However, this implementation is technical. We are currently developing an R package that facilitates the
prior specification and estimation using Stan and INLA. This will ease the use of the prior, and INLA will
speed up the computations. The goal is to provide a simple graphical interface that can be used both by
non-statisticians and statisticians. However, further work is needed to enable Bayesian treatment of large
genomic models fitted to massive datasets.

Conclusion

In conclusion, we have presented how to use the expert knowledge on relative magnitude of genetic variation
and its additive and non-additive components in the context of a Bayesian approach with two novel prior
frameworks. We believe that when modelling a phenomenon for which there exists a lot of knowledge, we
should employ methods that are able to take advantage of this resource. We have demonstrated with a
simulated case study that such methods are important and helpful in the breeding context, and they might
have potential also in other areas that use genomic modelling.
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