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Identification of proteins is one of the most computationally in-
tensive steps in genomics studies. It usually relies on aligners
that don’t accommodate rich information on proteins and re-
quire additional pipelining steps for protein identification. We
introduce kAAmer, a protein database engine based on amino-
acid k-mers, that supports fast identification of proteins with
complementary annotations. Moreover, the databases can be
hosted and queried remotely.
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Main
One fundamental task in genomics is the identification and
annotation of DNA coding regions that translate into pro-
teins via a genetic code. Protein databases increase in size as
new variants, orthologous and paralogous genes are being se-
quenced. This is particularly true within the microbial world
where bacterial proteomes’ diversity follows their rapid evo-
lution. For instance, UniProtKB (Swiss-Prot / TrEMBL) (1)
and NCBI RefSeq (2) contain over 100 million bacterial pro-
teins and that number grows rapidly.
Identification of proteins often relies on accurate, but slow,
alignment software such as BLAST or hidden Markov model
(HMM) profiles (3, 4). Although other approaches (such as
DIAMOND (5)) have considerably improved the speed of
searching proteins in large datasets, from a database stand-
point much can be done to offer a more versatile experience.
One such approach would be to expose the database as a per-
manent service making use of computational resources for
increased performance (i.g. memory mapping) and leverag-
ing the cloud for remote analyses via a Web API. Another
approach would be to extend the result set with comprehen-
sive information on protein targets to facilitate subsequent ge-
nomics and metagenomics analysis pipelines.
Alignment software usually relies on a seed-and-extend pat-
tern using an index (two-way indexing in DIAMOND) to
make local alignments between query and target sequences.
However, there is a plethora of research techniques to by-
pass the computational cost of alignment. Alignment-free
sequence analyses usually adopt k-mers (overlapping subse-
quences of length k) as the main element of quantification.
They are extensively used in DNA sequence analyses rang-
ing from genome assemblies (6) to genotyping variants (7),
as well as genomics and metagenomics classification (8–10).
In the present study, we introduce kAAmer, a fast and com-
prehensive protein database engine that was named after the

usage of amino acid k-mers which differs from the usual nu-
cleic acid k-mers. We demonstrate the usefulness and effi-
ciency of our approach in protein identification from a large
dataset and antibiotic resistance gene identification from a
pan-resistant bacterial genome.
The database engine of kAAmer is based on log-structured
merge-tree (LSM-tree) Key-Value (KV) stores (11). LSM-
trees are used in data-intensive operations such as web in-
dexing (12, 13), social networking (14) and online gaming
(15, 16). KAAmer uses Badger (17), an efficient imple-
mentation in Golang 1 of a WiscKey KV (key-value) store
(16). WiscKey’s LSM-tree design is optimized for solid state
drives (SSD) and separates keys from values to minimize
disk I/O amplification. Disk I/O amplification is typical of
LSM-trees due to its vertical design in which keys and val-
ues need to be read and rewritten in multiple levels of the
tree. Therefore, kAAmer will obtain peak performance with
modern hardware such as NVMe 2 SSDs. Furthermore, tra-
ditional block devices such as SATA solid-state drives that
offer good throughput in input/output (I/O) operations per
second (IOPS) will effectively accommodate use cases where
many queries are sent simultaneously. A kAAmer database
includes three KV stores (see Figure 1A): one to provide the
information on proteins (protein store) and two to enable the
search functionalities (k-mer store and combination store).
The k-mer store contains all the 7-mers found in the sequence
dataset and the keys to the combination store, which uniquely
serves the combination of proteins held by k-mers. The fixed
k-mer size at 7 was chosen to fit on 4 bytes and keep a man-
ageable database size while offering good specificity over
protein targets. The k-merized design of a kAAmer database
provides an interesting simplicity for the search tasks which
will give an exact match count of all 7-mers between a pro-
tein query and all targets from a protein database. The result
sets using this strategy are not guaranteed to return the same
homologous targets that would be obtained with alignment or
HMM search and is therefore less suitable for distant homol-
ogy retrieval (< 50% identity). Nonetheless, kAAmer also
supports alignment on the result set without sacrificing speed
as shown in Figure 1B. The main drawback of a kAAmer
database (in the version at the time of writing: 0.4) is the disk
space and time required to build a database that is greater than
its benchmarked competitors, although it compares favorably
to Ghostz (18) for these parameters.

1Go programming language (https://golang.org/)
2Non-Volatile Memory Express
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In order to test the efficiency of our database search en-
gine, we used all (114,830,954) the non-fragmented proteins
of the UniprotKB (Swiss-Prot / TrEMBL) bacterial proteins
dataset (release 2019_08). Sixteen different protein query
datasets were randomly and uniquely chosen from the origi-
nal database, with size ranging from 1 protein to 10,000 pro-
teins. We added the kAAmer search in k-mer match mode
(without alignment; named “kaamer-kmatch”) for compar-
ison purposes. We also corrected the kAAmer alignment
mode (“kaamer-aln”) in “kaamer-aln+opendb”, by adding the
time it took to open the database before running the queries
(230 seconds). However, kAAmer’s purpose is to be used
as a persistent service so the database opening time becomes
insignificant the more you query the database. The four soft-
ware included in the benchmark are Blastp (v2.9.0+) (3),
Ghostz (v1.0.2) (18), Diamond (v0.9.25) (5) and kAAmer
(v0.4). Figure 1B illustrates the wallclock times of the align-
ment software in comparison with kAAmer for protein ho-
mology searches. See the Methods section for the hardware
used in the benchmarks. We observe that with the larger
query datasets (10,000 proteins), kAAmer in alignment mode
completes its search and alignments in just 3 minutes 2 sec-
onds (and 2 minutes 26 seconds without alignment). In com-
parison, Diamond, the second fastest aligner, achieved the
10,000 query task in 11 minutes 57 seconds. Thus, at the
maximal benchmarked query size, kAAmer shows an in-
crease in speed of almost 4x (3.93x). When the search in-
corporates fewer protein queries the gain of kAAmer is more
substantial (up to 82x with only 10 protein queries) because
Diamond and its double indexing is optimized to perform
better when the number of queries increases. It is worth men-
tioning that when correcting for the database opening (square
symbol in Figure 1B.), the kAAmer gain in speed drops and
it only surpasses Diamond when there are over 4000 protein
queries. However, as stated earlier, kAAmer is rather suited
to act as a permanent and flexible database service that will
store structured protein information and offer a quick ho-
mology search over that protein database. Also, with suf-
ficient random access memory (RAM), data is going to be
cached by the operating system (OS) which will increase the
performance of kAAmer. For the other benchmarked soft-
ware, Ghostz took over 33 minutes to realise the task with the
10,000 queries, which is 11 times slower than kAAmer. For
Blastp, we stopped the benchmark at 2,000 protein queries
since it was already taking over 7 hours to complete the task
(at least 700x slower than kAAmer).

In order to accomodate real-use cases we built relevant
kAAmer databases and investigated their usage in typical
bacterial genomics analyses. It should be noted that anno-
tation of genomes and gene identification rely heavily on
the quality of the underlying database. What kAAmer has
to offer is the inclusion of the protein information within
the database combined with an efficient search functionality
to facilitate downstream analyses. Therefore, we also pro-
vide utility scripts to demonstrate these use cases. The first
use case was to identify antibiotic resistance genes (ARG)
in a bacterial genome and test its accuracy related to other

ARG finder software. For ARG identification we used the
NCBI Bacterial Antimicrobial Resistance Reference Gene
Database (v2020-01-06.1) (19) and compared the kAAmer
results with the ResFinder (v3.2 and database 2019-10-01)
(20) and CARD (v5.1.0) (21) software and database. The
query genome is a pan-resistant Pseudomonas aeruginosa
strain E6130952 (22). Table 1 shows the results of the ARG
identification within the query genome by the three software
/ databases tested. For the majority of antibiotic classes, the
results are in agreement between the three databases. Inter-
estingly, three aminoglycoside genes (aac(6’)-Il, ant(2”)-Ia
and aacA8) were only found with kAAmer (NCBI-ARG) and
ResFinder. On the other hand, several more antibiotic efflux
systems are annotated in CARD and the number of identified
efflux proteins in E6130952 goes up to 36 while only 3 were
reported by kAAmer (NCBI-ARG) and none by ResFinder.
Also 2 genes associated with resistance to peptide antibiotics
(arnA, basS) and 2 other (soxR, carA) associated with mul-
tiple antibiotic classes were only reported by CARD. Other
tested use cases include genome annotation and metagenome
profiling as shown in the Methods section.
In summary, kAAmer introduces a fast and flexible protein
database engine to accommodate different genomics analyses
use cases. It can be hosted on-premise or in the cloud and be
queried remotely via an HTTP API.
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Methods
Design of kAAmer. KAAmer design was influenced by our
requirement that protein databases would be permanently
hosted (on premise or in the cloud), queried remotely and
would have room to scale as sequence databases grow in size.
It also needed to be multithreaded for protein searches and
would support alignment for more accurate remote homology
findings. We opted for a Key-Value store engine that would
reside on disk and be optimized for SSDs. We used the Go
programming language for its versatility and efficiency. The
Key-Value stores use the Badger (17) engine and protein an-
notations are encoded using Protocol Buffers (23).

Database building. KAAmer is first used to build a
database in which all amino acid k-mers are associated with
proteins in which they are found. It consists of three KV
stores to hold the database information (k-mer store, com-
bination store and protein store). The first KV store (k-mer
store) keeps the association of every k-mer (key) with a hash
value (key length: 8 bytes) that is the entry to the combina-
tion store. The k-mer size is fixed at 7 amino acids to fit k-mer
keys onto 32 bits (4 bytes) and thus maintain a manageable fi-
nal database size while keeping a k-mer size long enough for
specificity. The second KV store (combination store) is used
to hold all the unique sets of protein identifiers. The method
used to build this store can relate to the flyweight design pat-
tern, the hash consign technique, and the coloured de Bruijn
graphs (7, 8). Indeed, hash values are reused to access identi-
cal objects and therefore minimize memory usage. The set of
protein identifiers are the keys to the last store (protein store)
which contains the protein information found in the raw an-
notation file. The raw input file can be either in the EMBL
format, GenBank format, TSV format or in FASTA format.

Querying a database. Once we have a database, we ex-
pose it with the kAAmer server that listens over HTTP for
incoming requests. The benefits of using such a service are
two fold. First, the database is opened once and is mem-
ory mapped to increase the performance of protein searches.
Second, the kAAmer server can be hosted virtually any-
where, in the cloud for instance, and be queried remotely
by the kAAmer client. Note that it is preferable that the
latency (time required for a message to be transported over
HTTP) between the server and client be as low as possible.
KAAmer supports protein query and translated DNA query
from FASTA input as well as short reads sequences (like Il-
lumina) in FASTQ format.

Benchmark protein alignment software. To build the
benchmark on the UniProtKB bacterial proteins database, we
randomly and uniquely extracted multiple sets of sequences,
with the number of sequences ranging from 1 to 10 thousand.
Each set of sequences was in its own FASTA file to be queried
with the different alignment software included in the bench-
mark. The benchmark for all four software (Blastp (v2.9.0+),
Ghostz (v1.0.2), Diamond (v0.9.25) and kAAmer (v0.4)) was
run on nodes geared with 32 cores (Intel(R) Xeon(R) CPU

E5-2667), 120 GB of RAM and with a SATA III connected
SSD. The maximum number of results for each query was set
to 10 and no threshold was provided. All software were run
with default parameters, except for the number of threads set
to 32 and the maximum number of results per query at 10.

Other kAAmer use cases. Apart from the antibiotic resis-
tance gene (ARG) identification use case, we also provide
two demonstrations of kAAmer usage in bacterial genome
annotation and metagenome profiling. The use cases are doc-
umented at https://github.com/zorino/kaamer_analyses and a
Python script is provided for each one of the analyses. For
the genome annotation, we used the chromosomal sequence
of the same Pseudomonas aeruginosa strain (E6130952) as
in the antibiotic resistance genes identification. The kAAmer
database that was used for the homology detection is a sub-
set of RefSeq from the Pseudomonadaceae family which is
available from the kAAmer repository (see Data availabil-
ity) along with other Bacterial family databases. Essentially
the genome annotation script parses the kAAmer results and
produces a GFF (General Feature Format) annotation file giv-
ing some threshold on the protein homology. The other use
case is the profiling of a metagenome based on the MGnify
database of the human gut (24). MGnify includes protein an-
notations from gene ontology, enzyme commission and kegg
pathways, among others. The metagenome profiling script
will parse the results and produce a summary file by annota-
tion that counts the presence and abundance of each feature.

Data availability

We have built a repository where one can download prebuilt
kAAmer database versions of common protein datasets use-
ful in bacterial genomics and metagenomics. The repository
is available at https://kaamer.genome.ulaval.ca/kaamer-repo/
and includes datasets from the NCBI, the EBI and other pop-
ular data sources.

Code availability

The code is available at https://github.com/zorino/kaamer un-
der the Apache 2 license and the documentation can be found
at https://zorino.github.io/kaamer/.
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Fig. 1. A) Design of a kAAmer database. Three key-value stores are created within a database (K-mer Store, Combination Store, Protein Store). Colours indicate the
combination (hash) value that are reused in the combination store. Proteins are numbered (p01, p02, p03) and k-mers are numbered (k01,k02,...,k08). B) Protein search
benchmark. Software include blastp (v2.9.0+), ghostz (v1.0.2), diamond (v0.9.25) and kAAmer (v0.4) with and without alignment.

Resistance Gene Antibiotic Class kAAmer+NCBI-ARG ResFinder CARD
aac(6’)-Il amikacin/kanamycin/tobramycin 3 3 0
ant(2”)-Ia gentamicin/kanamycin/tobramycin 1 1 0
aacA8 aminoglycoside 1 1 (aac(6’)-31) 0
aph(3’)-IIb kanamycin 1 1 1
aadA6 streptomycin 2 2 2
blaOXA-2, blaOXA-488 beta-lactam 2 2 2
blaPDC-35 cephalosporin 1 1 (blaPAO) 1 (blaPDC-2)
fosA fosfomycin 1 1 1
catB7 chloramphenicol 1 1 1
sul1 sulfonamide 3 3 3
mexA, mexE, mexX efflux 3 0 2 (no mexX)
other efflux system efflux 0 0 34
arnA, basS peptide antibiotic 0 0 2
soxR, carA multiple antibiotic class 0 0 2
Total 13 19 16 51

Table 1. Report of the antibiotic resistance genes identification within the pan-resistant Pseudomonas aeruginosa E6130952 strain from kAAmer+NCBI-arg, ResFinder and
CARD databases.

Déraspe et al. | kAAmer bioRχiv | 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.01.019984doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019984
http://creativecommons.org/licenses/by-nc-nd/4.0/

