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Abstract

Multivariable Mendelian Randomisation (MVMR) is a form of instrumental variable analysis
which estimates the direct effect of multiple exposures on an outcome using genetic variants as
instruments. Mendelian Randomisation and MVMR are frequently conducted using two-sample
summary data where the association of the genetic variants with the exposures and outcome
are obtained from separate samples. If the genetic variants are only weakly associated with
the exposures either individually or conditionally, given the other exposures in the model, then
standard inverse variance weighting will yield biased estimates for the effect of each expos-
ure. Here we develop a two-sample conditional F-statistic to test whether the genetic variants
strongly predict each exposure conditional on the other exposures included in a MVMR model.
We show formally that this test is equivalent to the individual level data conditional F-statistic,
indicating that conventional rule-of-thumb critical values of F > 10, can be used to test for
weak instruments. We then demonstrate how reliable estimates of the causal effect of each
exposure on the outcome can be obtained in the presence of weak instruments and pleiotropy,
by re-purpousing a commonly used heterogeneity Q-statistic as an estimating equation. Fur-
thermore, the minimised value of this Q-statistic yields an exact test for heterogeneity due to
pleiotropy. We illustrate our methods with an application to estimate the causal effect of blood
lipid fractions on age related macular degeneration.
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1 Introduction

Instrumental variables (IV) is a form of regression analysis which estimates the causal effect of an

exposure on an outcome in the presence of unobserved confounding. Mendelian randomisation (MR)

is a rapidly expanding application of the IV method in the field of epidemiology in which genetic

variants are used as instruments. If genetic variants - usually single nucleotide polymorphisms

(SNPs) - are available which reliably predict the exposure and are not associated with the outcome

through any other pathway, then they are valid IVs. These genetic variants can then be used as

instruments to obtain an estimate for the causal effect of a modifiable health exposure on a disease

outcome1,2. The results of such an analysis can inform the development of public health, or even

pharmaceutical, interventions.

Multivariable Mendelian Randomisation (MVMR) is a recently developed extension of MR

that can be applied with either individual or summary level data to estimate the effect of multiple,

potentially related, exposures on an outcome3,4. The three core assumptions that define a set of

SNPs, G, as valid IV’s for the purpose of an MVMR analysis are;

IV1: G must be strongly associated with each exposure given the other exposures included in the

model;

IV2: G is independent of the outcome given all of the exposures; and

IV3: G is independent of all confounders of any of the exposures and the outcome4.

These assumptions are illustrated in Fig 1. A violation of IV1 induces ‘weak instrument bias’ in

the resulting estimates5,6. In a conventional (univariable) MR analysis, the definition of instrument

strength is straightforward and unambiguous. Assumption IV1 can be tested with an F-statistic,

which tests the association between the SNP and the exposure. When univariable MR analysis

based on individual level data from a single sample, if the F-statistic is larger than the rule-of-

thumb value of 10 then the SNPs are said to be a ‘strong’ instrument. We can then reject the null

hypothesis that the instruments are weak in the sense that the bias of the MR estimate is equal

to or greater than 10% of the observational (OLS) association.5,6 In any MVMR analysis it is also

necessary that this F-statistic is large for each exposure included, but this is no longer sufficient;

the SNPs also need to predict each exposure conditional on the other predicted exposures. This
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additional condition ensures that there is sufficient variation in association between the SNPs and

each exposure, to avoid a problem of weak instrument bias in the MVMR model.

Figure 1: Assumptions for a MVMR analysis

DAG illustrating the assumptions required for MVMR. Dashed lines represent associations that
must not exist for the SNPs to be valid instruments for the set of exposures

With individual level data, weak instruments can be tested in MVMR using the Sanderson-

Windmeijer conditional F-statistic, denoted FSW
7,4. Under weak instruments FSW has the same

distribution as the conventional F-statistic and so can be compared to the same critical values5,6.

Therefore when testing for weak instruments, verifying that FSW is greater than the rule-of-thumb

of 10 means that we can reject the null hypothesis that the average bias of the MVMR estimates

is at least 10% of the bias of the equivalent multivariable OLS estimates.

Application to two-sample summary data MR

When individual level data on the genetic variants, exposure and outcome are not available two

sample MVMR can be conducted using summary data estimates of SNP-exposure and SNP-outcome

associations. In two-sample MR, weak instruments bias the causal estimates towards the null rather

than the observational association. Sanderson et al (2019) derived a Q statistic (Qxj ) to test for

underidentification (i.e. where the SNPs explain none of the variation in the exposures) in two-

sample MVMR. We formally show in this paper that a transformation of this statistic has the same

distribution as FSW and therefore can also be compared to the same critical values, or rule-of-thumb
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of F>10, to test for weak instruments in the two sample setting.

Horizontal pleiotropy is a major threat to the validity of an MR analysis. It occurs when the

SNPs have an effect on the outcome (either directly or through another exposure not included in

the model) that is not via the exposure of interest, as illustrated by the dashed arrow from G to Y

in Fig 1. This violates assumption IV3 and can lead to biased estimates of the causal effect of each

exposure on the outcome from an MR analysis8. Although a number of methods currently exist

for univariable MR estimation that are robust to pleiotropy under different assumptions9,10,11,12

and MVMR can mitigate horizontal pleiotropy via known pleiotropic pathways through the inclu-

sion of multiple exposures, limited methods are available for pleiotropy robust MVMR models4,13.

Furthermore, in the presence of weak instruments standard tests are increasingly likley to de-

tect pleiotropy when in truth none is present. The major contribution of this paper is to extend

weak instrument pleiotropy robust estimation to two sample MVMR with an arbitrary number

of exposures. Furthermore, we show that a heterogeneity statistic derived within this estimation

procedure provides an exact test for the presence of pleiotropy in the presence of weak instru-

ments. The methods presented here therefore provide the statistical framework for accurate and

reliable MVMR model fitting, with potentially large numbers of exposures, in the presence of weak

instruments and pleiotropy.

We apply our methods to determine which subset of lipid fractions can be strongly predicted

by 150 SNPs associated with at least one of 118 metabolites first presented by Kettunen et al

201614 and estimate the causal effect of those traits on Age related macular degeneration (AMD).

The two sample conditional F-statistic calculated for these data helped to highlight that it was

not possible to strongly predict multiple lipid fractions from the same subgroup despite each lipid

fraction having a moderately high F-statistic. Any analyst naively applying MVMR methods to

such data without the correct diagnostic statistics to hand is in danger of generating poor quality

and potentially misleading results.

2 A Test for Weak Instruments

Let X = (X1, X2, ..., XK) be a set of K exposure variables and let G be a set of L instruments

G = (G1, G2, ..., GL). Define the K × L matrix of associations between each exposure and each

4

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021980doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.02.021980
http://creativecommons.org/licenses/by/4.0/


instrument as;

Π =



π11 π12 . . . π1L

π21 π22 . . . π2L
...

...
. . .

...

πK1 πK2 . . . πKL


, (1)

where for example π32 represents the association between exposure 3 and SNP 2. Without loss of

generality, testing whether the instrument set G can explain variation in a single exposure, X1,

conditional on all other exposures (X2, ..., XK) is equivalent to testing whether model (2) below is

identified

X1 = δ01 + δ1X−1 + ε1 (2)

Xm = π0m +
L∑
j=1

πmjGj + εm, m = 2, ...,K (3)

Here: δ01 and each π0m are scalar parameters; δ1 is a K − 1 vector of parameters, and ε1 and εm

are random error terms. Collecting π2, ..., πK into a single (K − 1) × L matrix, define Π−1 as the

matrix Π minus its first row. If this model is overidentified then the rank of Π−1 is > K − (L− 1).

In two sample summary data settings we do not directly observe exposures X1, ..., XK , only

estimates for the K × L SNP-exposure associations that define Π̂. However we can use these

association estimates to define an analogous formula to (2)

π̂1j = δ1Π−1j + v1

Where Π−1j is the jth column of Π. The Q statistic for exposure 1 based on the summary data

estimates can be written as;

Qx1 =
L∑
j=1

(
1

σ2x1j

)(
π̂1j − δ̃1Π̂−1j

)2
(4)

where the variance term σ2xkj is given by;

σ2xk,j = δ̃∗ΣV,j(δ̃
∗)′
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δ̃∗ is the K by 1 vector (δ̃1 . . . δ̃k−1 − 1 δ̂k+1 . . . δ̂K), and δ̃k is an efficient estimator for δk,

for example estimated through an inverse variance weighted least squares regression of π̂1 on Π̂−1.

The matrix ΣV,j defines the covariance of the estimated effects of snp j on each of the exposures:

ΣV,j =



σ21,j σ12,j · · · σ1K,j

σ12,j σ22,j · · · σ2K,j
...

...
. . .

...

σ1K,j σ2K,j · · · σ2K,j


(5)

If each π̂kj is obtained separately via univariable regressions with an intercept, then the error terms

are obtained from the expressions:

σ2k,j =

(
GTj Gj

)−1
n

n∑
i=1

v̂2ki, and σkm,j =

(
GTj Gj

)−1
n

n∑
i=1

v̂kiv̂mi, (6)

Under the null hypothesis that the instruments do not contain enough information to predict both

exposure variables, Qx1 will be asymptotically χ2
L−1 distributed where L is the number of SNPs in

the estimation. Rejecting the null hypothesis indicates that the SNPs can predict X1 conditional on

X2. Dividing the Q-statistic described above by the number of instruments, adjusted for the number

of exposures, in the model gives a test statistic that is equivalent to the one sample conditional F

statistic FSW .

FTS,k =
Qxk

L− (K − 1)

∼
χ2
(L−(K−1))

L− (K − 1)
(7)

In Supplementary Section S.1 we show that under the assumption that the instruments are

uncorrelated the two sample conditional F-statistic FTS in (7) is equivalent to the one sample con-

ditional F-statistic FSW . Fig.2 below gives the distribution of the individual conditional F-statistic

and the two-sample conditional F-statistic FTS for models with 25 and 100 SNPs included as in-

struments. The simulations were generated from a model with two exposures, both of which are

strongly individually predicted but jointly weakly predicted by the set of SNPs. That is they had

large individual F statistics but small FTS statistics of 10. The total bias in the two MVMR estim-
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ates is therefore approximately 10% of the bias in the observational association. Results are given

for one exposure only. This figure supports the formal equivalence result given in Supplementary

section S.1.

Figure 2: Density of FSW and FTS

6 8 10 12 14

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

25 SNPs

Value of F−statistic

D
en

si
ty

F−TS

F−SW

(a) 25 SNPs

8 9 10 11 12
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

100 SNPs

Value of F−statistic

D
en

si
ty

F−TS

F−SW

(b) 100 SNPs

Critical values

Comparing this statistic to standard critical values from the F-distribution provides a test for a

lack of identification. However, even if the genetic instruments explain some of the variation in

the exposure they could still be ‘weak’. In this case the estimates obtained from the MVMR

estimation could still be considerably biased. The one sample conditional F-statistic (FSW ) has

the same distribution as the Stock-Yogo weak instrument test6. Therefore we can apply its weak

instrument critical values to identify weak instrument bias for univariable and multivariable two-

sample MR5,6,7. The weak instrument critical values derived by Stock and Yogo (2005) for the

bias of the 2SLS estimator relative to the OLS estimator have a non-central χ2 distribution, with

L degrees of freedom and a non-centrality parameter that is a function of L and K, divided by K.

These critical values are derived under the definition that the instruments are weak when the bias

of the IV estimator relative to the OLS estimator is at least 10%. The measure of relative bias

used is the squared bias of the IV estimator (βIV ) relative to the squared bias of the OLS estimator
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(βOLS). This is given by the equation;

B2 =
(Eβ̂IV − β)′ΣX(Eβ̂IV − β)

(Eβ̂OLS − β)′ΣX(Eβ̂OLS − β)

Where ΣX = plim 1
nX
′X and X here represents the n×K matrix of all of the exposures included in

the estimation. Calculating the bias in this way standardises the exposures X so they are orthogonal

and have unit standard deviation. However it mean that the bias of the estimated effect of any

particular exposure may differ from 10%. If FTS is larger than the relevant Stock-Yogo critical value

we can reject the null hypothesis that the exposure is only weakly predicted by the instruments.

These critical values have only been derived for models including up to 30 instruments, therefore

in Table 1 we provide critical values for a larger range of instruments to test for a 5%, 10% or 20%

relative bias. These critical values are often approximated to a rule of thumb of F > 10 to test a

null hypothesis that the bias is at least 10% of the bias of the OLS estimator. The critical values

given above also show that the rule of thumb of 10 is slightly smaller than the true critical value

for this test and would lead to the null hypothesis being rejected more frequently. The two sample

FTS statistic tests the bias of the model as a whole, this means that the sign of the bias of an

individual causal parameter may differ from that of the model’s bias, which is averaged across all

of its constituent parameters.

Table 1: Critical values for
conditional weak instrument
tests.

Relative bias
kZ 5% 10% 20%

25 21.37 11.44 6.19
50 21.26 11.14 5.86
100 21.02 10.84 5.64
200 20.79 10.61 5.46
300 20.62 10.52 5.38
400 20.56 10.45 5.32
500 20.50 10.40 5.29
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3 Weak Instrument Robust Two-sample MVMR

Estimation in the presence of weak instruments

In the presence of weak instruments, standard inverse variance weighted estimation of the MVMR

mode, which we refer to as MVMR-IVW, is biased. The reasons for this will be explained in

more detail below. The LIML estimator has previously been proposed as an alternative estimator

for individual-level MR as it is less biased when there are many weak instruments15. In the

two-sample summary data setting, Bowden and colleagues16 and Zhao and colleagues17 show that

weak instruments can be effectively mitigated through minimisation of an appropriate heterogeneity

statistic using weights that account for the variance of the SNP-exposure associations is analagous

to one-sample LIML estimation. It gives results that are substantially less biased than conventional

regression based IVW estimates in the presence of a non-zero causal effect. The weak instrument

robust estimation proposed by Bowden and colleagues can be extended to the MVMR setting as a

minimisation of;

QA =
L∑
j=1

(
1

σ2A,j

)(
Γ̂j − β′π̂j

)2
(8)

over β, Where β is a vector of causal parameters (to be estimated), Γ̂j is the estimated effect of

SNP j on the outcome, π̂j is a vector of effects of SNP j on each exposure included in the estimation

(i.e. a column of the matrix Π) and;

σ2A,j = σ2y,j + β′Σjβ. (9)

Here, σ2y,j is the variance of the estimated effect of the SNPs on the outcome, and ΣV,j is the

variance-covariance matrix defined in equation (5). This is equivalent to minimisation of the QA

statistic to test for heterogeneity described in Sanderson et al 20194 extended to a model with

more than two exposures. We label estimates for β obtained in this manner as β̂Q. The standard

MVMR-IVW estimate is vunerable to weak instrument bias because instead of minimising QA in

(8) using the full weights defined in (9) it incorrectly assumes that σ2Aj
= σ2yj . This ignores the

component of variation from β′Σjβ and is only valid if either all elements of β are zero or Σj is

negligable by comparison to σ2yj .
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Testing for pleiotropy in the presence of weak instruments

Horizontal pleiotropy - where genetic variants influence the outcome through multiple phenotypes

can lead to a violation of the IV assumptions if they are not included as exposures in the MVMR

estimation. Under the assumption that not all the SNPs included in the estimation have a pleio-

tropic effect on the outcome through the same pathway, this will lead to greater variation in the

estimated causal effect of the exposures on the outcome than would be expected by chance. This

excess heterogeneity can be reliably tested for using the minimised QA statistic. More formally

if all SNPs used in the MVMR analysis are valid instruments, in the sense that they identify a

common set of causal parameters β, we would expect the QA statistic in (6) evaluated at β = β̂Q

to follow a Chi-squared distribution with L-K degrees of freedom. Crucially, the test is exact in the

sense that it will achieve its nominal type I error rate, even in the presence of weak instruments.18.

The standard Q-statistic used to generate the MVMR IV estimate by setting σ2A,j = σ2y,j , referred

to here as QIV W , will generally have an inflated type 1 error rate (i.e. will detect pleiotropy too

often when none is present) unless all β′Σjβ terms are negligible.

Estimation in the presence pleiotropy and weak instruments

Estimation of β through minimisation of (8) will give estimates of the direct effect of each exposure

on the outcome that are robust to weak instruments. However, these estimates will still be biased

in the presence of pleiotropy. In order to account for heterogeneity due to pleiotropy, we extend

the estimation of β by adding a pleiotropy variance parameter τ2 to the multivariable Q estimation

and finding the joint value of (β, τ2) which minimises;

L∑
j=1

(
1

σ2A,j

)(
Γ̂j − β′π̂j

)2
− (L−K) = 0

σ2A,j = σ2y,j + β′Σjβ + τ2

subject to;

∂
∑L

j=1

(
1

σ2
A,j

)(
Γ̂j − β′π̂j

)2
∂β

= 0

We refer to the causal estimates derived in this way as β̂Q,het This is a extension of the method

described in16 for univariable MR to the MVMR setting. Although it will account for balanced
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pleiotropy, where there are equal positive and negative pleiotropic effects of the SNPs on the

outcome, this method of estimation will not adjust for directional pleiotropy where the pleiotropic

effects of the SNPs on the outcome all, or mostly, act in one direction to either increase or decrease

the outcome. However, it is possible to look at the individual contribution of each SNP to QA

to identify the largest outliers. If a small number of SNPs are observed to have a large effect on

QA they can potentially be removed as a sensitivity analysis and the MVMR model re-estimated

without them.

Obtaining confidence intervals for estimated effects

Estimation of β and τ2 through minimisation of QA, does not provide readily available and reliable

standard errors. We therefore suggest that standard errors are obtained, and confidence intervals

calculated, through a Jackknife procedure.

We propose the use of Jackknife rather than a bootstrap as with a moderate number of SNPs

the repeated sampling in a bootstrap can lead to very weak instruments in any particular iteration

even when the model has relatively strong instruments as a whole. A jackknife procedure estimates

the model leaving out each SNP in turn and then calculates the standard deviation of the effect

estimate from these results. As each iteration includes all but one of the SNPs and includes each

SNP only once this is unlikely to be affected by weak instruments due to the exclusion of some

SNPs.

4 Estimation of σij

So far we have assumed that the pairwise covariance between a SNPs estimated association with

any two exposures is known for all exposures and all SNPs. However, this data is not generally

reported by GWAS summary statistics. Similarly it would not be feasible for these studies to report

this data due to the large number of potential covariances that could be required for all potential

future MVMR analyses. Results from our simulations (given in section 5) show that estimation

without these covariances (i.e. imposing the assumption σi,j = 0, i 6= j) can have large effects on

the results obtained, altering the interpretation of the results. Excluding these covariances will give

the correct estimation only under the global null (β = 0).

Therefore, in this section we suggest three different solutions for dealing with the lack of co-
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variances in the GWAS summary results in order to estimate σkm,j : the covariance between π̂k,j

and π̂m,j with respect to exposure, k, exposure, m (k 6= m) and SNP j.

Estimate σkm,j from the individual level data If some or all of the individual level data that

was used in the GWAS to estimate the SNP - exposure associations is available then the covariances

for the effect of each SNP on each exposure can be calculated from equation 6.

Estimate the phenotypic correlation between the exposures from individual level data

The covariance for each SNP can then be approximated as;

σkm,j = ρkmσk,jσm,j

where ρkm is the correlation between Xk and Xm (or phenotypic correlation). As each SNP explains

only a small proportion of the variation in each exposure, the covariance between the exposures

provide a very good approximation for the covariance between the error terms in the SNP exposure

associations. Although ideally this information would be calculated from the data used for the

GWAS study, ρkm could also be estimated from only part of the data used in the GWAS or from

an alternative dataset which is thought to have a similar structure.

Estimate the effect of the SNPs on each exposure from separate samples Estimating

the effect of the SNPs on each exposure in this manner means that the covariances will be zero

and so excluding this information will not affect the statistics calculated. For an MVMR analysis

involving K exposures, this would require K + 1 separate samples and so is likely to only be

practicable in a limited number of cases.

In any given scenario some of these solutions may be impossible (due to a lack of data) and

of the solutions that are possible, one may be the most reasonable. We suggest that estimation of

ρkm from phenotypic data, from which the appropriate covariances can then be calculated, is likely

to be the most feasible and appropriate approach in many cases.
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5 Simulation Results

To illustrate the methods presented so far give here results from simulating and fitting MVMR

models with 200 SNPs and either 2 or 3 exposures.

MVMR model with two exposures

Firstly, we simulated a MVMR model with 2 exposures and 200 SNPs. The SNP-exposure associ-

ations where constructed in two ways; firstly so that each exposure was individually and condition-

ally weakly predicted by the set of SNPs (i.e. weak instruments) and secondly so that the exposures

were strongly individually predicted, but weakly conditionally predicted by the set of SNPs (con-

ditionally weak instruments). Conditionally weak instruments were generated by increasing the

total strength of the instruments but introducing correlation between the effect of each SNP on

each of the exposures. This reflects a scenario where examination of standard F-statistics for each

exposure would not identify weak instruments. The exposures were simulated to both have a direct

effect on the outcome and balanced pleiotropy was introduced to the model through a direct effect

of the SNPs on the outcome. Pleiotropic effects were generated from a normal distribution with

zero mean. A confounder of both exposures and the outcome was also included. The covariance

parameter σi,j , i 6= j was estimated from calculation of the phenotypic correlation between X1 and

X2 as described in section 4. The set up of this model is illustrated in Fig. 3 and results from the

simulation are given in Table 2. Results for the same model without the pleiotropic effect of the

SNPs on the outcome are given in Supplementary Table S.1.

Results from this simulation show that the two-sample conditional F statistic FTS reliably es-

timates the strength of the instruments and is equivalent to the conditional F statistic calculated

from the individual level data FSW when the correlation between the exposures is used to estimate

the covariance between the effect of each SNP on each exposure. These results also show that

although β̂Q does not reliably estimate the effect of the exposure on the outcome in the presence

of balanced of pleiotropy, β̂Q,het which allows for this additional heterogeneity does. This decrease

in bias in β̂Q,het compared to β̂MVMR−IV W when the instruments are weak comes at the cost of

increased standard errors, reflecting the (true) lower level of information in the model. Supplement-

ary Table S.1 shows that allowing for heterogeneity when it is not present does not increase the

standard error of the β̂Q,het estimates relative to the standard error of the β̂Q estimate. Table 2 also
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gives FTS and βQ,het estimated without accounting for σkm, labelled FTS,0 and β̂Q,het,0 respectively.

This imposes the assumption that σkm = 0 k 6= m but not the assumption that σ2k = 0 and so

is a point between standard MVMR-IVW estimation and β̂Q,het. These results also show that in

the presence of conditionally weak instruments, when there is correlation between the effect of the

SNPs on each exposure, if these correlations are not taken into account FTS,0 does not reliably test

the strength of the instruments and β̂Q,het,0 produces biased estimates of the effect of each exposure

on the outcome.

Figure 3: Model simulated in Table 2

 

Three exposure model

Next we simulated summary data for three exposures and 200 SNPs. Each of the exposures was

simulated to have a direct effect on the outcome. The effect of the SNPs on the first and third

exposures were correlated, so that the third exposure was only weakly predicted by the SNPs

conditional on the first exposure (and therefore the first exposure is weakly predicted conditional
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Table 2: Simulation results for models with heterogen-
eity: 2 exposures, 200 SNPs

Weak instruments Conditionally
weak instruments

x1 x2 x1 x2
Individual level estimation

β̂OLS 1.09 -0.049 0.78 -0.48
(0.033) (0.033) (0.029) (0.026)

β̂IV 0.585 -0.283 0.548 -0.333
(0.533) (0.533) (0.311) (0.226)

F 8.80 8.80 1602.81 3107.5
(0.61) (0.62) (107.67) (208.06)

FSW 3.40 3.40 9.75 9.78
(0.360) (0.360) (0.94) (0.95)

Two-sample estimation with covariances

β̂IV W 0.352 -0.128 0.469 -0.276
(0.541) (0.541) (0.316) (0.228)

β̂Q −7.7x103 6.7x103 −6.6x105 4.7x105

(1.2x105) (1.0x105) (2.3x106) (1.6x106)

β̂Q,het 0.487 -0.246 0.519 -0.313
(0.777) (0.778) (0.350) (0.253)

FTS 3.35 3.35 9.13 9.15
(0.348) (0.347) (0.814) (0.819)

Two-sample estimation without covariances

β̂IV W 0.352 -0.128 0.469 -0.276
(0.541) (0.541) (0.316) (0.228)

β̂Q −6.8x103 6.0x103 −6.0x105 4.3x105

(1.1x105) (9.5x104) (6.5x105) (4.8x105)

β̂Q,het 0.499 -0.260 −4.5x105 3.2x105

(0.802) (0.803) (1.5x106) (1.1x106)
FTS 3.17 3.17 0.45 0.45

(0.337) (0.336) (0.054) (0.054)

β1 = 0.5, β2 = −0.3
4,000 repetitions, 20,000 observations per repetition
Covariances estimated from the phenotypic correlation
between each exposure.
Weak instruments shows a scenario where the exposures are
individually weakly predicted by the SNPs. Conditionally
weak instruments gives a scenario where the exposures are
strongly predicted by the SNPs individually but are each
weakly predicted by the SNPs conditional on the other ex-
posure.

on the third exposure). This set up means that when only the first two exposures are included

in the estimation there is directional pleiotropy present, however when all three exposures are

15

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021980doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.02.021980
http://creativecommons.org/licenses/by/4.0/


included there is potential weak instrument bias. The model under which the data was generated

is illustrated in Fig. 4 and results are given in Table 3.

We give results from estimation of the model firstly including only two exposures, x1 and x2,

and including all three exposures. These results show that when only two exposures are included

in the model all methods of estimating β1 and β2 are biased by the directional pleiotropy present

in the model. When all three exposures are included in the model the MVMR-IVW estimates are

biased due to the presence of weak instruments. However, estimation of β̂Q through minimisation

of QA gives unbiased estimates of the effect of each exposure.

Figure 4: Model simulated in Table 3

 

Heterogeneity Testing

Table 4 gives the rejection rates when using QIV W and QA to test for pleiotropy for the model

considered in Figure 2. In addition, we show rejections rates using a third heterogeneiyt statistic

that attemps to improve Qσ2
y

by extending the weights so they take the form σ2y + β′Σjβ. We
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Table 3: Simulation results for a model with three exposures.

Two exposures Three exposures
included in estimation included in estimation
x1 x2 x1 x2 x3

Individual level estimation

β̂OLS 0.837 -0.065 0.667 -0.176 1.418
(0.020) (0.019) (0.020) (0.018) (0.012)

β̂IV 0.626 -0.244 0.466 -0.314 0.912
(0.018) (0.018) (0.017) (0.014) (0.064)

F 236.2 235.13 236.22 235.13 14.50
(15.43) (13.67) (15.43) (13.67) (0.89)

FSW 78.49 78.37 6.62 19.81 3.17
(7.10) (6.98) (1.13) (5.38) (0.29)

Two-sample estimation with covariances

β̂IV W 0.611 -0.228 0.523 -0.277 0.502
(0.021) (0.021) (0.027) (0.021) (0.101)

β̂Q 0.626 -0.246 0.500 -0.301 0.703
(0.022) (0.021) (0.034) (0.024) (0.149)

β̂Q,het 0.624 -0.246 0.499 -0.301 0.705
(0.022) (0.021) (0.035) (0.024) (0.154)

FTS 45.01 44.97 6.58 17.94 3.23
(2.39) (2.35) (1.09) (4.32) (0.29)

β1 = 0.5, β2 = −0.3, β3 = 0.7
4,000 repetitions, 20,000 observations per repetition
Covariances estimated from the phenotypic correlation between each
exposure.

call this heterogeneity statistic QIV W,up. These results show that when there is no heterogeneity

the null hypothesis is over rejected by both QIV W and QIV W,up. Estimation of QA accounting

using weak instrument robust estimates of β̂ and accounting for the variation in the SNP-exposure

association controls the type 1 error and when the null hypothesis is true, i.e. when there is no

heterogeneity this test statistic rejects approximately 5% of the time.

6 Application

In this section we illustrate the use of the methods described above through an application to the

estimation of the effect of multiple metabolites to age-related macular degeneration (AMD). AMD

is disease that causes loss of central vision and is a leading cause of blindness19. Elevated lipid

serum levels have previously been associated with increased risk of AMD20. We use data from

a Genome-wide association study (GWAS) of 118 metabolites by Kettunen et al 201614 as our
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Table 4: Estimation of QA.

Weak instruments Conditionally
weak instruments

τ2 = 0 τ2 = 0.5 τ2 = 0 τ2 = 0.5
Estimate Rej. Rate Estimate Rej. Rate Estimate Rej. Rate Estimate Rej. Rate

QIV W 228.37 41.9% 13366.76 100% 249.71 75.4% 13032.82 100%
(23.04) (678.27) (24.85) (770.59)

QIV W,up 206.20 12.9% 11645.15 100% 201.36 7.6% 11593.22 100%
(21.39) (1699.61) (20.53) (1338.27)

QA 197.16 4.5% 576.93 100% 197.74 5.2% 1788.42 100%
(19.83) (53.92) (19.85) (224.66)

4,000 repetitions, 20,000 observations per repetition
Covariances estimated from the phenotypic correlation between each exposure.

exposure and from a GWAS of AMD as our outcome21. Previous studies have implicated HDL as

being causal for AMD22,23,24. Our analysis shows that other lipid fractions do not have a causal

effect on AMD.

The GWAS data included 118 potential metabolite exposures. For the purposes of illustration

we restricted the analysis to 14 metabolites moderately well predicted by a large number of SNPs.

From the 150 SNPs included in the data we selected a set of 78 which were associated with at

least one of our exposures with an F statistic greater than 5. Table 5 gives MVMR-IVW estimates

of all of these metabolites against AMD. As well as the MVMR-IVW estimation results, Table 5

also includes; the mean F-statistic for the SNPs associated with each metabolite (Findividual), the

mean F-statistic across all of the SNPs included in the analysis for each metabolite (Fall) and the

conditional F-statistic for each metabolite (FTS). The correlation between the metabolites was not

available from the GWAS data used here. We therefore calculated these using external data on

the same metabolites from the Avon Longitudinal Study of Mothers and Children (ALSPAC)25,26.

A description of the ALSPAC study is given in the supplementary material. The F-statistics and

conditional F-statistics presented show that although each metabolite is strongly predicted by the

SNPs associated with it, and most have a Fall > 10, the conditional F-statistics for each exposure

are very small and therefore the effect estimates are subject to weak instrument bias.

This set of metabolites can be divided into four groups, IDL, LDL, small VLDL and very small

VLDL. In Table 6 we present the results for the calculation of the F-statistics Fall and FTS for

each of these groups. They show that, with the exception of IDL.PL and small VLDL, the SNPs
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Table 5: MVMR estimates of a range of metabolites on AMD

Estimate Std. Error P-value Findividual Fall FTS
ApoB 1.671 0.693 0.019 16.03 10.82 0.385

IDL.PL -4.266 0.985 ¡0.001 19.57 11.84 0.009
L.LDL.L -11.200 8.688 0.202 18.50 11.15 0.001
L.LDL.P 7.420 11.301 0.518 18.76 11.34 0.002

M.LDL.P 2.372 2.418 0.330 17.44 10.56 0.009
S.VLDL.PL 1.133 1.530 0.461 13.74 8.62 0.027
XS.VLDL.L -6.721 1.981 0.001 17.30 10.67 0.037

IDL.P 1.074 6.087 0.860 19.75 11.76 0.035
IDL.TG 0.308 1.395 0.826 18.51 11.04 0.003

S.VLDL.C 1.398 1.616 0.390 14.03 8.88 0.005
S.VLDL.FC -1.857 1.439 0.201 14.12 8.75 0.028
XS.VLDL.P 5.777 1.871 0.003 16.68 10.19 0.145

XS.VLDL.TG -2.141 1.832 0.247 14.94 9.14 0.041
IDL.L 4.459 4.169 0.289 20.13 11.72 0.025

are too conditionally weak to predict all exposures each of these groups. Further investigation (not

shown) indicated that the SNPs are too conditionally weak to predict any pair of SNPs from any

group other than small VLDL or IDL.PL.

Table 6: F and conditional F statistics for groups of traits

IDL LDL Small VLDL Very Small VLDL

F FTS F FTS F FTS
ApoB

IDL.PL 16.05 8.744
L.LDL.L 17.58 0.019
L.LDL.P 17.83 0.023

M.LDL.P 16.55 0.063
S.VLDL.PL 12.38 11.65
XS.VLDL.L 14.64 0.0174

IDL.P 16.12 0.010
IDL.TG 14.97 0.012

S.VLDL.C 12.42 4.75
S.VLDL.FC 12.51 5.39
XS.VLDL.P 12.50 0.196

XS.VLDL.TG 13.99 0.176
IDL.L 16.08 0.009

SNPs 54 46 50 53

We therefore considered including one metabolite from each group as our exposures. For this
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set of exposures we calculated the conditional F-statistics, FTS and the MVMR-IVW estimates.

These results are given in Table 7. Although the exposures here are jointly moderately strongly

predicted by the set of SNPs the conditional F-statistics for each exposures are still between 4.2

and 8.3 indicating that there may be some weak instrument bias. In Table 8 we re-estimate our

MVMR model using the weak instrument robust methodology presented earlier. These results

show that the initial MVMR including all of the metabolites could give misleading results due to

weak instrument bias. QA for this model is 118, the critical value at a 5% level of significance

for a chi-squared distribution with 64 degrees of freedom is 84.7. It therefore indicates potential

pleiotropy and we consider the β̂Q,het to be the most appropriate estimates in this case. The results

from this analysis suggest that none of the metabolites considered are causally associated with

AMD but that the standard MVMR IVW estimates for the final model were biased due to both

weak instruments and pleiotropic effects of the SNPs on the outcome. This null result is consistent

with other results using an alternative method to analyse the same data which found that HDL

(not included in this analysis) was the only lipid fraction type that was causally associated with

AMD24.

Table 7: MVMR-IVW estimates of a range of metabolites on
AMD including only strongly predicted traits

Estimate Std. Error P-value Fall FTS
XS.VLDL.P -0.778 0.958 0.420 11.26 4.23
S.VLDL.PL 0.051 0.347 0.385 9.48 5.68

L.LDL.L 0.356 0.231 0.154 12.19 8.22
IDL.TG 0.067 0.761 0.969 12.21 6.15

69 SNPs

Table 8: MVMR-IVW estimates of a range of metabolites on AMD including only strongly predicted traits

Updated MVMR-IVW β̂Q β̂Q,het
Est. Std. Error p-value Est. Std. Error p-value Est. Std. Error p-value

XS.VLDL.P -0.267 1.051 0.799 -5.008 3.774 0.0.185 -2.071 1.447 0.152
S.VLDL.PL -0.094 0.346 0.786 0.957 0.940 0.309 0.300 0.528 0.570

L.LDL.L 0.328 0.225 0.145 1.534 0.645 0.017 0.728 0.613 0.235
IDL.TG -0.311 0.812 0.702 2.490 2.614 0.341 0.803 1.437 0.576

69 SNPs

20

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.02.021980doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.02.021980
http://creativecommons.org/licenses/by/4.0/


7 Software

We have written an R package MVMR which facilitates the implementation of MVMR estima-

tion and corresponding sensitivity analyses. The package requires summary data on instrument-

exposure and instrument-outcome associations, as well as information on the pairwise covariances

of the error in the estimated association between each SNP and each pair of exposures. As these

covariances are often not available the software can be implemented in three ways; estimating the

covariances from individual level data, approximating the covariances from the phenotypic correl-

ation between the exposures or assuming that these covariances are zero.

Workflow

Fitting and interpreting MVMR using the methods described in this paper, including tests for

instrument strength and horizontal pleiotropy, is performed using a five-step procedure. Initially,

summary data should be provided, including a covariance matrix for the effect of the genetic variants

on each exposure. As such covariances are not conventionally reported in publicly available data,

two functions snpcov_mvmr() and phenocov_mvmr() can be used to generate the covariance matrix.

The function snpcov_mvmr() estimates the covariance terms directly from individual level data,

whilst phenocov_mvmr() uses the phenotypic correlation and summary data (input by the user) to

generate estimates of the covariances.

As a second stage, the summary data is reformatted using the function format_mvmr() into

a data frame which is subsequently used as the input for estimation and sensitivity analyses.

We then provide the functions strength_mvmr() to evaluate instrument strength using the two

sample conditional F-statistic described in Section 2. Tests for horizontal pleiotropy are per-

formed using pleiotropy_mvmr(), performing both standard and Q-minimisation approaches

simultaneously (see section 3 for more details). Finally, causal effects can be estimated us-

ing two different approaches; fitting an inverse variance weighted (IVW) MVMR model using

ivw_mvmr()and minimising the Q-statistic allowing for heterogeneity using qhet_mvmr(). Each

step in the MVMR workflow is illustrated in Figure 5. The MVMR package is available to download

at https://github.com/WSpiller/MVMR/. The package also includes a detailed tutorial demon-

strating functionality of the package in an analyses of the effects of lipid fractions upon systolic

blood pressure using data from the Global Lipids Genetics Consortium and UK Biobank.
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Figure 5: Workflow for MVMR R package
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8 Discussion

In this paper we develop a general statistical framework for conducting two sample MVMR ana-

lyses for an arbitrary number of exposures in the presence of weak instrument bias and pleiotropy.

The methods presented here give ways to test for weak instruments in two-sample MVMR and

to robustly test for heterogeneity due to pleiotropy in the presence of moderately weak instru-

ments. We additionally give a method to estimate causal effects in the presence of moderately

weak instruments which is robust to balanced pleiotropy.

Weak instruments are a potential issue in many applications where estimating direct effects of

multiple exposures using MVMR is preferred over univariable MR analyses , which are thought to be

likely to be affected by directional pleiotropy27,28,29,30,31. MVMR approaches are also used to gague

the extent to which one exposure mediates the effect of another on the outcome32,33.Any application

of MVMR will be biased by conditionally weak instruments and, as illustrated by our application,

this can occur even when the genetic variants strongly predict each exposure individually. Therefore,

the methods presented here are important as they provide a way to identify and correct for weak

instruments in two-sample MVMR estimation.

The FTS statistic described here is calculated using estimates of δ̂ calculated from an IVW

estimation of the effect of π̂−k on π̂k. An alternative method of estimation, equivalent to that

described for estimation of β, is to directly minimise its constituent Qxk to obtain LIML estimates

for δ 16,17. Whilst this procedure enacted on the QA statistic furnishes attractive, weak instrument

robust causal estimates, initial simulation results (not reported here) showed limited benefit of

estimating δ in this way therefore we did not investigate potential implementation further.

There are a number of limitations to this work. The test statistic and weak instrument robust

estimation requires an estimate of the covariance between the error in the estimated effect of

each SNP on each exposure. Although this data is generally not available we propose a method

to estimate it, using the phenotypic correlation between the exposures, which can be used to

obtain a reasonable approximation if the relevant covariance when each SNP only explains a small

proportion of each exposure. We hope that our work will influence future GWAS consortia to

release this information as a matter of course, in order to enable the straightforward application of

MVMR methods going forward.

Another weakness of the test statistics provided here is the lack of standard errors for the point
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estimates of the direct effect of each exposure. We propose using a jackknife to estimate these

standard errors. This does however make the estimation of these statistic more computationally

intensive than would the case if the standard errors could be calculated analytically.

The weak instrument robust point estimates are robust to weak instruments but cannot produce

reliable estimates when instruments become very weak or if only a small number of SNPs are

available. Although we show this method works with moderately weak instruments it is not clear

exactly how weak is too weak, or indeed how few instruments are too few, to produce either reliable

point estimates or heterogeneity statistics. Gaining a more precise understanding of these questions

is a topic for further research.

Although we propose weak instrument robust estimation, if the weak instruments are limited to

only a small number of the exposures in the model an alternative approach may be to drop exposures

(one at a time) until the conditional F-statistics show that all of the exposures are strongly predicted

by the SNPs. This would however need to be considered carefully as if dropping an exposure has

the potential to introduce directional pleiotropy into the estimation biasing the resulting effect

estimates. The choice of approach to take would depend on the number of SNPs and exposures

in the estimation and the relationship between the exposures as well as how weak the SNPs are

as instruments. As illustrated by our application these approaches could be combined, excluding

exposures until instrument strength is high enough to reasonably apply the weak instrument robust

methods. The choice approach needs to be considered on a case by case basis.

Additionally although our final estimation βQ,het is robust to balanced pleiotropy it will still

give biased estimates in the presence of unbalanced or directional pleiotropy. Multivariable MR

Egger13, has been proposed as a method for obtaining reliable MVMR estimates in the presence

of directional pleiotropy. Extending this approach to account for weak instrument bias is another

topic of further research.
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Box 1: Summary of statistics discussed in this paper.

Instrument strength statistics;

F - Measure of the strength of the instruments to predict one exposure. Applies to individual

or summary level data and to univariable or multivariable MR estimation.

Conditional F-statistic FSW - Measure of the strength of instruments to predict one exposure

conditional on the other exposures included in the estimation. Applies to multivariable MR

estimation with individual level data.

Conditional F-statistic FTS - Measure of the strength of instruments to predict one exposure

conditional on the other exposures included in the estimation. Applies to multivariable MR

estimation with summary data.

Qxj - A Q-statistic from which FTS is calculated.

Heterogeneity statistics;

QIV W - A heterogeneity test for MVMR that uses the IVW point estimates and does not

account for the uncertainty in the estimated SNP-exposure associations. This test over rejects

the null in the presence of weak instruments.

QIV W,up - A heterogeneity test for MVMR that uses the IVW point estimates but accounts

for the uncertainty in the estimated SNP-exposure associations. This test over rejects the null

in the presence of weak instruments, but to a lesser extent that QIV W .

QA - A heterogeneity test for MVMR that is robust to weak instruments, in the sense that it

has the appropriate type 1 error rate in the presence of weak instruments.

Estimation statistics;

β̂IV W - Estimates of the causal effect of each exposure on the outcome, estimated using stand-

ard inverse variance weighting.

β̂Q - Estimates of the causal effect of each exposure on the outcome, estimated through min-

imisation of QA. Robust to weak instruments.

β̂Q,het - Estimates of the causal effect of each exposure on the outcome, estimated through

minimisation of QA with an additional parameter to account for heterogeneity. Robust to

weak instruments and pleiotropy.
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Box 2: Recommended tests in Two-sample MVMR.

In all two-sample summary data MVMR estimation two statistics should be calculated;

1. Conditional F statistics, FTS , for each exposure.

These test the strength of the genetic variants to predict each exposure in the multivari-

able mode. FTS < 10 suggests potential weak instrument bias in the MVMR estimation.

2. A Q-statistic for heterogeneity, QA, for the model.

Rejection of QA using standard significant levels (e.g. p < 0.05) indicates potential

pleiotropy in the form of excessive heterogeneity in the MVMR model. However, this

test will often reject in the presence of weak instruments.

If weak instruments are detected, i.e. any of the FTS values are less than 10, IVW MVMR es-

timates are potentially biased. When large numbers of SNPs are available this can be corrected

through;

3. Estimating β̂Q,het for each exposure

This method gives estimates of the direct effect of each exposure on the outcome that

are robust to (moderately) weak instruments.

4. An updated QA,min which minimises the Q statistic over βQ.

This test provides a test for heterogeneity that has the correct size in the presence of

weak instruments. Rejection of QA,min using standard significant levels (e.g. p < 0.05)

indicates potential pleiotropy in the MVMR model even in the presence of moderately

weak instruments.

All of these tests and estimation statistics are provided in the MVMR R package.
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Code availability

The code used to conduct the simulations and applied analysis is available at ht-

tps://github.com/eleanorsanderson/MVMRweakinstruments. The MVMR package is available at

https://github.com/WSpiller/MVMR/.
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