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Summary 25 

Neuronal cell types are classically defined by their molecular properties, anatomy, and functions. 26 

While recent advances in single-cell genomics have led to high-resolution molecular 27 

characterization of cell type diversity in the brain, neuronal cell types are often studied out of the 28 

context of their anatomical properties. To better understand the relationship between molecular 29 

and anatomical features defining cortical neurons, we combined retrograde labeling with single-30 

nucleus DNA methylation sequencing to link epigenomic properties of cell types to neuronal 31 

projections. We examined 11,827 single neocortical neurons from 63 cortico-cortical (CC) and 32 

cortico-subcortical long-distance projections. Our results revealed unique epigenetic signatures of 33 

projection neurons that correspond to their laminar and regional location and projection patterns. 34 

Based on their epigenomes, intra-telencephalic (IT) cells projecting to different cortical targets 35 

could be further distinguished, and some layer 5 neurons projecting to extra-telencephalic targets 36 

(L5-ET) formed separate subclusters that aligned with their axonal projections. Such separation 37 

varied between cortical areas, suggesting area-specific differences in L5-ET subtypes, which were 38 

further validated by anatomical studies. Interestingly, a population of CC projection neurons 39 

clustered with L5-ET rather than IT neurons, suggesting a population of L5-ET cortical neurons 40 

projecting to both targets (L5-ET+CC). We verified the existence of these neurons by labeling the 41 

axon terminals of CC projection neurons and observed clear labeling in ET targets including 42 

thalamus, superior colliculus, and pons. These findings highlight the power of single-cell 43 

epigenomic approaches to connect the molecular properties of neurons with their anatomical and 44 

projection properties.   45 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2020. ; https://doi.org/10.1101/2020.04.01.019612doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019612
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Main Text 46 

The mammalian brain is a complex system consisting of multiple types of neurons with diverse 47 

morphology, physiology, connections, gene expression, and epigenetic modifications. Identifying 48 

brain cell types and how they interact is critical to understanding the neural mechanisms that 49 

underlie brain function. During the last decade, these efforts have been facilitated by the advent of 50 

molecular, genetic and viral tools for allowing genetic access and manipulation of specific cell 51 

types1,2. Available evidence suggests, however, that there are far more cell types than can presently 52 

be accessed genetically. Moreover, the correspondence between molecular cell types and neuronal 53 

populations defined by connectivity are largely unknown.  54 

 55 

  Single-cell technologies deconvolve mammalian brains into molecularly defined cell clusters 56 

corresponding to putative neuron types3. Among these technologies, single nucleus methylation 57 

sequencing (snmC-Seq) applied to neurons has the unique ability to allow identification of 58 

potential regulatory elements and a prediction of gene expression in the same cells. This is because 59 

methylation at non-CG (CH; H= A, T, C) dinucleotides (mCH) of the gene body is inversely 60 

correlated with RNA expression, and methylation at both CG dinucleotides (mCG) and CH 61 

dinucleotides can be used to identify gene regulatory elements associated with gene expression4–62 

6. Furthermore, CH methylation accumulates and CG methylation reconfigures during cortical 63 

synaptic development, suggesting possible links between epigenetics and connectivity7,8. 64 

 65 

  Previous single-cell analyses have revealed transcriptomic clusters and linked them to neuron 66 

types with different projection patterns in a few particular brain regions9–12. For the cerebral cortex, 67 

the most prominent molecular distinction related to projection targets is the separation of cortical 68 
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neurons into distinct and apparently non-overlapping IT and L5-ET (also called pyramidal tract, 69 

PT) groups. In some cases L5-ET cells have been further divided based on both gene expression 70 

and corresponding axon projections9. While the separation of L5-IT and ET neurons appears to be 71 

conserved across cortical areas13 and species14, a systematic analysis of the relationships between 72 

a larger set of projection targets and molecular identities across multiple cortical areas has not been 73 

conducted. To what extent cortical projection neuron types can be further distinguished or divided 74 

by incorporating anatomical information with molecular analyses, and whether these cell types 75 

and correspondences are conserved across cortical areas is unclear. Ultimately, the use of methods 76 

that can classify cell types and predict regulatory elements, such as snmC-seq, will be critical to 77 

understanding cell type and/or projection type specific regulatory mechanisms. 78 

 79 

  To address these questions we developed Epi-Retro-Seq, which applies snmC-Seq15 to neurons 80 

dissected from cortical source regions which were labeled based on their long distance projections 81 

to specific cortical and subcortical targets. We analyzed the methylomes of 11,827 single neurons 82 

from eight cortical areas projecting to ten target regions. This dataset enabled us to quantify the 83 

epigenetic differences between cortical projection neurons, to identify specific genes and 84 

regulatory elements in projection neurons, to study the relationships between cortical projection 85 

neurons and molecular cell types, and to identify a neuron type making projections to both cortical 86 

and ET targets. 87 

 88 
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Results 89 

Epi-Retro-Seq of 63 cortical projections  90 

To obtain a comprehensive view of the molecular diversity among cortical projection neurons we 91 

performed Epi-Retro-Seq, which combines retrograde tracing with epigenomic profiling. We 92 

characterized projection neurons from eight cortical areas (“source”) spanning the anterior-to-93 

posterior extent of the mouse cortex that project to ten cortical or subcortical regions (“target”) 94 

(Fig. 1a), covering overall 26 CC projections and 37 cortico-subcortical projections 95 

(Supplementary Table 1). In Epi-Retro-Seq, the retrograde viral tracer rAAV2-retro-Cre is injected 96 

in the target region in an INTACT mouse4, turning on Cre-dependent nuclear-GFP expression in 97 

neurons that project to the injected target, throughout the mouse brain. The brain is then sectioned 98 

into eighteen 600-micron coronal slices, and the source regions of interest are dissected from each 99 

slice (see Methods). Nuclei are sampled from at least 4 mice (2 male and 2 female) for each 100 

projection target (except AI→pons - 2 male mice only). Nuclei from each of the dissected source 101 

regions are prepared, from which GFP+/NeuN+ nuclei (the GFP-labeled projection neurons) are 102 

isolated as single nuclei using fluorescence activated nuclei sorting (FANS) and assayed using 103 

snmC-Seq215 to profile their genome-wide DNA methylation signatures. The ten injected target 104 

regions include four cortical areas [the primary motor cortex (MOp), primary somatosensory 105 

cortex (SSp), anterior cingulate area (ACA), and primary visual cortex (VISp)], and six major 106 

subcortical structures [the striatum (STR), thalamus (TH), superior colliculus (SC), ventral 107 

tegmental area and substantia nigra (VTA+SN), pons, and medulla (MY)]. Each of the eight source 108 

cortical regions [MOp, SSp, ACA, agranular insular cortex (AI), retrosplenial cortex (RSP), 109 

auditory cortex (AUDp+AUDd+AUDv), posterior parietal cortex (PTLp), and visual cortex 110 

(VISp+VISpm+VISl+VISli)] were hand dissected from one or two coronal slices following the 111 
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Allen Mouse Common Coordinate Framework (CCF), Reference Atlas, Version 3 (2015) 112 

(Extended Data Fig. 1).  113 

 114 

Methylation landscape of cortical projection neurons 115 

We assayed approximately 384 nuclei from each projection (except the MOp→SSp projection 116 

from which 768 nuclei were assayed). After removing the low-quality cells, potential doublets, 117 

and glial cells (possibly due to false NeuN positives in FANS), we obtained high-quality single 118 

methylomes for 11,827 cortical projection neurons (Extended Data Fig. 2). The level of CH 119 

methylation in each single nucleus was computed across the genome using 100 kb genomic bins 120 

and used to perform unsupervised clustering of the projection neurons. Overall, the cortical 121 

projection neuron clusters were annotated into 10 major cell types (Fig. 1b) based on the reduced 122 

levels of gene body mCH, a proxy for gene expression, of known marker genes (Extended Data 123 

Fig. 2f). It should be noted that 361 neurons (3.05%) fell into the inhibitory neuron cluster, likely 124 

representing false-positives possibly, due to either labeling of neurons by AAV that leaked into 125 

cortical areas above subcortical injection sites (mostly from areas above TH injections), or 126 

insufficient gating stringency during FANS, allowing inclusion of GFP-negative nuclei. This low 127 

error rate allows a rough estimate of the likely erroneous contributions from other cell types. 128 

Within each cell type cluster, excitatory neurons but not inhibitory neurons from different cortical 129 

regions were further separated from each other (Fig. 1c), demonstrating that such separations in 130 

excitatory neuron clusters were not due to technical effects but instead represented the distinct 131 

spatial DNA methylation patterns in cortical projection neurons. As can be seen from the t-SNE 132 

visualization (Fig. 1d), neurons projecting to different target regions were more similar within each 133 

cluster than neurons from different source regions, indicating that they shared a more similar DNA 134 
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methylation landscape. Neighbor enrichment scores were used to quantify the variations of DNA 135 

methylation that originated from different cell types, cortical spatial regions, and projection targets 136 

(see Methods). Neurons from the same cluster occupied highly similar regions in the dimension 137 

reduction space (neighbor enrichment score was near 1). Scores were also high for comparisons 138 

across neurons from the same source, followed by projections to the same target. Scores were near 139 

chance for biological replicates (Fig. 1h). 140 

 141 

  Next, we integrated our data with the single-nuclei methylation data that were dissected and 142 

sorted from some of the same cortical regions but without enrichment of specific projections (Liu 143 

et al., companion paper #9). We observed a close agreement of the major cell types (Fig. 1e) and 144 

source regions (Fig. 1f) between these two datasets. Given the increased number of cells, different 145 

source regions became better demarcated on t-SNE (Fig. 1f). Compared with unbiased snmC-seq2 146 

profiling, Epi-Retro-seq dataset also contains information about the neuronal projection targets 147 

revealed by retrograde tracing (Fig. 1g). This enabled enrichment of rare types of projection 148 

neurons and analysis of the methylation patterns of neurons projecting to different brain regions. 149 

 150 

  Although neurons projecting to different target regions were not completely separated on t-SNE, 151 

we observed an explicit enrichment of CC and cortico-striatal projection neurons in IT clusters 152 

(L2/3, L4, L5-IT, L6-IT, and Claustrum (CLA)), separated from neurons that project to the 153 

remaining structures outside the telencephalon which were categorized as L5-ET neurons (Fig. 1j, 154 

Extended Data Fig. 3) As expected, many cortico-thalamic projecting neurons were also found in 155 

the L6-CT cluster (Fig. 1j, Extended Data Fig. 3). These enrichment patterns are consistent with 156 
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our knowledge about laminar enrichment of the projection neurons, which reflects the high quality 157 

of our retrogradely labeled single-nuclei methylation dataset.  158 

 159 

  To further quantify methylation differences between neurons from different source regions or 160 

projecting to different target regions, we made comparisons across source pairs or target pairs. For 161 

each pair of interest, area under the curve of receiver operating characteristic (AUROC) was 162 

calculated to score the level of separation between the two groups of projection neurons. 163 

Specifically, a logistic regression model was trained using normalized gene body mCH as features 164 

to predict which group a cell belongs to. By training the model in one biological replicate and 165 

testing on the other, the performance was measured by AUROC. By comparing each pair of 166 

sources or targets, we found that most neurons dissected from different source regions could be 167 

separated with AUROC > 0.9 (Fig. 1i). Most of the neurons projecting to different target regions 168 

were also separable by mCH in this supervised setting (Fig. 1i), although they were closely mixed 169 

in the unsupervised embeddings (Fig. 1d). These findings indicate that nearly all of the different 170 

types of projection neurons that were profiled have differences in their epigenomes. 171 

 172 

Epigenetic diversity of IT neurons projecting to different cortical targets 173 

As described above, assessment of the entire Epi-Retro-Seq dataset revealed clear and expected 174 

differences in the neuron clusters occupied by neurons projecting to IT versus ET targets, and these 175 

differences were conserved across source areas. However, neurons projecting to different IT or ET 176 

targets did not uniquely separate into distinct clusters when analyzed at the level of the entire cell 177 

population. Nevertheless, we were able to detect projection-dependent quantitative differences in 178 
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the levels of DNA methylation. Further analyses of these quantitative differences, described below, 179 

allowed assessment of possible organizational principles that might exist in the relationships 180 

between DNA methylation, projections targets, and sources, including both areal and laminar 181 

sources. 182 

 183 

  In total, 42.6% of the cortical projection neurons profiled in our Epi-Retro-Seq data were 184 

identified as IT, and annotated according to their presumptive cortical layers (Fig. 1b). We next 185 

aimed to disentangle the contribution of the cortical area in which cell bodies were located versus 186 

their cortical projection targets, to the variation of their DNA methylation profiles. We focused on 187 

26 CC projections from 8 cortical areas to 4 different cortical targets. AUROC scores were used 188 

to evaluate epigenetic relationships between cortical neurons projecting to different cortical targets. 189 

All possible pairs of 4 cortical targets were assessed for each of the 8 sources to generate 29 190 

AUROC scores, organized according to projection target pairs (Fig. 2a, Extended Data Fig. 4a, c). 191 

Significant differences were observed between projection target pairs when assessed across source 192 

areas (p=6.8e-3, Kruskal-Wallis test), but not between cortical areas when assessed across target 193 

pairs (p=0.3, Kruskal-Wallis test). Among the six projection target pairs examined, neurons 194 

projecting to MOp versus ACA were overall most distinguishable (average AUROC = 0.902), 195 

followed by neurons projecting to ACA versus VISp (average AUROC = 0.887), while neurons 196 

that project to SSp versus ACA were the least separable (average AUROC = 0.693) (Fig. 2a). In 197 

addition, for each target pair, the performance of the predictive model varied among neurons from 198 

different source cortical regions (Fig. 2a, Extended Data Fig. 4a, c).  199 

 200 
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  Together, these analyses suggest that epigenetic differences between CC projection neurons 201 

depend on a combination of both the specific targets to which neurons project and the source region 202 

where the neurons reside. For example, we further evaluated the variability of mCH profiles among 203 

AUD IT neurons projecting to different targets and found that AUD→SSp neurons were better 204 

separated from AUD→VISp neurons (AUROC = 0.94; Fig.2b, e) than from AUD→ACA neurons 205 

(AUROC = 0.709; Fig. 2c, e). t-SNE plots color-coded according to these same projection 206 

comparisons (Fig. 2b, c) or according to annotated layers (Fig. 2d) allow visualization of the extent 207 

to which these neurons differ. In addition to the apparent greater separability of AUD→SSP versus 208 

AUD→VISp than AUD→SSP versus AUD→ACA neurons, it can be seen that the distinctions 209 

between these projections did not stem from different distributions across layers (Fig. 2d). This 210 

demonstrates that the level of epigenetic differences between AUD IT neurons varies depending 211 

on their projection targets. On the other hand, when comparing neurons from different sources 212 

projecting to the same target pair, we observed different levels of distinguishability in our models. 213 

For example, while MOp-projecting versus ACA-projecting neurons were more distinguishable 214 

(i.e. higher AUROC scores) than SSp-projecting versus ACA-projecting neurons, we observed 215 

variation of the AUROC scores across different source regions for both target pairs (Fig. 2f, g).  216 

 217 

  To further validate that the differences in separability across regions resulted from biological 218 

differences rather than limited sample sizes for some regions, we trained our predictive model 219 

between two targets using neurons from one source region and then tested the performance of the 220 

model on another source region. These analyses also allowed evaluation of whether the same 221 

epigenetic differences that distinguished target pairs for one source area might be conserved across 222 

source areas. As expected, the performances of the cross-source-region models in distinguishing 223 
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two projection targets were usually less than the same-source-region models (Fig. 2h, i, Extended 224 

Data Fig. 4b, d). Nevertheless, many target pairs that were distinguishable for the within-source 225 

models were also distinguishable with the cross-source models (Fig. 2h, i, Extended Data Fig. 4b, 226 

d), indicating conservation of target pair epigenetic differences across sources. Interestingly, the 227 

performance of models trained on any particular region varied in their ability to predict projections 228 

from other regions. For example, the model trained on data from AUD performed better in 229 

distinguishing VIS→MOp versus VIS→ACA neurons than the models trained on RSP, PTLp, or 230 

SSp (Fig. 2h). This suggests that AUD and VIS neurons are more similar to each other in the 231 

molecular markers that distinguish neurons projecting to MOp versus ACA than other cortical 232 

areas. These results indicate that cortical regions might form different groups with shared 233 

correlations between molecular markers and projection targets.  234 

 235 

  In addition, the level of distinguishability between two cortical targets appeared to be similar 236 

across layers (Fig. 2j, Extended Data Fig. 5a, b). By training and testing the predictive models in 237 

each layer separately, we observed higher distinguishability between ACA-projecting versus 238 

VISp-projecting neurons across all layers than between SSp-projecting versus ACA-projecting in 239 

all layers in almost all source regions (Fig. 2j, k). We further tested if cross-layer-trained models 240 

could distinguish the projection targets (see Methods), and observed that the performance was 241 

generally comparable to within-layer models (Extended Data Fig. 5c, d). These results suggest that 242 

there may be shared epigenetic signatures across layers that contribute to correlations with the 243 

projection targets.  244 

 245 
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  To better understand the biology underlying the epigenetic signatures that distinguish different 246 

cortical IT projection neurons, we identified differentially methylated genes at CH sites (CH-247 

DMGs) between different pairs of CC projection neurons in each source region using hierarchical 248 

linear models. In total, 1830 CH-DMGs were identified (Supplementary Table 3), among which 249 

1,623 (88.7%) were statistically significant in only one source region, and 207 (11.3%) were 250 

differentially methylated in more than one source region (some examples shown in Fig. 2l). That 251 

the vast majority of CH-DMGs were unique to one source region, suggests that different genes 252 

may participate in defining projections from different source regions. Gene ontology (GO) 253 

enrichment analysis revealed that CH-DMGs were enriched for genes that participate in 254 

intracellular transport, regulation of synapse structure, etc. (Fig. 2m), all relevant for influencing 255 

neuronal projections. For example, Bassoon (Bsn) is differentially methylated between MOp-256 

projecting and SSp-projecting neurons in ACA, AUD, and VIS (Fig. 2l). It encodes a presynaptic 257 

cytomatrix protein expressed primarily in neurons, and is essential in regulation of 258 

neurotransmitter release16. Scn2a1 encodes a voltage dependent sodium channel protein and is 259 

differentially methylated between SSp-projecting and VISp-projecting neurons in ACA, AI, AUD, 260 

and PTLp (Fig. 2l). This channel regulates neuronal excitability and variants are associated with 261 

autism and seizure disorders17. 262 

 263 

Epigenetically distinct subpopulations of L5-ET neurons  264 

In our Epi-Retro-Seq data, 5 out of the 10 profiled projection targets are ET. In particular, L5-ET 265 

neurons are the most abundant cell population in our datasets (4,176 (35.3%) single neurons), and 266 

are 6.3 fold enriched in Epi-Retro-Seq compared to the total number of neurons observed in 267 

unbiased snmC-seq2 profiling. This level of L5-ET neuron enrichment provides us with a unique 268 
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opportunity to more closely investigate subpopulations of L5-ET neurons. In unsupervised 269 

clustering using genome-wide mCH levels measured in 100 kb genomic bins, L5-ET neurons 270 

further segregated into 15 subclusters upon uniform manifold approximation and projection 271 

(UMAP) embedding (Fig. 3a). Much of the separation between subclusters was driven by the 272 

source location of the neurons, as neurons from different source regions were clearly separated on 273 

the UMAP (Fig. 3b) and each of the subclusters consists of neurons mostly from one or two source 274 

regions (Extended Data Fig. 6a). In particular, RSP and AI each formed their own specific 275 

subcluster (cluster 13 and 3, respectively; Extended Data Fig. 6a, b). The similarities and 276 

differences between L5-ET neurons from different source regions were quantified using 277 

hierarchical clustering (Fig. 3c). The genome-wide mCH similarity is highest between MOp and 278 

SSp, followed by between VIS and AUD, and between PTLp and ACA. AI and RSP were more 279 

distinct; in particular, RSP was well separated from the remaining cortical regions. These 280 

similarities between source regions were not well explained by their spatial proximity anterior-281 

posteriorly or medial-laterally, but better correlated with the anatomical and functional 282 

connectivity between these regions. For example, MOp and SSp are components of the somatic 283 

sensorimotor subnetwork, while AUD, VIS, ACA, and PTLp are components of the medial 284 

subnetwork that channels information between sensory areas (that include VISp and AUD) and 285 

higher order association areas (that include PTLp and ACA)18.  286 

 287 

  To further explore the molecular identity of these L5-ET subclusters, we used gene body mCH 288 

levels to identify cluster-specific genes. In total 2,675 CH-DMGs were identified in pairwise 289 

comparisons between subclusters (Fig. 3d, Supplementary Table 4; examples in Extended Data 290 

Fig. 6c), indicating that these genes have cluster-specific expression patterns. Gene ontology (GO) 291 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2020. ; https://doi.org/10.1101/2020.04.01.019612doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019612
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

enrichment analysis revealed that these L5-ET subcluster CH-DMGs were enriched in genes 292 

involved in cell communication, neurogenesis, cell morphogenesis, and axon guidance (Fig. 3e, 293 

Supplementary Table 4).  294 

 295 

  In addition to identification of cluster-specific gene markers using gene body mCH, a powerful 296 

and unique advantage of methylation profiling is that cis-elements that regulate the marker genes 297 

can be predicted based on CG methylation. Differentially CG methylated regions (CG-DMRs) 298 

between clusters reliably mark cis-regulatory elements across the whole genome (not limited to 299 

gene bodies). Here, we identified 341,748 CG-DMRs that were hypo-methylated in the 300 

corresponding L5-ET subclusters (Fig. 3f, Supplementary Table 5). The average length of CG-301 

DMRs was 227 bp, and 84.9% of them were distal elements that located more than 5kb from the 302 

annotated transcription start sites (TSSs). 303 

 304 

  The level of mCH at gene bodies is inversely correlated with gene expression, while the level of 305 

mCG at gene regulatory elements, such as promoters and enhancers, is inversely correlated with 306 

their regulatory activities. These relationships allowed us to use a gene regulatory network-based 307 

method to integrate this information and identify transcription factors (TFs) that might function as 308 

key regulators in each subcluster (see Methods; Fig. 3g). Specifically, in this network the nodes 309 

were genes (including TFs), while the edges connected the TFs to their potential target genes based 310 

on the TF binding motifs in CG-DMRs surrounding the TSSs. The weights of the nodes and edges 311 

were set according to the predicted expression levels (gene body mCH) of the genes. After 312 

applying a PageRank algorithm to score the genes in the network, we identified TFs that were 313 

potentially highly expressed and may regulate many other highly expressed genes in a subset of 314 
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L5-ET clusters. This method combined the advantages of differential expression and motif 315 

enrichment analysis (Extended Data Fig. 6d, e), and enabled us to find TFs that may be expressed 316 

among a family of TFs sharing similar motifs19. For example, Rora (RAR Related Orphan 317 

Receptor A), a transcriptional activator, was scored as one of the top TFs and is hypo-CH-318 

methylated in clusters 1, 8, and 13, and especially in cluster 8 (Fig. 3h, Extended Data Fig. 6d), 319 

indicating its potential expression. The binding motif of RORA was also enriched in the CG-DMRs 320 

of these same clusters, suggesting that RORA may bind to cis-regulatory elements that in turn 321 

regulate a set of predicted downstream target genes. Many of these target genes are related to brain 322 

functions and also hypo-methylated in cluster 8 (Extended Data Fig. 6f). For example, one of its 323 

predicted downstream target genes, Astn1 (Astrotactin 1) is also hypo-CH-methylated in cluster 8 324 

and encodes for a neuronal adhesion molecule, showing clear correlation between Rora and Astn1 325 

expression inferred from gene-body mCH (Fig. 3i). 326 

 327 

Subclusters of L5-ET neurons project to different targets 328 

Our analyses of cortical IT neurons revealed epigenetic differences between neurons that related 329 

to both their cortical locations and their projection targets. Although the separation of L5-ET 330 

neuron subclusters was mostly driven by the source regions, neurons from the same source regions 331 

(except AI and RSP) distributed into more than one subcluster (Fig. 3a, b Extended Data Fig. 6b), 332 

prompting us to ask whether some of the differences between L5-ET subclusters also correspond 333 

to the different projection targets. To investigate this, we performed another iteration of clustering 334 

analysis using L5-ET cell data from each of the source regions separately, and identified finer L5-335 

ET subclusters within each source region (Extended Data Fig. 7a). Consistent with these 336 

subclusters being related to true differences between putative cell types, all pairs of subclusters 337 
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had more than 5 differentially CH-methylated 100 kb bins (CH-DMBs) (298 CH-DMBs on 338 

average).  339 

 340 

  We then examined whether neurons projecting to a specific target region were enriched or 341 

depleted in any of the subclusters (Extended Data Fig. 7c, d). Among all comparisons between 342 

projection targets and subclusters, neurons projecting to medulla (MY) were most distinct. SSp 343 

L5-ET neurons further segregated into seven subclusters (Fig. 4a), among which SSp→MY 344 

neurons showed a clear enrichment in subcluster 0 (FDR = 1.72E-2, Wald test; Fig. 4b, c). 345 

Similarly, we identified seven subclusters of MOp L5-ET neurons, and MOp→MY neurons were 346 

also significantly enriched in one of the subclusters (FDR = 6.81E-3, Wald test; Extended Data 347 

Fig. 7c, d). Moreover, MY-projecting neurons were robustly distinguished from other L5-ET 348 

neurons in our prediction models for both MOp and SSp (average AUROC = 0.929, 0.860; Fig. 349 

4d, Extended Data Fig. 8a). Together, these analyses suggest that MY-projecting L5-ET neurons 350 

are more distinct than L5-ET neurons projecting to the other targets that were assessed.  351 

 352 

  To investigate which genes drive the observed epigenomic differences between MY-projecting 353 

L5-ET neurons and other L5-ET neurons, we compared the gene body CH methylation profiles of 354 

MY-projecting L5-ET neurons to L5-ET neurons projecting to each of the other ET targets. In 355 

total, we identified 1,380 CH-DMGs between MOp→MY L5-ET neurons and at least one of the 356 

other ET projections (Fig. 4e, Supplementary Table 6). The majority of CH-DMGs were shared 357 

across the other ET projections. Specifically, among the 939 CH-DMGs that were hypo-358 

methylated in MY-projecting neurons, 98 (10.4%) were universally hyper-methylated in all the 359 

other ET projections; Among the 441 CH-DMGs that were hyper-methylated in MY-projecting 360 
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neurons, 85 (19.3%) were hypo-methylated in all the other ET projections. These results suggest 361 

that there are shared molecular differences that distinguish MOp→MY neurons from MOp 362 

neurons that project to VTA, SC, Pons, or TH. Similarly, 285 CH-DMGs were identified between 363 

SSp→MY L5-ET neurons and at least one of the other ET projections (Fig. 4f, Supplementary 364 

Table 6), among them 111 were hypo-methylated in SSp→MY neurons and 174 were hyper-365 

methylated.  366 

 367 

  In total, 171 CH-DMGs were identified in both MOp→MY and SSp→MY neurons (a few 368 

examples highlighted in Fig. 4e, f), suggesting a general regulatory mechanism that may be shared 369 

by different cortical regions. Accordingly, models trained in either MOp or SSp to distinguish 370 

MY-projecting neurons usually performed well when tested in the other region (Extended Data 371 

Fig. 8b). Indeed, similar enrichment of MY-projecting neurons in subpopulations of L5-ET 372 

neurons has been reported in ALM using scRNA-seq (retro-seq)13. To compare these observations, 373 

we used gene body mCH as a proxy for gene expression to integrate our L5-ET Epi-Retro-Seq 374 

data with the ALM retro-seq data. Joint t-SNE showed that the MY-projecting L5-ET neurons 375 

were enriched in the same subcluster (Extended Data Fig. 9). Slco2a1, a marker gene of the ALM 376 

MY-projecting cluster9,13 is hypo-methylated in MOp→MY but not in SSp→MY neurons 377 

(Extended Data Fig. 9h). We identified Astn2 as a marker gene for the MY-projecting L5-ET 378 

cluster in both MOp and SSp (Extended Data Fig. 9i). ASTN2 mediates the recycling of neuronal 379 

cell adhesion molecule ASTN1 in migrating neurons, and its deletion has been associated with 380 

schizophrenia. This suggests that, compared to other L5-ET neurons, MY-projecting neurons have 381 

distinct molecular properties, and these distinctions are likely shared across several cortical regions. 382 

 383 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2020. ; https://doi.org/10.1101/2020.04.01.019612doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019612
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  In addition to the MY-projecting L5-ET neurons, we also observed differences in genome-wide 384 

mCH profiles between other ET projections. For example, L5-ET neurons in AI were segregated 385 

into five subclusters (Fig. 4g), and AI→Pons and AI→SC neurons were enriched in different 386 

subclusters (Fig. 4h, i, Extended Data Fig. 8c). In contrast, AI→Pons and AI→TH neurons were 387 

enriched in similar subclusters (Extended Data Fig. 8c). Analysis of gene body mCH identified 388 

145 CH-DMGs that were differentially methylated between AI→SC neurons versus AI→Pons, 389 

while most of them had similar expression patterns between AI→Pons and AI→TH neurons (Fig. 390 

4j). Together, the results suggest that AI→Pons neurons are more distinct from AI→SC neurons 391 

and are similar to AI→TH neurons. 392 

 393 

  In contrast to the conservation across cortical areas ALM, MOp, and SSp for differences related 394 

to projections to MY, differences between Pons-projecting and SC-projecting neurons were not 395 

conserved across all cortical areas. We trained a prediction model using mCH profiles to 396 

distinguish Pons- versus SC-projecting neurons from different source regions. The model 397 

performed well in distinguishing the two projections from cortical regions AI (AUROC = 0.939) 398 

and VIS (AUROC = 0.868), but performed poorly in PTLp neurons (AUROC = 0.726) (Extended 399 

Data Fig. 8a). The AUROC scores were correlated with the counts of CH-DMGs identified 400 

between SC-projecting versus Pons-projecting neurons in the corresponding source regions 401 

(Spearman r=0.683). This suggests that the differences between Pons-projecting and SC-projecting 402 

neurons vary across the cortex.  403 

 404 

  From these observations, we hypothesized that the level of the epigenetic differences between 405 

the two projections might be correlated with the percentage of neurons that simultaneously project 406 
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to both Pons and SC, which might vary between different cortical regions. That is, in a cortical 407 

area where more neurons project to both Pons and SC, the epigenetic profiles of Pons- and SC-408 

projecting neurons might be expected to be less distinguishable in our data, and vice versa. To test 409 

this hypothesis, we performed double retrograde labeling of Pons and SC, and counted in each 410 

cortical source region the number of neurons labeled only by the tracer injected into Pons, only 411 

SC, or both (Supplementary Table 7). As our hypothesis predicted, PTLp had the highest 412 

percentage of double-labeled neurons, and in general the AUROC score from our model was 413 

negatively correlated with the percentage of double-labeled cells (Spearman r=-0.829, p=0.04) 414 

across the cortical regions (Fig. 4k). These correspondences are weak, however, for most source 415 

regions, so the correlation is driven primarily by the data from PTLp.  416 

 417 

L5-ET+CC neurons 418 

Intriguingly, we noticed more than 30 VISp-projecting neurons in L5-ET clusters from ACA and 419 

RSP datasets (Fig. 5a, b). Since neurons in the L5-ET cluster are likely to project to ET targets, 420 

this finding suggested that some L5 neurons might project to both cortical and ET targets. These 421 

neurons were enriched specifically in one subcluster in ACA and RSP, respectively (FDR = 9.82E-422 

5, 2.45E-3, Wald test; Fig. 5a-d). This type of subcluster in both RSP and ACA was marked by 423 

Ubn2, a highly expressed gene in visual systems, and many other genes also distinguished this 424 

cluster in either region. 425 

 426 

  Although, ET cells are generally thought to lack projections to other cortical areas, there is some 427 

evidence for such cells from previous studies20. Reconstructions of the axonal arbors of 24, L5 428 

MOp neurons in rats revealed 3 neurons projecting to both SSp and TH21, and neurons in mouse 429 
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secondary motor cortex have been shown to project to both AUD and ET targets22. In primates, 430 

single neurons projecting to both a cortical target, visual area MT, and a subcortical target, SC, 431 

have been observed in layer 6 of VISp23,24. However, since ET neurons represent a small 432 

percentage of primate neurons, these dual-projection neurons are extremely rare; they are also 433 

located in layer 6 rather than layer 5 making it difficult to predict whether they might be genetically 434 

more closely related to ET or to IT neurons, whether they might project to additional subcortical 435 

targets, or whether they might be unique to primates.  436 

 437 

  To anatomically validate our findings for RSP→VISp ET neurons in mice, we injected 438 

AAVretro-Cre in VISp and AAV-flex-GFP (Cre-dependent GFP) in RSP in three mice (Fig. 5e). 439 

This resulted in labeling of the complete axonal and dendritic arbors of RSP→VISp neurons such 440 

that their long-distance projections to locations other than VISp could be assessed. We observed 441 

strong GFP labeling of axon terminals in subcortical ET regions, including TH, SC, and Pons, in 442 

all three mice (Fig. 5f). These results indicate that single neurons in L5 of RSP can project 443 

simultaneously to both cortical and subcortical, ET targets in mice. Because these cells genetically 444 

cluster with L5-ET cells, we consider them a subtype of L5-ET cells that we refer to as L5-ET+CC. 445 

We do not use the term L5-ET+IT because many L5-ET neurons are known to project to another 446 

part of the telencephalon, the striatum. 447 

 448 

Discussion 449 

Here, we have quantitatively analyzed and compared the methylation of mouse cortical neurons 450 

projecting to different cortical and subcortical target regions. We identified genes that were 451 

differentially methylated between different cortical areas projecting to the same targets, as well as 452 
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between neurons in the same areas projecting to different targets. As expected from previous 453 

studies identifying IT- and ET-projecting neurons as distinct populations, these populations were 454 

also the most distinct in their gene methylation. We also identified differences between both IT 455 

neurons projecting to different cortical areas and between L5-ET neurons projecting to different 456 

ET targets. Cortical IT neurons projecting to different cortical targets were variable in the extent 457 

of their epigenetic differences. Some pairs of cortical target areas were more distinct than others 458 

and these epigenetic differences were often conserved across cortical sources areas. Differences 459 

between projection target pairs were typically larger than differences between cortical source areas 460 

for any given pair of projection targets. 461 

 462 

  Most distinct amongst the L5-ET neurons were those projecting to the medulla. This difference 463 

has been described previously for neurons in cortical area ALM9 and we find that this difference 464 

is conserved across the additional cortical areas that we analyzed, including MOp and SSp. In 465 

contrast, differences between L5-ET neurons projecting to SC versus pons were more distinct in 466 

some cortical areas (e.g. AI) than in others (e.g. PTLp). Dual retrograde tracer injections into both 467 

SC and pons revealed a corresponding difference in the proportions of double-labeled cells in 468 

different cortical areas, consistent with the expectation that neurons projecting to just one target 469 

can be different while those projecting to both targets cannot.  470 

 471 

  We found that a subpopulation of cortico-cortical RSP→VISp and ACA→VISp neurons 472 

clustered with L5-ET cells, contrary to the expectation that L5-ET and IT cortico-cortical cells are 473 

distinct populations. This suggested that some L5-ET cells might project to cortical targets and 474 

this hypothesis was validated anatomically. Our anatomical experiments showed that RSP→VISp 475 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2020. ; https://doi.org/10.1101/2020.04.01.019612doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019612
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

cells do in fact project to many ET targets, including TH, SC and pons, and we refer to this cell 476 

type as L5 ET+CC. Although we found CC projection neurons that clustered with L5-ET cells for 477 

only two of the 26 CC projections that we sampled, there remain many other combinations that we 478 

did not test. Furthermore, previous studies have described L5 ET+CC cells in primary and 479 

secondary motor cortex21,22. It is therefore likely that future studies will reveal L5-ET+CC neurons 480 

in additional cortical areas projecting to various combinations of ET and cortical targets.  481 

 482 

  Finally, this large-scale effort linking methylation status directly to projection targets of mouse 483 

cortical neurons, allowed us to identify differences between projection cell types in TFs linked to 484 

differentially methylated regions. These observations provide insight into genetic mechanisms that 485 

might contribute to the differences in morphology and function of these cell types. As we have 486 

illustrated, this large dataset also provides the opportunity to predict regulatory elements that might 487 

be harnessed in future studies to target transgene expression to these cell types. 488 

 489 
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Figures 490 

491 

Fig. 1 The epigenomic landscape of cortical projection neurons. 492 

a, Schematics of Epi-Retro-Seq workflow that retrogradely labels and epigenetically profiles 493 

single projection neurons. The retrograde tracer rAAV2-retro-cre was injected in one of the ten 494 

target regions (primary motor cortex (MOp), primary somatosensory cortex (SSp), anterior 495 

cingulate cortex (ACA), primary visual cortex (VISp), striatum (STR), thalamus (TH), superior 496 

colliculus (SC), the ventral tegmental area (VTA) & substantia nigra (SNr), Pons, or medulla 497 

(MY)) in INTACT knock-in mice. Therefore, nuclei of neurons that projected to the injected target 498 
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were labeled with cre-dependent nuclear GFP. Source regions of interest (MOp, SSp, ACA, 499 

agranular insular cortex (AI), auditory cortex (AUD), retrosplenial cortex (RSP), posterior parietal 500 

cortex (PTLp), or visual cortex (VIS)) were dissected 14 days after the injection, from which nuclei 501 

were prepared and single GFP+/NeuN+ nuclei were isolated using fluorescence activated nuclei 502 

sorting (FANS) followed by snmC-seq2 and computational analysis. Brain diagrams were derived 503 

from the Allen Mouse Brain Reference Atlas (version 3 (2015)). b-d, Two-dimensional t-504 

distributed stochastic neighbor embedding (t-SNE) of 11,827 cortical neuron nuclei based on CH 505 

methylation (mCH) levels in 100 kb genomic bins, colored by cluster (b), the source region of 506 

neurons (c), or their projection target (d). Cortical neurons were better separated by their source 507 

regions than projection targets within each major cell type cluster. e-g, Integrative clustering of 508 

Epi-Retro-Seq and unbiased snmC-seq2 (without enrichment of projections) of neurons from 509 

MOp, SSp, ACA and AI (n=21,966), colored by cluster (e), source region (f), and projection targets 510 

in Epi-Retro-Seq (g). h, Neighbor enrichment scores of cells (n=11,827) categorized by cluster, 511 

source, target, and replicate. i, AUROC of source pairs and target pairs computed for IT (blue) and 512 

ET (orange) neurons based on gene body mCH. Sample sizes are shown in x-axis ticklabels. j, The 513 

distribution across cell clusters of neurons that projected to each IT (top row) or ET (bottom row) 514 

target. The elements of all boxplots are defined as: center line, median; box limits, first and third 515 

quartiles; whiskers, 1.5× interquartile range. 516 

IT, intra-telencephalic; ET, extra-telencephalic; NP, near-projecting; CT, corticothalamic; Inh, 517 

inhibitory; CLA, claustrum; Others, cell clusters detected in unbiased snmC-seq2 but not in Epi-518 

Retro-Seq. 519 

  520 
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521 

Fig. 2 Epigenetic differences between IT neurons projecting to different targets. 522 

a, AUROC from the prediction model constructed to distinguish cortical neurons projecting to one 523 

cortical target versus another was used to measure the epigenetic variation between different 524 

cortical IT neurons. A significant variation of AUROC among different projection target pairs was 525 

observed. b-e, Upon examining AUD IT neurons (n=737) that project to different cortical targets, 526 

AUD→SSp neurons and AUD→VISp neurons were biased toward different locations within each 527 

layer-annotated cluster (d) on the t-SNE plot using mCH levels in gene bodies (b), while 528 

AUD→SSp neurons and AUD→ACA neurons were more intermingled (c). The differential levels 529 

of separation on t-SNE corresponded to the high AUROC between AUD→SSp versus 530 

AUD→VISp neurons, and low AUROC between AUD→SSp versus AUD→ACA neurons (e). f, 531 

g, The AUROC for comparisons between →MOp versus →ACA neurons from different source 532 

regions varied between 0.834 and 0.977 (f), while the AUROC for comparisons between →SSp 533 
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versus →ACA neurons from different source regions varied between 0.594 and 0.778 (g), 534 

indicating overall higher levels of distinguishability between →MOp versus →ACA neurons, than 535 

between →SSp versus →ACA neurons. h, i, Heatmaps of AUROC from prediction models that 536 

were trained on one source region (row) and tested on another source region (column) to 537 

distinguish between neurons projecting to →MOp versus →ACA (h), or between →SSp versus 538 

→ACA neurons (i). j, k, Heatmaps of AUROC from prediction models that were trained and tested 539 

on neurons from each cortical layer (column) in each source region (row), to distinguish between 540 

→ACA versus →VISp neurons (j), or between →SSp versus →ACA neurons (k). l, Boxplots of 541 

example genes that were differentially methylated at CH sites (CH-DMGs) between →MOp 542 

versus →SSp neurons (top), or between →SSp versus →VISp neurons (bottom). The sample sizes 543 

are shown as ticklabels of x-axis. ** represents false discovery rate (FDR)<0.01 and * represents 544 

FDR<0.1. m, Gene ontology (GO) enrichment of 1,830 CH-DMGs between cortical neurons 545 

projecting to different cortical targets. The elements of all boxplots are defined as: center line, 546 

median; box limits, first and third quartiles; whiskers, 1.5× interquartile range. Center lines and 547 

error bars in (a) represent the means and standard errors of the means. 548 

  549 
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550 

Fig. 3 Epigenetic diversity of L5-ET neurons. 551 

a, b, Fifteen subclusters of L5-ET neurons (n=4,176) were identified and visualized on the uniform 552 

manifold approximation and projection (UMAP) plot generated using mCH levels in 100 kb 553 

genomic bins, colored by cluster (a), or the source region of neurons (b). c, Dendrogram shows 554 

the similarities between mCH profiles of L5-ET neurons from different source regions. d, e, In 555 

total, 2,675 CH-DMGs were identified in pairwise comparisons between L5-ET subclusters. Gene 556 

body mCH levels in each subcluster were visualized in the heatmap (d). Gene ontology (GO) 557 

enrichment of the CH-DMGs (e). f, Analysis of CG methylation (mCG) identified 341,748 558 

differentially methylated regions (CG-DMRs) across the 15 L5-ET subclusters. The mCG levels 559 

at CG-DMRs and their 5kb flanking genomic regions in each subcluster were visualized in the 560 

heatmap (left). The numbers of CG-DMRs hypo-methylated in each subcluster were plotted in the 561 

bar chart (right). g, Workflow of the PageRank algorithm to infer crucial transcription factors. h, 562 
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Examples of some predicted key regulator TFs are shown in the bubble plot. The size of each dot 563 

represents the normalized PageRank score of the TF. The color of the dot represents the gene body 564 

mCH of the TF in the corresponding L5-ET subcluster. i, Browser tracks of mCH (blue), mCG 565 

(orange), and CG-DMRs (black ticks) at Rora and its predicted gene target Astn1.  566 

  567 
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568 

Fig. 4 Epigenetic differences between L5-ET neurons projecting to different targets. 569 

a-f, L5-ET neurons projecting to MY had more distinct DNA methylation profiles than other L5-570 

ET neurons: SSp L5-ET neurons (n=884) segregated into 7 subclusters as visualized on the UMAP 571 

plot generated using mCH levels in 100 kb genomic bins (a). Compared to other SSp L5-ET 572 

neurons, SSp→MY neurons occupied a distinct space on the UMAP that corresponded to SSp 573 

subcluster 0 (b). The enrichment of SSp→MY neurons in SSp subclusters was calculated and 574 

visualized in the heatmap (c; * represents FDR<0.05). We constructed prediction models to 575 

distinguish →MY neurons from →Pons, →VTA, →SC, and →TH neurons. AUROC scores 576 

showed that the models performed well in both MOp (d, top) and SSp (d, bottom) for comparisons 577 

between →MY neurons versus neurons projecting to each of the other targets. e, f, In total 1,380 578 

CH-DMGs were identified in pairwise comparisons between MOp→MY neurons and MOp 579 

neurons projecting to another subcortical ET target. The gene body mCH levels of these CH-580 

DMGs in MOp neurons projecting to each ET target were visualized in the heatmap (e). Similarly, 581 
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285 SSp→MY CH-DMGs were identified and plotted in the heatmap (f). Gene names for example 582 

CH-DMGs that were hypo-methylated in both MOp→MY and SSp→MY neurons are highlighted 583 

in the heatmaps (e, f). g-k, Epigenetic differences between Pons-projecting versus SC-projecting 584 

neurons varied across cortical regions: In AI, L5-ET neurons (n=531) separated into 5 subclusters 585 

as visualized on the UMAP plot (g). AI→Pons and AI→SC neurons occupied different positions 586 

on the UMAP (h), corresponding to their differential enrichment in AI subclusters 0 and 1 (i; * 587 

indicating FDR<0.05). 145 CH-DMGs were identified between AI→SC versus AI→Pons 588 

neurons. mCH levels of these SC/Pons CH-DMGs in AI→SC, →Pons, and →TH neurons were 589 

plotted in the heatmap (j). k, The variation of AUROC from prediction models to distinguish →SC 590 

versus →Pons neurons from different source regions suggested that the levels of distinction 591 

between →SC and →Pons neurons vary between cortical regions. From this observation, we 592 

hypothesized that different cortical regions had different proportions of neurons that made dual 593 

projections to both SC and Pons. The proportion of double labeled cells was negatively correlated 594 

with the AUROC score in each source area, supporting the hypothesis. 595 

  596 
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597 

Fig. 5 A L5-ET neuron type that projects to both ET and cortical targets (L5-ET+CC). 598 

a, UMAP embedding of ACA L5-ET neurons (n=1,131) using mCH in 100 kb bins, colored by 599 

projection targets (ACA→VISp in red, n=36) and subclusters (Inset). b, UMAP embedding of 600 

RSP L5-ET neurons (n=516) using mCH in 100 kb bins, colored by projection targets (RSP→VISp 601 

in red, n=53) and subclusters (Inset). c-d, ACA→VISp neurons were enriched in ACA L5-ET 602 

subcluster 3 and depleted from subcluster 4 (c). RSP→VISp neurons were enriched in RSP L5-603 

ET subcluster 0 (d). (* indicating FDR<0.05). These observations suggested that some ACA and 604 

RSP neurons project to both ET and cortical targets (L5-ET+CC). To validate the existence of this 605 

L5-ET+CC cell type, we designed an anatomical labeling experiment as illustrated in e. AAVretro-606 

Cre was injected into VISp of Ai14 (Cre-dependent TdTomato) mice, and AAV5-FLEX-GFP 607 

(Cre-dependent GFP) was injected in RSP. Therefore, RSP→VISp neurons, including their axonal 608 

projections, were selectively labeled with GFP. If RSP→VISp neurons also project to ET targets 609 
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(L5-ET+CC neurons exist), GFP-labeled axons would be expected in subcortical ET targets such 610 

as SC, Pons, and TH. f, We performed these labeling experiments in three Ai14 mice and observed 611 

the same result in all mice. Examples of brain sections from one animal are shown. VISp neurons 612 

at the AAVretro-Cre injection site were labeled by tdTomato (red). RSP→VISp neurons were 613 

labeled with GFP (green), among which RSP→VISp neurons at the AAV5-FLEX-GFP injection 614 

site were labeled with both tdTomato and GFP (yellow; inset ii). Strong GFP signals of 615 

RSP→VISp axon terminals in subcortical ET regions were observed, including in the laterodorsal 616 

(LD) nucleus of the thalamus (inset i), SC (inset iii), and Pons (inset iv). Scale bars: 500 μm (low 617 

magnification).  618 

  619 
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Methods 620 

Experimental Animals. 621 

All experimental procedures using live animals were approved by the Salk Institute Animal Care 622 

and Use Committee. The knock-in mouse line, R26R-CAG-loxp-stop-loxp-Sun1-sfGFP-Myc 623 

(INTACT) was used for most experiments4 and they were maintained on a C57BL/6J background. 624 

42-49 day old adult male and female INTACT mice were used for the retrograde labeling 625 

experiment. Adult C57BL/6J “wild-type” mice were used for double-retrograde labeling 626 

experiments. 627 

  628 

Surgical Procedures for Viral Vector and Tracer Injections. 629 

To label neurons projecting to regions of interest, injections of rAAV2-retro-Cre (produced by 630 

Salk Vector Core or Vigene, 2x1012 to 1x1013 viral genomes/ml, produced with capsid from 631 

Addgene plasmid #81070 packaging pAAV-EF1a-Cre from Addgene plasmid #55636) were made 632 

into both hemispheres of the INTACT mice. Animals were anesthetized with either 633 

ketamine/xylazine or isoflurane, placed in a stereotaxic frame, and 0.1 to 0.5 microliters of AAV 634 

was injected by pressure into stereotaxic coordinates corresponding to the desired projection target. 635 

A list of injection coordinates and volumes is provided in Supplementary Table 1. At least 2 male 636 

and 2 female mice were injected for each projection target. To label RSP neurons that project to 637 

VISp, RSP was injected with rAAV2-retro-Cre and VISp was injected with AAV-FLEX-GFP 638 

(Salk Vector Core) in each of 3 adult, Ai14 mice.  639 

  640 
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Assessment of Double-Retrograde Labeling. 641 

To assess double-labeling of cortical cells projecting to Pons and/or Superior Colliculus, 642 

stereotaxic pressure injections of 0.1-0.2 microliters of 0.25-0.5% of Cholera Toxin Subunit B 643 

(CTB), Alexa Fluor 488 or 647 conjugated (Molecular Probes), were made into the pons and into 644 

SC of 4 mice. 6-7 days later, animals were perfused with phosphate buffered saline (PBS) followed 645 

by 4% paraformaldehyde in PBS. Brains were removed and sectioned coronally at 40 microns 646 

thickness with a freezing microtome. Sections were mounted and imaged with a 20X 647 

epifluorescence objective and images assessed to identify single and double-labeled neurons that 648 

were assigned to cortical areas. Only neurons in regions where labeled cells from both injections 649 

overlapped were counted. Therefore, some cortical areas in which there was no overlap are not 650 

included. For each animal, double labeled cells were quantified for each region as the proportion 651 

of double-labeled divided by the sum of all labeled cells. Mean values from the 4 animals are 652 

plotted in Fig. 4k.  653 

 654 

Brain dissection. 655 

Approximately two weeks after the AAVretro injection, brains were extracted from the 56-63 day 656 

old INTACT mice, immediately submerged in ice-cold slicing buffer (2.5mM KCl, 0.5mM CaCl2, 657 

7mM MgCl2, 1.25mM NaH2PO4, 110mM sucrose, 10mM glucose and 25mM NaHCO3) that was 658 

bubbled with carbogen, and sliced into 0.6 mm coronal sections starting from the frontal pole. 659 

From each AAVretro-injected brain, the slices were kept in the ice-cold dissection buffer from 660 

which selected brain regions (Supplementary Table 1) were manually dissected under a fluorescent 661 

dissecting microscope (Olympus SZX16), following the Allen Mouse Common Coordinate 662 
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Framework (CCF), Reference Atlas, Version 3 (2015) (Extended Data Fig. 1). The dissected brain 663 

tissues were transferred to prelabeled microcentrifuge tubes, immediately frozen in dry ice, and 664 

subsequently stored at -80oC. 665 

 666 

Nuclei preparation and single-nucleus isolation. 667 

For each dissected brain region, samples from 2 males and 2 females were pooled separately as 668 

biological replicates for nuclei preparation. The 2-mL glass tissue dounce homogenizer and pestles 669 

(Sigma-Aldrich D8938-1SET) were pre-chilled on ice. Nuclei were prepared using a modified 670 

protocol as reported by Lacar et al., 201625. In summary, the frozen brain tissues were transferred 671 

to the dounce homogenizer with 1 mL ice-cold NIM buffer (0.25M sucrose, 25mM KCl, 5mM 672 

MgCl2, 10mM Tris-HCl (pH7.4), 1mM DTT (Sigma 646563), 10μl of protease inhibitor (Sigma 673 

P8340)), with 0.1% Triton X-100 and 5μM Hoechst 33342 (Invitrogen H3570), and gently 674 

homogenized on ice with the pestle 10-15 times. The homogenate was transferred to pre-chilled 675 

microcentrifuge tubes and centrifuged at 1000 rcf for 8 min at 4oC to pellet the nuclei. The pellet 676 

was resuspended in 1 mL ice-cold NIM buffer, and again centrifuged at 1000 rcf for 8 min at 4oC. 677 

The pellet was then resuspended in 450 μL of ice-cold NSB buffer (0.25M sucrose, 5mM MgCl2, 678 

10mM Tris-HCl (pH7.4), 1mM DTT, 9ul of Protease inhibitor), and filtered through 40μM cell 679 

strainer. The filtered nuclei suspension was incubated on ice for at least 30 minutes with 50μl of 680 

nuclease-free BSA for at least 10 minutes, then incubated with GFP antibody, Alexa Fluor 488 681 

(Invitrogen, A-21311) and anti-NeuN antibody (EMD Millipore MAB377) conjugated with Alexa 682 

Fluor 647 (Invitrogen A20173). GFP+/NeuN+ single nuclei were isolated using fluorescence-683 

activated nuclei sorting (FANS) on a BD Influx sorter with 100μm nozzle, and sorted into 384-684 

well plates preloaded with 2μl of digestion buffer for snmC-seq215 (20 mL digestion buffer consists 685 
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of 10 mL M-digestion buffer (2×, Zymo D5021-9), 1 ml Proteinase K (20 mg, Zymo D3001-2-20), 686 

9 mL water, and 10 µL unmethylated lambda DNA (100 pg/µL, Promega, D1521)). The collected 687 

plates were incubated at 50oC for 20 minutes then stored at -20 oC. 688 

 689 

snmC-Seq2 library preparation. 690 

The bisulfite conversion and library preparation were performed following the detailed snmC-seq2 691 

protocol as previously described15. The snmC-Seq2 libraries were sequenced on Illumina Novaseq 692 

6000 using the S4 flow cell 2 x 150 bp mode. 693 

 694 

Reads processing and quality controls. 695 

We used the cemba-data pipeline to generate allc files from fastq files (cemba-data.rtfd.io), as 696 

described in Luo et al6. Specifically, the fastq files were first demultiplexed into single cells and 697 

trimmed of Illumina adaptors and 10 bp on both sides with Cutadapt26. The reads were mapped to 698 

mm10 INTACT mouse genome using Bismark27 with Bowtie2 aligner for each single end 699 

separately. The reads with MAPQ smaller than 10 were excluded. Potential PCR duplicates were 700 

removed with Picard MarkDuplicates. The reads from two ends were then merged to generate allc 701 

files using call_methylated_sites function in methylpy28. The global mCCC level was used to 702 

estimate the non-conversion rate of bisulfite treatment. The cells with less than 500 k non-clonal 703 

reads or non-conversion rate greater than 1% were removed from further analysis. 704 

  705 
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Methylation data processing. 706 

For each single cell, we computed the methylated CH (!") and total CH (#") basecalls of all 100 707 

kb bins across the genome and all gene bodies annotated in GENCODE vM1029. The autosomal 708 

bins that were covered by more than 100 basecalls in greater than 95% of cells were used for 709 

further analysis. The autosomal genes that were covered by more than 100 basecalls in greater than 710 

80% of cells were used for further analysis.  711 

 712 

Computing posterior methylation levels.  713 

For each cell, we calculated the mean (!) and variance ($) of the mCH level across the 100 kb 714 

bins or genes. Then a beta distribution was fit for each cell %, where the parameters were then 715 

estimated by  716 

!! = !!(
!!(1 − !!)

$!
− 1) 717 

"! = (1 −!!)(
!!(1 − !!)

$!
− 1) 718 

We then calculated the posterior mCH of each bin by 719 

+,#%-!" =
.! +!"!"

.! + 0! + #"!"
 720 

We normalized this rate by the cell’s global mean methylation by  721 

12-3,2! =
.!

.! + 0!
 722 

4!" =
+,#%-!"
12-3,2!

 723 

The values greater than 10 in 4 were set to 10. After normalization, 4!" is close to 1 when #"!" is 724 

close to 0.  725 

  726 
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Identification of highly variable bins. 727 

Highly variable methylation features were selected based on a modified version of the 728 

highly_variable_genes function in Scanpy30. In brief, since both the mean methylation level and 729 

the mean coverage of a feature (100 kb bin or gene) can impact methylation level dispersion6, we 730 

grouped features that fall into a combined bin of mean and coverage, and then normalized the 731 

dispersion within each group. After dispersion normalization, we selected the top 2,000 features 732 

based on normalized dispersion for dimension reduction.  733 

  734 

Removing potential doublets. 735 

By plotting all cells on t-SNE, we noticed a cell population that was located in the center of the 736 

plot and has a greater number of non-clonal reads than the others. To remove these potential 737 

doublets, we modified scrublet31 to adopt it to methylation data. Specifically, we first simulate the 738 

doublet cells by randomly selecting two cells in our dataset and sum the methylation/total basecalls 739 

of the two cells. Then the methylation levels of the simulated cells were computed using the 740 

posterior computing method. We simulated twice the number of doublets as the number of real 741 

cells. The top 2,000 highly variable features were selected for dimension reduction with principal 742 

component analysis (PCA) and the top 50 PCs were used to train a k-nearest neighbor (kNN) 743 

classifier (k=50) to predict a doublet score for each cell. Based on the histogram of doublet scores 744 

of real and simulated doublet cells, the cells with doublet score higher than 0.1 were removed from 745 

further analysis. After removing the potential doublets, 13,414 cells were kept for further analysis. 746 

  747 
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Cell clustering and annotation. 748 

After removing potential doublets, the top 2,000 highly variable features were selected for 749 

dimension reduction with PCA. The top 50 PCs were used for t-SNE visualization and construction 750 

of kNN graph (5) with Euclidean distance (k=25). We use 6 to represent the connectivity of 5, 751 

where 6!" is 1 if node 7 is among the 25 nearest neighbors of node %, otherwise 0. The edge weights 752 

of 5 were assigned as the jaccard distance of the connectivity matrix 6. We ran Louvain clustering 753 

(https://github.com/taynaud/python-louvain) with resolution 1.2 to partition the cells into 31 754 

clusters and merged these clusters into major cell types based on known marker genes. The 11,827 755 

cells within neuronal cell clusters were selected for further analysis. 756 

  757 

Neighbor enrichment score. 758 

The score was used to quantify the enrichment of cells that belong to the same category among the 759 

neighbors of each cell. A higher score represents the cells are more likely to form clusters with the 760 

cells belonging to the same category rather than in the other categories. The advantage of this score 761 

is that it only considers the local effect so that would remain high if the cells in a category form 762 

several different clusters that dissimilar with each other. The score was computed as follows. 763 

Euclidean distances between each pair of cells were computed using the first 50 PCs. For each cell, 764 

we found its 25 nearest neighbors in the same category, and 25+ nearest neighbors from other 765 

categories, where + is the ratio between total number of cells in other categories and total number 766 

of cells in the same category. The area under the receiver operating characteristic (AUROC) using 767 

distances between the cell and these neighbor cells for distinguishing the categories were defined 768 
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as the neighbor enrichment score of this cell. The methylation pattern of male and female mice are 769 

highly similar on autosome; therefore, the two genders were treated as replicates in the analyses. 770 

 771 

Pairwise prediction of the source and target regions. 772 

Based on the sources, and targets, the neurons could be separated into groups. Each group contains 773 

the neurons projecting from a specific source to a specific target. To test the similarity of two 774 

groups of cells based on DNA methylation, we trained logistic regression models to predict the 775 

group label of each cell. The posterior of 100 kb-bin or gene body mCH were used as features. We 776 

split the cells into training and testing sets based on the gender of the mice where the cell came 777 

from. The area under the receiver operating characteristic (AUROC) from cross-validation was 778 

used to measure the performance of the model. The higher AUROC represents better ability of the 779 

model to present the group label, which indicated the two groups had larger mCH differences and 780 

were more distinguishable. 781 

  When the groups being studied contained cells from different clusters (e.g. cortical projecting 782 

neurons in one source), we up-sampled the training set to make it better capture the group 783 

differences rather than the differences of cell distributions across clusters. For example, when 784 

comparing neurons projecting to two different cortical targets, the cluster composition differences 785 

could make the model over-weight the features marking different clusters. To get rid of this bias, 786 

we randomly repeated the neurons from the under-representing group and ensured the two groups 787 

had the sample number of training samples in each cluster. The models were then trained and 788 

tested in the same setting as mentioned above. 789 
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  Several reasons could contribute to a low prediction performance. 1) Some neurons make 790 

projections to several targets simultaneously. These could result in the neurons being captured by 791 

multiple retrograde labeling experiments of different targets. It would be impossible to predict a 792 

single label with our pairwise models for this type of neuron. 2) Some neurons project to different 793 

target regions but have tiny epigenetic differences. 3) The epigenetic differences between neurons 794 

projecting to different targets varies across replicates. In this study, male and female mice were 795 

treated as biological replicates after removing sex chromosomes. Although methylation patterns 796 

of autosomes are similar, differences between genders might still exist. 4) The contamination 797 

levels of some projections are high, which make larger noise and hinder the models to capture real 798 

signals. 5) The sample sizes of some projections are small, which make the learning more 799 

challenging.  800 

  If the cross source/cluster predictions (described below) performed better than the within 801 

source/cluster models, we would suspect that shared differences between neurons projecting to 802 

different targets exist across sources/clusters, and the major reason for lower accuracies of within 803 

source/cluster models might be 4) or 5) described above. To systematically distinguish 1) to 3), 804 

other anatomic and genetic validation are still needed. 805 

  806 

Cross source prediction. 807 

The logistic regression models were trained to predict the projection targets in one source and 808 

tested in the other source. The training set and testing set came from mice of different genders. 809 

Specifically, the final AUROC were the average of AUROCs by training in male mice and testing 810 
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in female mice and by training in female mice and testing in male mice. For cortical targets, we 811 

up-sampled the training set in the same way as the above section. 812 

  813 

Cross cluster prediction. 814 

This analysis was specifically for CC projection neurons to study whether the mCH differences 815 

between projection neurons were shared or distinct across clusters (layers). The logistic regression 816 

models were trained to predict the projection targets in one cluster and tested in the other cluster. 817 

The training set and testing set came from mice of different genders. 818 

  819 

Identification of differentially CH-methylated genes (CH-DMGs). 820 

Wilcoxon rank-sum test and t test were widely used to identify differential genes in single-cell 821 

studies30, which consider each cell as an independent sample. However, the cells from the same 822 

replicate, individual, or batch would be more similar than the cells from different ones. Therefore, 823 

considering all cells as independent samples would overestimate the statistical power in single-824 

cell data. To address this problem and take the replicate-level variation into consideration, we used 825 

a linear mixed model for the differential analysis and performed paired-wise comparisons between 826 

groups. The posterior mCH level of 12,261 autosomal genes after coverage filters were used for 827 

these analyses. The posterior gene-body mCH was used as dependent variables. Each individual 828 

mouse was considered as a random effect. The global mCH levels and the gender of the mice were 829 

considered as fixed effects. Other fixed effects were determined based on the comparison. 830 

Specifically,  831 

For DMGs between L5-ET clusters: 832 
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Gene_mCH ~ cluster + gender + global_mCH + (1 | mouse) 833 

For DMGs between cortical targets in each source: 834 

Gene_mCH ~ target + cluster + gender + global_mCH + (1 | mouse) 835 

For DMGs between ET targets in each source: 836 

Gene_mCH ~ target + gender + global_mCH + (1 | mouse) 837 

  Each gene was tested separately, and two-sided Wald test was performed to estimate the P value 838 

for the effect being tested. FDR was computed for each pair of groups with the 839 

Benjamini/Hochberg process. The fold-change of each gene was computed by the average mCH 840 

across cells in one group divided by the average mCH across cells in the other group, with pseudo-841 

counts of 0.1. The criterions for significance when testing difference variables were distinct and 842 

shown as follows. For DMGs between L5-ET clusters: absolute log fold-change greater than log1.5 843 

and FDR smaller than 0.01. For DMGs between IT targets or between ET targets in each source: 844 

absolute log fold-change greater than log 1.25 and FDR smaller than 0.01. 845 

  846 

Identification of differentially CG-methylated regions (CG-DMRs). 847 

To identify DMRs, we merged the allc files of individual cells assigned to the same cluster to 848 

create a pseudo-bulk allc table for each cluster. Then we selected all the CG sites and combined 849 

the methylation on two DNA strands for each CpG site. We run methylpy28 DMRfind to identify 850 

the DMRs and require the DMRs to contain at least 2 differentially methylated CpG sites (DMS).  851 

  852 
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Inference of crucial transcription factors (TF) with PageRank. 853 

The method was modified from Taiji19 to integrate the information of both gene body and 854 

regulatory regions. The 537 motifs in JASPAR 2018 non-redundant core vertebrate database32 855 

were used for these analyses. We scanned each of the motifs against the mm10 INTACT mouse 856 

genome with ame33 and P value cutoff as 1e-4. The DMRs between clusters were expanded 100 857 

bp on both sides, and the ones overlapping with motifs were assigned to the corresponding TF. 858 

The DMRs were also assigned to the potential genes they regulated using GREAT34. The TFs were 859 

then linked with the target genes based on these DMRs that links to both the upstream TFs and the 860 

downstream genes. A gene regulation network was constructed where the nodes represented the 861 

genes and edges represented the links between TF genes and target genes. 862 

  To assign weights to the edges and initiate the node importance, the normalized :#$%&'() × :*(+( 863 

methylation matrix (4) were min-max normalized across clusters to 0-1 by 864 

<!" =
4!" −!%:,-"./+!"#"4!".

!,=,-"./+!"#"4!". −!%:,-"./+!"#"4!".
 865 

, and 1 − <!  were used as the predicted expression of each gene in cluster % . The predicted 866 

expressions of all genes were used as starting importance >,. Then we used a :*(+( × :*(+( matrix 867 

6 to represent the adjacency matrix of TF-gene regulation network, where 6!" was assigned as the 868 

predicted expression level of gene % if gene % is a TF. To ensure an undirected propagation, we 869 

used ? = 6 + 60  as the final adjacency matrix. ?  was normalized by row into the transition 870 

matrix @ by 871 

@!" =
?!"

∑ ?!"$
+!"#"
"$12

 872 
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Next we performed a diffusion step of the PageRank scores through the network. For iteration #, 873 

the PageRank scores were computed by  874 

>' = @ × >'32 + +B × >, 875 
, where +B represents a restart probability to balance the global and local effect of the propagation 876 

on the network. The diffusion step was stopped when |>' − >'| < 1034.  877 

 878 

Clustering of L5-ET cells in each source region. 879 

L5-ET neurons from Epi-Retro-Seq and unbiased snmC-Seq were combined in this analysis. After 880 

the same process as clustering all cells to derive posterior mCH level and select highly variable 881 

features, the first 30 PCs were used for computing kNN (k=15) and Louvain clustering. The 882 

resolutions used for source regions were 1.6 for MOp, AI, AUD, and RSP; 2.0 for SSp and PTLp; 883 

1.0 for VISp; and 2.5 for ACA. The resolutions were determined based on visually examining the 884 

cluster numbers and projection enrichment. 885 

  To confirm that there were epigenetic features distinguishing the clusters, we computed the 886 

differentially methylated 100 kb bins (DMBs) across all pairs of subclusters using two-sided 887 

Wilcoxon rank-sum test. The bins were defined as differential if the absolute log fold-change 888 

between subclusters were greater than log 1.5, and FDR of the test smaller than 0.01. We also used 889 

AUROC>0.85 and AUPR>0.6 to define DMBs, which provided similar results. Two subclusters 890 

in RSP that had less than 5 DMBs were merged. 891 

 892 
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Tests of projection enrichment in subclusters. 893 

As described above, the cells from the same replicate would be more similar, and considering all 894 

cells as independent samples will overestimate the statistical power in single-cell data. Therefore, 895 

we used linear mixed models to test for significant enrichment of particular projections in each 896 

subcluster, considering the mouse where the cells came from. The subclsuter was used as 897 

dependent variables. Each individual mouse was considered as a random effect. The projection 898 

target was considered as fixed effects. [Subcluster ~ Target + (1 | mouse)] 899 

  Each projection target and each cluster were tested separately, and two-sided Wald test was 900 

performed to estimate the P value for the effect being tested. FDR was computed for each source 901 

with the Benjamini/Hochberg process. (Obs-Exp)/Exp in the enrichment matrices were computed 902 

using the same method as in Pearson’s chi-square test. 903 

 904 

Integration of Epi-Retro-Seq and Retro-Seq. 905 

Single-cell transcriptomic data from Tasic 20189,13 was downloaded from NCBI Gene Expression 906 

Omnibus (GSE115746). 365 cells within clusters of ‘L5 PT ALM Npsr1’, ‘L5 PT ALM Slco2a1’, 907 

and ‘L5 PT ALM Hpgd’ were selected for integration analysis. The raw data was preprocessed 908 

using Scanpy30. Specifically, the read counts were normalized by the total read counts per cell and 909 

log transformed. Top 10,000 highly variable genes were identified and z-score scaled across all 910 

the cells. For methylation data, the posterior methylation levels of 12,261 genes in the 4,176 L5-911 

ET cells were z-score scaled across all the cells and used for integration. We used Scanorama35 to 912 

integrate the z-scored expression matrix and minus z-scored methylation matrix with sigma equal 913 

to 100.  914 
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 915 

Overlap score. 916 

Overlap score quantifies the similarity of the distributions of two groups of cells across clusters, 917 

where higher scores represent the two groups are more likely to be co-clustered. The scores were 918 

computed using the same method as in Hodge et al14. Specifically, a :*)5%6 × :#$%&'() matrix F 919 

was first computed, where F!7  represents the number of group %  cells in cluster G . F  was 920 

normalized by row to H , and the overlap score between group %  and group 7  was defined as 921 

∑ !%:IH!7 , H"7K
+%&'()"*
712 . 922 

 923 

Data access and code availability 924 

The data can be accessed via the NeMO ftp archive: 925 

http://data.nemoarchive.org/biccn/lab/callaway/projection/sncell/. The code for all of the analyses 926 

and the link to data browser can be found at https://github.com/zhoujt1994/Zhou2019.git 927 
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Extended data figure legends 1023 

1024 

Extended Data Fig. 1 Source region dissection maps. The posterior views of dissected slices are 1025 

shown. The slices correspond to Allen Reference Atlas level 33~39 (slice 3), 39~45 (slice 4), 1026 

45~51 (slice 5), 51~57 (slice 6), 57~63 (slice 7), 69~75 (slice 9), 75~81 (slice 10), 81~87 (slice 1027 

11), and 87~93 (slice 12), respectively. 1028 
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1030 

Extended Data Fig. 2 Removing potential doublets and non-neuronal cells. t-SNE of cells after 1031 

quality control (n=16,971) colored by number of non-clonal reads (a) and predicted doublet scores 1032 

(b). (c) Distribution of doublet scores for real cells (blue) and simulated doublets (orange). t-SNE 1033 

of cells after removing doublets (n=13,414) colored by global mCH (d), cluster labels (e), and 1034 
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normalized gene-body mCH level of known cell type gene markers (f). Cells with low global mCH 1035 

level are usually non-neuronal cells. t-SNE of single neurons (n=11,827) colored by the cluster 1036 

labels (g). NN represents non-neuronal cells. 1037 
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Extended Data Fig. 3 Cell type composition of all projections. (a) The proportion of cells projecting from each source region (row) 1040 

to each target region (column) in all clusters including non-neuronal cells. (b) t-SNE of neurons (n=11,827) projecting to each IT target 1041 

(top) and ET target (bottom). The cells projecting to the target were colored by clusters and cells projecting to all other targets were 1042 

greyed. 1043 
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1045 

Extended Data Fig. 4 AUROC of cortical target pairs within and cross source regions. 1046 

AUROC of models trained and tested in the same source region (a, c) or models tested in all source 1047 

regions after trained in each one of them (b, d) using gene body (a, b) or 100 kb bin (c, d) mCH as 1048 

features. The values in (a) and (c) correspond to the diagonals of (b) and (d) but ordered 1049 

decreasingly. 1050 
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1052 

Extended Data Fig. 5 AUROC of cortical target pairs within and cross clusters. 1053 

Demonstration of training and testing data for within layer prediction (a) and cross layer prediction 1054 

(c). In (a), the models were trained and tested in the same layer with different replicates. In (c), the 1055 

testing sets were the same as (a), but the models were trained in all other layers. AUROC of within 1056 

layer prediction (b) or cross layer prediction (d). 100 kb-bin level mCH were used for all the 1057 

predictions. 1058 
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1060 

Extended Data Fig. 6 Signature genes and TFs of L5-ET subclusters. (a) Proportion of cells 1061 

from all source regions in each subcluster. (b) Proportion of cells in all subclusters from each 1062 

source region. (c) t-SNE of L5-ET cells (n=4,176) colored by the normalized gene-body mCH 1063 
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level of subcluster gene markers. (d) Motif fold-change within DMRs, and motif enrichment P 1064 

value within DMRs, gene-body mCH, and PageRank score of the example TFs in all L5-ET 1065 

subclusters. (e) Gene body mCH (color) against PageRank score (size, left), motif enrichment P 1066 

value (size, middle), and motif enrichment fold-change (size, right) for the example TFs in all L5-1067 

ET subclusters. (f) Gene body mCH in all clusters of Rora target genes identified in cluster 8. 1068 

Significances were determined by comparing cluster 8 with each of the other clusters (two-sided 1069 

Wilcoxon rank-sum test). * represents p<1e-2, ** represents p<1e-3, *** represent p<1e-4. The 1070 

elements of all box-plots are defined as: center line, median; box limits, first and third quartiles; 1071 

whiskers, 1.5× interquartile range. 1072 
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1074 

Extended Data Fig. 7 Enrichment of different projections in L5-ET subclusters. (a-c) t-SNE of L5-ET cells from each source region 1075 
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colored by subclusters. The colored cells are all cells (a), unbiased snmC-Seq cells (b), and cells projecting to each target (c). Other cells 1076 

were greyed. (d) The enrichment of each projection in each L5-ET subcluster in each source. * represents FDR<0.05. 1077 
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Extended Data Fig. 8 AUROC of ET target pairs within and cross source regions. AUROC 1080 

of models trained and tested in the same source region (a) or models tested in all source regions 1081 
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after trained in each one of them (b) using 100 kb bin mCH as features. Training and testing sets 1082 

were split by two-fold cross-validation in (a) to include AI, or split by replicates (b). (c) Overlap 1083 

score between each pair of targets in each source region. 1084 
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1086 

Extended Data Fig. 9 Integration of L5-ET cells from Epi-Retro-Seq and Epi-Seq. (a-c) L5-1087 

ET ALM cells in SMART-Seq (n=365) colored by clusters (a), major target regions (b), and 1088 

detailed target regions (c). Epi-Retro-Seq cells were greyed. (d-i) L5-ET Epi-Retro-Seq cells from 1089 

all source regions (n=4,176) colored by MOp subclusters (d), SSp subclusters (e), sources (f), 1090 

targets (g), and gene body mCH of Slco2a1 (h) and Astn2 (i). 1091 
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