
Pseudoalignment in the mGEMS pipeline

Tommi Mäklin Teemu Kallonen Jarno Alanko
Veli Mäkinen Jukka Corander Antti Honkela

In this supplement we describe the pseudoalignment algorithm and implementa-
tion used in the mGEMS pipeline. The implementation is called Themisto, and
is freely available at https://github.com/algbio/themisto under the GPLv2.0 li-
cense. Pseudoalignment is an approximate form of alignment that reports only
whether a read matches to a reference sequence or not, without necessarily re-
turning the genomic coordinates of the match. Pseudoalignment can be much
cheaper computationally than regular alignment.

1 The pseudoalignment criterion

Our pseudoalignment is based on the pseudoalignment algorithm used in the
transcript abundance quantification tool Kallisto [1]. The pseudoalignment cri-
terion we use is defined as follows. Suppose we want to pseudoalign a read
against a set of reference sequences T1, . . . , Tm. The read is considered to pseu-
doalign against reference Ti if at least one k-mer of the read is found in Ti and
for each k-mer x of the read, one of the following holds:

1. x is a k-mer of Ti

2. x is not a k-mer of any of T1, . . . , Tm

This criterion closely replicates the pseudoalignment of Kallisto, with the dif-
ference that Kallisto uses a heuristic based on the topology of the de Bruijn
graph of T1, . . . , Tm to skip over some k-mers of the read for efficiency. More
specifically, if the current k-mer is in a non-branching path of the graph, Kallisto
skips a number of k-mers of the read equal to the distance to reach the next
branching node. If the k-mers before and after the skip are found in the same
reference sequences, the skip is considered valid, and otherwise Kallisto falls
back to checking all k-mers of the read individually. However, even if the skip
is considered valid, it could be the case that a skipped k-mer would have af-
fected the result of the pseudoalignment. On the other hand, we implement the
described pseudoalignment criterion exactly, and observe a very slight improve-
ment in accuracy compared to using Kallisto’s pseudoalignments. The difference

1

https://github.com/algbio/themisto

in accuracy could also be due to small implementation differences, since we de-
signed our tool around the high-level description in Kallisto’s manuscript [1]
rather than the source code itself.

2 Implementation overview

The pseudoalignment criterion we have chosen effectively reduces each reference
sequence and each read into unordereded sets of k-mers. This loses some infor-
mation, but in turn it allows for more efficient data structures and algorithms.
The pseudoalignment could in principle be implemented on top of any data
structure for indexing k-mer sets.

Indexing k-mer sets efficiently is currently a very active field of research
[2]. In k-mer data structures, each reference sequence is usually given a unique
identifier, called the color of the sequence. Each k-mer is associated with a
color set, which is defined to be the set of colors of the reference sequences that
contain that k-mer. The basic query on a k-mer data structure is to retrieve
the color set of a given k-mer. Our pseudoalignment criterion can be computed
against all references at once by intersecting the non-empty color sets of all
k-mers in a read.

We chose to implement our own k-mer index. The main design goal was that
the index should be memory-efficient to build and use, because the size of the
reference dataset can be large. To this end, we index the k-mer sets as a succinct
colored de Bruijn graph. The nodes of the graph represent k-mers and the edges
represent (k + 1)-mers. The graph is encoded with a variant of the BOSS
representation [3] and each node is linked to the corresponding color set with a
separate coloring data structure which is unique to our implementation. Each
query read is aligned as both the reverse complement string and the forward
string, and we return the union of the pseudoalignments of both directions.
Figure 1 illustrates the approach.

A speciality of our implementation is that the construction can be done
almost entirely on disk, using only a minimal amount of RAM. This is made
possible by designing the construction pipeline around two well-studied primi-
tive operations: k-mer counting and disk-based sorting. The next section gives
the technical details of the index and the construction pipeline.

3 Implementation details

The reference sequences are modeled as strings from an alphabet Σ of size σ
(for DNA, Σ = {A,C,G,T} and σ = 4). Let us denote the set of references with
T1, . . . , Tm. First, we build the BOSS data structure of the de Bruijn graph,
implemented in terms of the generic Wheeler graph framework introduced by
Gagie et al. [4].

Let T = T1$T2$ · · ·Tm$ be a dollar-separated concatenation of the reference
sequences, where the dollar is a special symbol such that $ 6∈ Σ. Let f`(x) be

2

C C T T T

A A T T T G G C A C A C C T A

G C A

G A C C

T T C C T

k = 4

QUERY: GGTGGCGACCTA

ANSWER: ∩ ∩ ∩ =

Figure 1: A colored de Bruijn graph of order k = 4. Each reference sequence in
the graph is assigned a unique color. The color sets of nodes are drawn above
the nodes. In the example, the query GGTGGCTGACCTA is pseudoaligned
against the graph. Four of the k-mers of the query are found in the graph.
The representative nodes of those k-mers are highlighted with green. The pseu-
doalignment returns the intersection of the color sets of the highlighted nodes.

the set of distinct characters that are found to the left of k-mer x in T and let
fr(x) be the set of distinct characters that are found to the right of x in T .

To build the Wheeler graph data structure, we iterate the sets f`(x) and
fr(x) in colexicographic1 order of the k-mers x of T . To do this, we first list all
distinct (k+ 2)-mers of T to disk. Then we sort the (k+ 2)-mers x in increasing
order of the colexicographic rank of the middle k-mer x[2..(k+ 1)] using a disk-
based sorting algorithm. Next, we stream the sorted (k+2)-mers from disk. For
every run of (k + 2)-mers with an identical middle k-mer y, we collect the sets
f`(y) and fr(y) by looking at the first and last characters of the (k + 2)-mers
in the run. Building the Wheeler graph data structure is straightforward from
this information.

After this, we have a working index of the de Bruijn graph (V,E) of the
references T1, . . . , Tm. If (u, v) ∈ E, we call u a predecessor of v, and v a
successor of u. Next, we add the colors to nodes of the graph. To eliminate
redundancy, we only store colors for a subset V ′ ⊆ V , where v ∈ V ′ iff at least
one of the following conditions hold:

1. Node v represents the first k-mer of a reference sequence.

2. A predecessor of v represents the last k-mer of a reference sequence.

3. Node v has multiple predecessors

4. Node v has a predecessor that has multiple successors.

1The colexicographic order of strings is like the standard lexicographic order, but characters
are compared starting starting from the end. The index can be build with either lexicographic
or colexicographic sorting, but we choose to follow the colexicographic convention of the
Wheeler graph framework. The indexed graph can be traversed in both directions.

3

If v 6∈ V ′, then its color set has to be the same as its predecessor’s color set. We
can find out the color set of v by walking backward to the nearest node u ∈ V ′.
Node u is guaranteed to exist because the first node of every reference sequence
is always in V ′. The nodes in V ′ can be found and marked by using the BOSS
index.

However, with this setup, finding node u might take a long time if we are
in the middle of a long unitig (non-branching path), so we also store the color
sets for some nodes inside long unitigs. Let S be the set of nodes such that
the distance backward to the nearest node in V ′ is an integer multiple of s for
some global integer parameter s. We also store the color sets for all nodes in S.
This way, we can find a color set of a node in at most s backward steps. The
sampling parameter s can be tuned to obtain different time-space tradeoffs.

The color sets are computed with two disk-based sortings as follows. Assume
we have marked all nodes in V ′ ∪ S. Assign the reference sequences T1, . . . , Tm
colors such that the color of sequence Ti is i. For each i = 1, . . . ,m, walk the de
Bruijn graph according to Ti using the constructed BOSS index, and for each
node v ∈ V ′ ∪ S encountered, print to disk a pair (v, i). After all sequences Ti
have been processed, sort the pairs on disk by the node identifiers v, and scan
the sorted list, writing to another file pairs (v, Cv), where Cv is the list of colors
of node v. Then, sort the new pairs by the color sets and scan the resulting
sorted list to obtain a list of pairs (Xv, Cv), where Xv is the set of nodes with
color set Cv. Finally, store all distinct color sets to a file, and for each node in
the sets Xv, store a pointer to the corresponding color set.

It remains to be described how the color sets are stored in a succinct and ac-
cessible way. Let us denote the set of distinct color sets with C = {C1, . . . , C|C|}.
The color sets are stored in a concatenated form C1 · · ·C|C|. We mark with a
bit vector all positions in the concatenation where a new color set starts, and
index the bit vector for constant-time select queries to be able to locate the i-th
distinct color set in constant time. A pointer to color set Ci is just the integer i,
which can be represented in dlog |C|e bits. By choosing the sampling parameter
s = dlog |C|e, the size of S is at most |V |/ log |C|, so the total size taken by the
sampling pointers is only |V | bits, and we obtain a worst-case color set lookup
time of O(log s) = O(log |C|). With this, the whole coloring data structure takes
on the order of |V ′| log |C| + |V | +

∑
C∈C |C| logm bits of space. The Wheeler

graph data-structure takes |V | log σ + 2|V |+ σ log |V |+ o(|V | log σ) bits space,
where σ is the size of the alphabet.

Most of the heavy work is done by the subroutines for k-mer listing and for
disk-based sorting. In our implementation, we used the highly optimized parallel
tool KMC3 for k-mer listing, and a custom `-way disk-streaming mergesort with
parallel merges for the sorting. The sorting implementation first divides the
input into blocks that fit in the given RAM limit, sorts the blocks in RAM to
disk, and then merges the blocks. Extra memory can speed up the sorting.

Any general purpose tool for the sorting and k-mer listing subroutines could
be plugged into the pipeline with no changes to the rest of the pipeline. We
believe this property could allow our construction pipeline to scale even to a
distributed cluster of machines, as there are distributed implementations for

4

both k-mer counting and sorting.

4 Performance

We benchmarked the construction performance of our implementation on a
dataset of 3682 Escherichia coli genomes downloaded from the NCBI archives2.
There were 19.0 billion nucleotides in this dataset.

Given 20GiB of RAM, Themisto builds the E. coli index for k = 32 in 6
hours and 16 minutes3. The main drawback is that the construction takes 375
GiB of disk space. Large disk usage is a common problem with sorting-based
de Bruijn graph construction algorithms, such as the VARI-merge construction
algorithm [5].

The final size of our index was 7.8GiB. The BOSS component of the index
takes only 364MiB, and the rest of the space is taken by the coloring data
structure. The concatenation of distinct color sets takes 6.6GiB of space. The
distribution of the sizes of the color sets is shown in Figure 2. The index contains
325 million distinct k-mers.

Our implementation pseudoaligns reads from E. coli strains collected from
across England [6] against the index at a rate of 1.4 billion nucleotides per
hour using 8 threads, after loading the index into memory in 33 seconds. The
alignment speed depends on the number matching k-mers and sizes of the color
sets of the k-mers.

In comparison, Kallisto takes 4 hours and 57 minutes to construct an index
for the same dataset, requiring as much as 287 GiB of memory. The index size
on disk is 83 GiB, and 128 GiB in memory. The pseudoalignment throughput is
approximately 2.1 billion nucleotides per hour using 8 threads, after loading the
index to memory in 28 minutes. Table 1 summarizes key performance metrics
for both Kallisto and Themisto on our benchmark.

Index Index Indexing Indexing Indexing Pseudoalignment
in disk in RAM time RAM disk throughput

Themisto 7.8GiB 7.8GiB 6h 16min 20GiB 375GiB (1.4 · 109) nt/h
Kallisto 83GiB 142GiB 4h 57min 287GiB - (2.1 · 109) nt/h

Table 1: Themisto versus Kallisto on our benchmark dataset. The unit of
throughput is nucleotides per hour.

2Assemblies from ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly summary.txt
with the organism name ”Escherichia coli”.

3Hardware: Intel Xeon E7-8890 CPU (2.2GHz, 60M Cache, 9.6GT/s QPI 24C/48T, HT,
Turbo 165W) with 48 × 64GB LRDIMM memory (2400MT/s, Quad Rank, x4 Data Width),
running on top of a distributed Lustre file system.

5

0 500 1000 1500 2000 2500 3000 3500
Color set size

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity

Color set size distribution in the E. Coli dataset

Figure 2: Color set size distribution for the dataset of 3682 E. Coli genomes
each having a unique color.

6

References

[1] Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter.
Near-optimal probabilistic RNA-seq quantification. Nature biotechnology,
34(5):525–527, 2016.

[2] Camille Marchet, Christina Boucher, Simon J Puglisi, Paul Medvedev,
Mikaël Salson, and Rayan Chikhi. Data structures based on k-mers for
querying large collections of sequencing datasets. bioRxiv, page 866756,
2019.

[3] Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya.
Succinct de Bruijn graphs. In International workshop on algorithms in bioin-
formatics, pages 225–235. Springer, 2012.

[4] Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A frame-
work for BWT-based data structures. Theoretical computer science, 698:67–
78, 2017.

[5] Martin D Muggli, Bahar Alipanahi, and Christina Boucher. Building large
updatable colored de Bruijn graphs via merging. Bioinformatics, 35(14):i51–
i60, 2019.

[6] Teemu Kallonen, Hayley J Brodrick, Simon R Harris, Jukka Corander,
Nicholas M Brown, Veronique Martin, Sharon J Peacock, and Julian
Parkhill. Systematic longitudinal survey of invasive Escherichia coli in Eng-
land demonstrates a stable population structure only transiently disturbed
by the emergence of ST131. Genome research, 27(8):1437–1449, 2017.

7

	The pseudoalignment criterion
	Implementation overview
	Implementation details
	Performance

