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Abstract Glioblastoma (GBM) is the most aggressive primary brain tumor
with a short median survival. Tumor recurrence is a clinical expectation of this
disease and usually occurs along the resection cavity wall. However, previous
clinical observations have suggested that in cases of perioperative ischemia,
tumors are more likely to recur distally. Through the use of a mechanistic
model of GBM, the Proliferation Invasion Hypoxia Necrosis Angiogenesis (PI-
HNA) model, we explore the phenotypic drivers of this observed behavior. We
have extended the PIHNA model to include a new nutrient-based vascular ef-
ficiency term that encodes the ability of local vasculature to provide nutrients
to the simulated tumor. The extended model suggests sensitivity to a hypoxic
microenvironment and the inherent migration and proliferation rates of the
tumor cells are key factors that drive distant recurrences.
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1 Introduction

Glioblastoma (GBM) is the most aggressive primary brain tumor [13]. It is
uniformly fatal with a median survival from diagnosis of only 15 months with
standard of care treatment [17]. An unfortunate clinical expectation follow-
ing surgical resection is tumor recurrence, which usually presents on the edge
of the resection cavity [4]; this is known as a local recurrence. Occasionally,
the recurrent tumor will enhance on T1-weighted magnetic resonance imaging
with gadolinium contrast (T1Gd MRI) in a different region of the brain, away
from the primary site, or the mass will become more conspicuous with con-
fluent progression on T2 MRI relative to the enhancement pattern on T1Gd
MRI, these cases are known as distant and diffuse recurrences respectively [4].
In a retrospective study by Thiepold et al. it was shown in a cohort of pa-
tients with GBM who had also suffered from perioperative ischemia, defined
as an inadequate blood supply to a part of the brain following resection, were
more likely to have a distantly and/or diffusely recurring GBM [23]. A dis-
ruption in normal vasculature can occur following resection in GBM patients
and can lead to ischemia, affecting neoplastic tissue in the same way it affects
the healthy tissue. By reducing available nutrients to the tumor, the tumor
is forced towards a hypoxic phenotype and becomes necrotic if the reduction
is sustained. Thiepold attributed the observed difference in recurrence pat-
terns to the hypoxic conditions caused by the reduction in vasculature [23].
In retrospective analyses of patient data, Bette et al. found further support-
ing evidence that perioperative ischemia promoted aggressive GBM recurrence
patterns [2,3]. Bette et al. showed that perioperative infarct volume was pos-
itively associated with more multifocal disease and contact to the ventricle,
which have both been shown to negatively impact patient survival in a pre-
treatment setting [1,16].

Spatiotemporal mathematical models have been used extensively to de-
scribe the tissue-level growth of GBM [19,20,22]. These models incorporate
features of tumor cells such as cell phenotype, migration, proliferation and
interactions with other cells to understand how these influence observed tissue
growth behavior in GBM. Such models have the ability to provide mechanistic
insight into observed tumor growth patterns and treatment effects. An example
of one of these models is the Proliferation Invasion Hypoxia Necrosis Angio-
genesis (PIHNA) model, which has been used to study different mechanisms
of tumor development and shows similar growth and progression patterns to
those seen in patient tumors [21]. We have recently found the parameters of
the PIHNA model that drive faster outward growth of simulated tumors and
found that those relating to hypoxia were in some cases extremely influential
[7].

In this work, we apply the PIHNA model to a set of simulated perioperative
ischemia cases to determine influential mechanisms in the model that could
drive ischemia-induced distant recurrence patterns in GBM. We find that in-
dividual tumor migration and proliferation rates play a role in the behavior
of distantly recurring GBM. We see that this can be promoted by changes
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A Mechanistic Investigation into Ischemia-Driven Distal Recurrence 3

in switching rates between normoxic and hypoxic cell phenotypes. We have
also extended a term in the PIHNA model known as the vascular efficiency
term, which determines the ability of local vasculature to provide nutrients to
the tumor. We carried this out through the inclusion of a nutrient-transport
equation parametrized through glucose uptake rates in GBM.

2 Methods

The PIHNA Model

To simulate glioblastoma growth and spread, we have adapted a previously es-
tablished tumor growth model – the PIHNA model [21]. This model simulates
five different species and their interactions:

c – the density of normoxic tumor cells,

h – the density of hypoxic tumor cells,

n – the density of necrotic cells,

v – the density of vascular endothelial cells,

a – the concentration of angiogenic factors.

Normoxic cells proliferate with rate ρ and migrate with rate Dc, whereas
hypoxic cells do not proliferate and migrate with rate Dh. Cells convert from
normoxic to hypoxic phenotypes (with rate β) and from hypoxic to normoxic
phenotypes (with rate γ) depending on the ability of the local vascular den-
sity to provide nutrients at their location; hypoxic cells in the model become
necrotic if they remain in a vasculature-poor region with rate αh. When any
other cell type meets a necrotic cell, they become necrotic with rate αn. An-
giogenic factors migrate with rate Da, are created by the presence of normoxic
and hypoxic tumor cells (with rates δc and δh, respectively), decay naturally
(λ) and are consumed through the creation and presence of vascular cells.

We present a schematic for the PIHNA model in Figure 1. The PIHNA
model itself is presented in Equations (1)-(5).
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Fig. 1: A schematic for the PIHNA model. Normoxic tumor cells (c) proliferate,
migrate, convert towards hypoxia and can become necrotic. Hypoxic tumor
cells (h) migrate and can convert back to normoxic cells or to necrotic cells.
Necrotic cells (n) accumulate as other cell types die. Angiogenic factors (a)
are created in the presence of normoxic and hypoxic cells, migrate, decay and
promote the local creation of vasculature. Vascular cells (v) proliferate through
the facilitation of angiogenic factors and migrate.
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where

V (c, h, v) =
v

v + ηc(Dc,ρ)c+ηh(Dh)h
ps

. (6)

and

T = (c+ h+ n+ v)/K. (7)

The term V is called the vascular efficiency and it models the relationship
between the vasculature and its effect on the tumor. We let V take values in
[0, 1] such that it affects the switching rates between the normoxic (c), hypoxic
(h) and necrotic (n) cell populations. When vasculature is abundant relative to
other cells, V is close to 1 representing ample nutrient supply. Whereas when
vasculature is relatively low, V is close to 0, which represents an unfavorable
microenvironment of limited nutrient supply; this promotes conversion towards
hypoxic and necrotic cells. We have extended the vascular efficiency term from
previous iterations of the PIHNA model and present the derivation of this term
in the next section.

Following the literature [18], we have assumed that a total relative cell
density of at least 80% is visible on a T1Gd MRI, and a total relative density
of at least 16% is visible on a T2 MRI. In the PIHNA model, this translates
to T ≥ 0.8 being visible on a T1Gd MRI and T ≥ 0.16 being visible on a T2
MRI. By construction, the T1Gd lesion is always less than or equal in size to
the T2 lesion, which agrees with patient data [9].

The model equations are run on a two-dimensional slice of a realistic brain
geometry from the Brainweb Database [5,6,11,12], which spatially differenti-
ates physiological structures such as white matter, grey matter, cerebrospinal
fluid (CSF) and anatomical boundaries of the brain. This geometry is an av-
erage of multiple MR scans on a single patient to create a brain geometry
with 1mm accuracy on and between MR slices. This gives a voxel volume of
1mm3, which we use to track tumor volume on the two-dimensional brain slice.
We have run our simulations on white and gray matter, not allowing for any
growth of the tumor into the CSF or past the boundaries of the brain.

We initiate the simulation with a small normoxic cell population that de-
creases spatially from a point with coordinates (x0, y0)

c(x, 0) = 1000e−100R2

, (8)

where R2 = (x − x0)2 + (y − y0)2. Across simulations, all tumors are seeded
in a fixed location seen in Figure 2.

The initial vascular cell densities are heterogeneous, set to 3% and 5% of
the carrying capacity, K, in white and grey matter respectively; these values
fall within the values for cerebral blood volume found from the literature [24].
All other spatio-temporal variables are initially set to zero. There are no-flux
boundary conditions on the outer boundary of the brain for all variables as
well as on the CSF that do not allow growth outside of the brain or into CSF
regions.
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Definition Value/Range Units Source

Dc Diffusion rate of normoxic cells 1− 1000 mm2

year [9]

Dh Diffusion rate of hypoxic cells (0.1− 100)Dc
mm2

year [9,14]∗

ρ Proliferation rate of normoxic cells 10− 100 1/year [9]

β
Switching rate from
normoxia to hypoxia

0.1ρ, 0.5ρ 1/year [21]∗

γ
Switching rate from
hypoxia to normoxia

0.005, 0.05, 0.5 1/day [21]

αh
Switching rate from
hypoxia to necrosis

0.1β 1/year [21]

αn Rate of contact necrosis log(2)/50 1/day [15]

Dv Diffusion rate of endothelial cells 0.18 mm2

year [21]

Da Diffusion rate of angiogenic factors 3.15 mm2

year [21]

δc
Normoxic cell production rate

of angiogenic factors
2.77× 10−13 µmol

cell×year
[21]

δh
Hypoxic cell production rate

of angiogenic factors
5.22× 10−10 µmol

cell×year
[21]

µ
Angiogenesis vasculature

production rate
log(2)/15 1/day [21]

q
Consumption of angiogenic

factors per cell
1.66 µmol/cell [21]

λ
Natural decay rate

of angiogenic factors
15.6 1/day [21]

ω
Rate of removal of angiogenic

factors by vasculature
λ/v0

1
cell×day

[21]

K Maximal cell density 2.39× 105 cells/mm3 [21]

Pwc
Glucose consumption ratio for
normoxic cells in white matter

1.66− 4.5 - [8]∗

Pwh
Glucose consumption ratio for
hypoxic cells in white matter

1.66− 4.5 - [8]∗

P gc
Glucose consumption ratio for
normoxic cells in grey matter

0.5− 2 - [8]∗

P gh
Glucose consumption ratio for
hypoxic cells in grey matter

0.5− 2 - [8]∗

Table 1: Parameter definitions and values for the PIHNA model. ∗Parameters
that we have added/altered in this formulation of PIHNA.

Nutrient-Based Vascular Efficiency

The extended vascular efficiency term uses a reaction-transport equation to
model the nutrient consumption by the tumor cells. Using this reaction-transport
equation for the movement and consumption of nutrient, f1, the derivation of
the vascular efficiency term goes as follows:

∂f

∂t
= ∇ · (Df∇f) + psv(fblood − f)− ηc(Dc, ρ)cf − ηh(Dh)hf, (9)

1 We denote this as f to represent fuel for the cells, to avoid reusing n which is already
assigned to necrotic cells.
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Fig. 2: An example simulation shown at a size equivalent to a circle of 1cm
radius on simulated T1Gd MRI. We show all cell densities divided by K and
the angiogenic factor concentration divided by KM . We see how normoxic cells
lead the outward growth of the simulated GBM, followed by hypoxic cells and
necrotic cells. Angiogenic factors are mostly found in the hypoxic cell region.
We also show the regions that are assumed visible on T1Gd MRI (T ≥ 0.8)
and T2 MRI (T ≥ 0.16) as well as the point where the tumor is initiated (black
pixel). In this simulation, Dh/Dc = 10, Dc = 101.5mm2/year, ρ = 100/year,
β = 0.5ρ and γ = 0.05/day.

where p is the permeability of the blood brain barrier to nutrient, s is the
vascular surface area per unit volume, fblood is the concentration of nutrient
in the blood which is assumed fixed2, ηc is the rate of nutrient consumption by
normoxic cells and ηh is the nutrient consumption rate by hypoxic cells. We
have let ηc depend on the diffusion (Dc) and proliferation (ρ) rates of normoxic
cells, as these processes require energy. A larger Dc and ρ will require more
energy as the tumor cells migrate and proliferate relatively quickly. Similarly,
we have set ηh to depend on the value of Dh, as faster migrating tumor cells
require more energy and in turn more nutrient.

Now if we assume that in the timescale of interest, the nutrient concen-
tration rapidly reaches steady state, and that the nutrient is consumed much

2 It is well known that nutrient concentrations in blood (such as glucose concentration)
fluctuates throughout a single day, however we are interested in modeling tumor growth
over many days and months, so only consider the average nutrient concentration across
these daily fluctuations.
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8 Lee Curtin et al.

faster than it diffuses, we can eliminate those terms to be left with

0 = 0 + psv(fblood − f)− ηc(Dc, ρ)cf − ηh(Dh)hf (10)

and rearrange to get

f

fblood
=

v

v + ηc(Dc,ρ)c+ηh(Dh)h
ps

. (11)

We assign this expression as the vascular efficiency term, V , as it corresponds
to the ability of the vasculature to provide nutrients to the tumor. This term
is similar to that seen in the original formulation of the PIHNA model but
now includes the nutrient consumption and extravasation of nutrients from
the blood [21].

To estimate the parameters ηc, ηh and ps, we used Fludeoxyglucose (FDG)
Positron Emission Tomography (PET) data from a paper by Delbeke et al.
[8]. FDG is analogous to glucose and can be picked up on PET scans. We have
chosen glucose as an estimate for our generic nutrient due to the availability
of imaging data that we could use to parametrise our vascular efficiency term.

We note that to parametrize our nutrient-based vascular efficiency term,
we only need to consider the ratio between ηc : ps and ηh : ps. As both of these
expressions are in the same units of mm3/cell/year, their ratio is dimensionless.
Delbeke presents the uptake ratios between tumor and healthy tissue within
both white and grey matter. To make use of these values, we assume that in a
homeostatic healthy brain, the rate of glucose being used by healthy tissue that
is not vasculature is equal to the rate of glucose entering from the vasculature.
We do not, however, model healthy tissue in the current formulation of the
PIHNA model. For the benefit of this section, let us introduce unaffected
healthy tissue u0, with glucose uptake rate ηu, we assume

psv0 = ηu(u0 − v0), (12)

where v0 is the initial background vascular cell density in the PIHNA model,
and u0 is the healthy tissue density. We then have ps = ηu(u0/v0 − 1), which
will always be positive in PIHNA simulations as vasculature takes up a small
percentage of brain volume compared to other tissue. We assume that in
healthy white matter tissue there is 3% vasculature and in grey there is 5%,
so we let v0/u0 = 0.03 in white matter and v0/u0 = 0.05 in grey matter; these
values fall within realistic values for cerebral blood volume [24]. Now the ra-
tios of glucose uptake rates by tumor to the glucose uptake rates by healthy
tissue given by Delbeke can be considered as various values of Pc = ηc/ηu and
Ph = ηh/ηu in the PIHNA model. So Equation 11 is now expressed as

V =
v

v + Pcηuc+Phηuh
ηu(u0/v0−1)

, (13)

and the ηu terms cancel to give

V =
v

v + Pcc+Phh
u0/v0−1

. (14)
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We noted that in the work by Delbeke et al.[8] there was a spread of relative
tumor uptake values for high grade gliomas within cortical and white matter
tissue across 20 patients. As an approximation, we attributed these differences
to the nutritional demands of the individual high grade gliomas. We assign
normoxic cells with high (low) Dc and high (low) ρ in the PIHNA model with
the higher (lower) glucose uptake rates from the literature, which also vary
between white and grey matter. We assign hypoxic cells with high (low) Dh

high (low) glucose uptake rates in the same manner as the normoxic cells. The
values in between the extremes are assigned using a log linear scale, due to
the large range of Dc, Dh and ρ values used in PIHNA simulations. The ratios
Pwc , P gc , Pwh and P gh are then given by

Pw,gc (Dc, ρ) = Gw,gmax − (Gw,gmax −G
w,g
min)

log10

(
Dcmax

Dc

)
+ log10

(
ρmax

ρ

)
log10

(
Dcmax

Dcmin

)
+ log10

(
ρmax

ρmin

) (15)

and

Pw,gh (Dh) = Gw,gmax − (Gw,gmax −G
w,g
min)

log10(Dhmax
/Dh)

log10(Dhmax
/Dhmin

)
, (16)

where we use the extremes of tumor to normal tissue uptake ratios in white
matter (taken as Gwmin = 1.66 and Gwmax = 4.5) and the extremes of observed
uptake ratio in grey matter (taken as Ggmin = 0.5 and Ggmax = 2) as the mini-
mum to maximum glucose uptake ratios Gmin and Gmax. Note that in the 1D
PIHNA model we only model white matter and the 2D PIHNA model includes
both white and grey. The maximum and minimum Dc, Dh and ρ values are
equal to the maximal and minimal rates that we run in our simulations, see
Table 1. This along with the values of v0/u0 give the parametrisation of the
nutrient-based vascular efficiency term.

Modeling Resection and Ischemia

Using the PIHNA model, we have simulated a resection that occurs once the
tumor has grown to a shape with a volume equivalent to a disc of 1cm radius
on simulated T1Gd imaging. Post resection, zero-flux boundary conditions are
added around the simulated left frontal lobectomy (green outline in Figure 3)
so that regrowth into the resection cavity is not possible. Every resection is the
same, in that the same region of brain geometry is removed, which removes
all of the enhancing T1Gd region. To incorporate the potential reality that
surgery could induce a nearby ischemic event (red outline in Figure 3), we add
subsequent ischemia through a transient reduction in the vasculature term, v,
to a region adjacent to the resection cavity wall. We have modeled ischemia
as a reduction only at the time point of resection, the vessels then continue
to follow the model equations. We reduced the vasculature to 1% of its value
at the time of resection thus simulating a near complete ischemic event in the
region noted in red in Figure 3.
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10 Lee Curtin et al.

Fig. 3: The tumor undergoes resection that removes the T1Gd imageable tu-
mor cell density at 1cm radius (assumed at 80% of the maximum cell density
and shown in white) as well as the surrounding tissue. In these two examples,
the nodular tumor (top row) recurs locally, whereas the infiltrative tumor (bot-
tom row) recurs distantly. In these simulations, β = 0.5ρ, γ = 0.05/day and
Dh = 10Dc. For the nodular tumor, Dc = 100.5mm2/year and ρ = 101.5/year.
For the infiltrative tumor, Dc = 100mm2/year and ρ = 10/year.

Virtual Experiments

We run simulations for different values of normoxic cell migration (Dc with
range 1 − 1000mm2/year) and proliferation (ρ with range 10 − 100/year), as
well as test two values of β (0.1ρ and 0.5ρ), which is the switching rate from
the normoxic cell density towards hypoxic cell density, three values of γ (0.005,
0.05, 0.5/day), which is the switching rate back from hypoxic cell density to
a normoxic cell density, and the rate of hypoxic to normoxic cell migration,
Dh/Dc (1, 10 or 100). We vary the ratio of hypoxic to normoxic cell migration
due to evidence that GBM cells migrate faster in hypoxic conditions [10,25].
These parameters were chosen as they represent the tumor’s response to hy-
poxic stress. In previous work, we have observed that all of these parameters
(except for β) influence the outward growth rate of PIHNA simulations, which
is another consideration of the effects of hypoxia on GBM [7]. We note that
the varying tumor kinetics (migration rates Dc, Dh and proliferation rate ρ)
affect the nodularity of the simulated tumors. Simulations with higher ratios of
migration to proliferation will be more infiltrative tumors, whereas those with
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higher ratios of proliferation to migration will be denser tumor masses with
less infiltration and more well-defined tumor cell density boundaries. Examples
of this effect can be seen in Figure 3.

Defining Recurrence

Recurrence location of a tumor is classified as the reappearance of the tumor
on T1Gd MR scans as is done clinically [26]. If a tumor initially reappears
outside of the simulated ischemic region above a certain thresholded size (a
disc of radius 2mm on simulated T1Gd MRI) before appearing anywhere else,
it is classified as distant. Whereas if it appears within the ischemic region along
the cavity wall above the same threshold before anywhere else, it is classed as
a local recurrence. Examples of these cases can be seen in Figure 3. We define
a mixed recurrence when the tumor appears on simulated T1Gd MRI both
inside and outside the ischemic region before the size threshold within either
region is reached.

3 Results

Individual tumor kinetics affect recurrence location following peri-
operative ischemia

Extending on the paper by Thiepold et al., that suggests distant recurrence
can occur through ischemia and subsequent hypoxia [23], the PIHNA model
suggests that tumor kinetics also play a role. Figure 3 shows two simulated
tumors, one nodular and the other infiltrative, that go through resection and
subsequently recur. The recurrence pattern for the nodular tumor is local,
whereas the infiltrative tumor recurs distantly. Such distantly recurring tu-
mors remain in lower cell densities within the ischemic region and appear
outside on simulated T1Gd imaging as they continue to increase their cell
density outside of the ischemic region. The only differences between the two
simulations presented in Figure 3 are the migration and proliferation rates of
the tumor cells.

Tumor response to hypoxic conditions affects recurrence location

By varying individual tumor kinetics (Dc and ρ with Dh = 10Dc) and the
maximal rate at which tumor cells become hypoxic and in turn necrotic (β),
with a fixed vascular ischemia post resection, we are able to show differing
tumor recurrence locations, see Figure 4. We also varied the maximal rate
at which hypoxic tumor cells returned to a normoxic state, γ. Changing this
parameter also had an effect on the recurrence patterns, see Figure 5. A low
level of γ promotes more distant recurrence, while a high level of γ promotes
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Fig. 4: Recurrence location classified for various Dc, ρ and β for Dh = 10Dc

and γ = 0.05/day. We see that higher values of β (the conversion rate from
normoxic to hypoxic cells) lead to a larger proportion of distant recurrences in
Dc and ρ parameter space. Higher migration rates, Dc, and lower proliferation
rates, ρ, lead to more distantly recurring simulated tumors.
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Fig. 5: Recurrence location classified for various Dc, ρ and γ for Dh = 10Dc

and β = 0.5ρ. We see the higher (lower) values of γ lead to a lower (higher)
proportion of distant recurrences in Dc and ρ parameter space. Higher migra-
tion rates, Dc, and lower proliferation rates, ρ, lead to more distantly recurring
simulated tumors.

local recurrence. Recurrence location is classified as the first reappearance of
a tumor on T1Gd MR imaging as described in the previous section.

An increase in β leads to more sensitivity in the tumors to ischemia, which
causes them to become more hypoxic and therefore less proliferative within
the ischemic region. They are more likely to become denser, and therefore
imageable on simulated T1Gd MRI, outside of the ischemic region and be
seen as a distant recurrence. Conversely, an increase in γ, the conversion rate
from a hypoxic cell phenotype back to normoxic, hinders this effect as it limits
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Fig. 6: Recurrence location classified for various Dc, ρ and Dh/Dc for β = 0.5ρ.
We see that the higher (lower) level Dh/Dc lead to a larger (smaller) propor-
tion of distant recurrences in Dc and ρ parameter space. Higher migration
rates, Dc, and lower proliferation rates, ρ, lead to more distantly recurring
simulated tumors.

the impact of hypoxia on the growth of the simulated tumor. We present the
effects of varying γ on this distant recurrence behavior in Figure 5 and other
simulation results in Appendix A.

Faster Hypoxic Cell Migration Rates Promote Distant Recurrence

Following this initial analysis, we also varied the hypoxic diffusion rate rela-
tive to the normoxic counterpart, Dh/Dc. Along with the simulations where
Dh = 10Dc described in the previous section, we have set Dh/Dc = 1 and
Dh/Dc = 100 (see Figure 6). We see that the higher the Dh/Dc value, the
more distantly recurring tumors occur for fixed values of β and γ. The effect of
an increase in Dh/Dc is more pronounced for tumors that are more sensitive to
the hypoxic environment caused by the ischemia, see Appendix A. In previous
work, we have shown that an increase in Dh/Dc increases the outward growth
rate of PIHNA-simulated GBM [7]. With faster hypoxic migration rates, the
simulated tumor cell densities are able to travel through the hypoxic region
faster. These tumors can then reach the region of the brain slice unaffected
by ischemia and develop into a dense tumor mass before the tumor develops
within the ischemic region.

4 Discussion

Through mathematical modeling, we have found a possible mechanism for
distant GBM recurrence in response to ischemia. If the tumor has an invasive
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phenotype, it can remain unimageable on simulated T1Gd MRI as it trav-
els through the ischemic region (using our assumed threshold of 80% total
cell density). Once it reaches healthy intact vasculature, it will return to a
normoxic phenotype and proliferate to an imageable density outside of the
ischemic region before it does so next to the cavity wall. From an imaging
standpoint, this would be a distant recurrence. We see that the switching rate
from normoxic cells to hypoxic cells plays a role in this behavior, increasing
this rate leads to more distantly recurring tumors within the parameter range
of Dc and ρ that we have used. Conversely, increasing the recovery rate from a
hypoxic cell phenotype to a normoxic cell phenotype leads to less distantly re-
curring tumors (Figure 5). We also note that an increase in the rate of hypoxic
cell migration relative to normoxic cell migration promotes distantly recurring
tumors (Figure 6).

The dependency of distant recurrence on cell migration suggests patients
may benefit from an anti-migratory drug prior to surgery. Such a treatment
may reduce the cases of distant recurrence, especially in instances of periop-
erative ischemia. These results may also be suggestive of tumor response to
hypoxic conditions more generally. Future work may explore patient data to
compare pre-operative infiltration patterns with distance to recurrence.

Now that we have seen distant recurrences in the model and the dependence
of this behavior on Dc, ρ, β, γ and Dh/Dc, we have a platform for further
exploration. We can test the effect of environmental changes on this distant
recurrence behavior such as various tumor locations, resection extents and
extents of ischemic injury. We can also move the model to a more realistic 3D
space.

Simulated T1Gd MRI volumes are inhibited within the ischemic region,
which may explain why diffuse recurrences are also observed in patients with
perioperative ischemia. If the hypoxic cell phenotype were maintained follow-
ing exposure to ischemia, the tumor as a whole could remain more diffuse in
a clinical sense of a large T2 volume relative to T1Gd. Utilizing the PIHNA
model may be a useful tool in our effort to understand patterns of recurrence
in GBM and understanding the role of ischemia in recurrence and growth
patterns more broadly.
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A Recurrence Results of Other PIHNA Simulations

We present the results of PIHNA simulations that were not shown in the main text. The
trends in distant recurrence patterns that we observe in the main text all hold in these
simulations, supporting our observations regarding Dh/Dc, β, γ, Dc and ρ.
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Fig. 7: Recurrence location classified for various Dc, ρ, β and levels of ischemia
for Dh = Dc for γ = 0.005/day and γ = 0.5/day. We see that higher values
of β and lower levels of γ lead to a larger proportion of distant recurrences in
Dc and ρ parameter space. Higher migration rates, Dc, and lower proliferation
rates, ρ, lead to more distantly recurring simulated tumors.
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Fig. 8: Recurrence location classified for various Dc, ρ, β and levels of ischemia
for Dh = 10Dc for γ = 0.005/day and γ = 0.5/day. We see that higher values
of β and lower levels of γ lead to a larger proportion of distant recurrences in
Dc and ρ parameter space. Higher migration rates, Dc, and lower proliferation
rates, ρ, lead to more distantly recurring simulated tumors.
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Fig. 9: Recurrence location classified for various Dc, ρ, β and levels of ischemia
for Dh = 100Dc for γ = 0.005/day and γ = 0.5/day. We see that higher values
of β and lower levels of γ lead to a larger proportion of distant recurrences in
Dc and ρ parameter space. Higher migration rates, Dc, and lower proliferation
rates, ρ, lead to more distantly recurring simulated tumors.
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