Supplementary Information for:

Intrinsically disordered linkers control tethered kinases via effective concentration

Mateusz Dyla^{1,2} and Magnus Kjaergaard^{1-4*}

¹ Department of Molecular Biology and Genetics, Aarhus University

² The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine

³ Center for Proteins in Memory - PROMEMO, Danish National Research Foundation

⁴ Aarhus Institute of Advanced Studies, AIAS, Aarhus University

* Corresponding author: magnus@mbg.au.dk

Protein sequences

Color coding:

- 6xHis-tag
- Thrombin cleavage sequence, // marks the cleavage site
- MBD2 dimerization domain
- p66α dimerization domain
- GCTAGC (AS) Nhel restriction site
- $(GS)_n$ variable-length GS linker; n = 1, 10, 30 or 60
- GGTACC (GT) KpnI restriction site
- PKA substrate motif, catalytic Ser shown in **bold**

1. PKAc

MGSS<mark>HHHHHH</mark>SSGLVPR//GSHMGNAAAAKKGSEQESVKEFLAKAKEDFLKKWETPSQNTAQLDQFDRIKTLGT GSFGRVMLVKHKESGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVAGG EMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPE YLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRF GNLKNGVNDIKNHKWFATTDWIAIYQRKVEAPFIPKFKGPGDTSNFDDYEEEEIRVSINEKCGKEFTEF

2. MBD2-(GS)_n-PKAc

MGSSHHHHHHSSGLVPR//GSHMVTDEDIRKQEERAQQVRKKLEEALMADAS(GS)_nGTGNAAAAKKGSEQESVKE FLAKAKEDFLKKWETPSQNTAQLDQFDRIKTLGTGSFGRVMLVKHKESGNHYAMKILDKQKVVKLKQIEHTLNEK RILQAVNFPFLVKLEFSFKDNSNLYMVMEYVAGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKP ENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQI YEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWFATTDWIAIYQRKVEAPFIPKFKGPG DTSNFDDYEEEEIRVSINEKCGKEFTEF

3. p66α -(GS)_n-WT substrate

MGSSHHHHHHSSGLVPR//GSHMTSPEERERMIKQLKEELRLEEAKLVLLKKLRQSQIQKEATAQKAS(GS)_nGTPG SGSGSGSLRRA<mark>S</mark>LGGGGGY

4. $p66\alpha - (GS)_n - R - 2K$ substrate

MGSSHHHHHHSSGLVPR//GSHMTSPEERERMIKQLKEELRLEEAKLVLLKKLRQSQIQKEATAQKAS(GS)_nGTPG SGSGSGSLRKA**S**LGGGGGY

5. p66α -(GS)_n-R-3K substrate

MGSSHHHHHHSSGLVPR//GSHMTSPEERERMIKQLKEELRLEEAKLVLLKKLRQSQIQKEATAQKAS(GS)_nGTPG SGSGSGSLKRA**S**LGGGGGGY

Supplementary figures

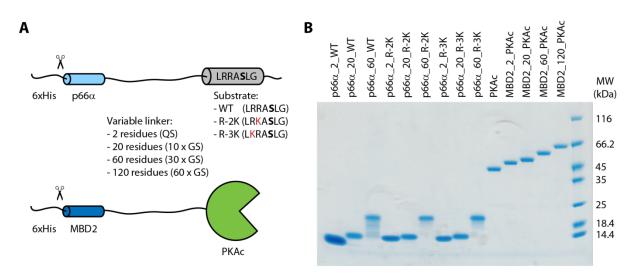
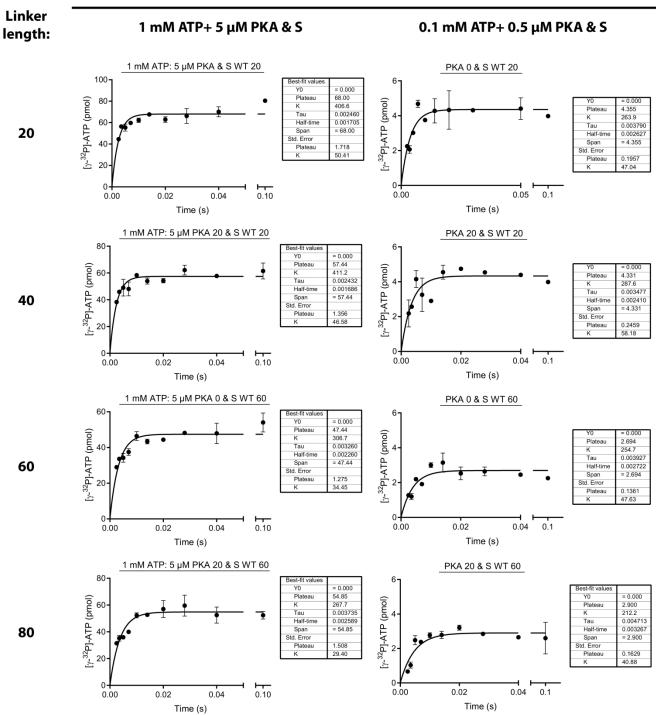


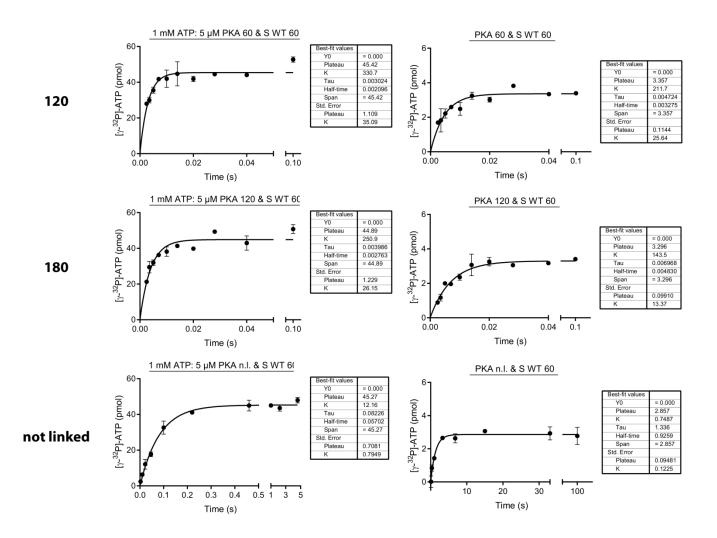
Fig. S1: Protein variants used in this study. (A) Schematic representation of the protein variants used to form the tethered kinase substrate complex. Both constructs contain variable GS-linker. (B) SDS-PAGE gel of purified proteins. The substrate with a 120 residue GS linker could not be purified to sufficient purity.

Next four pages:

Fig. S2: Raw data from quench-flow experiments.



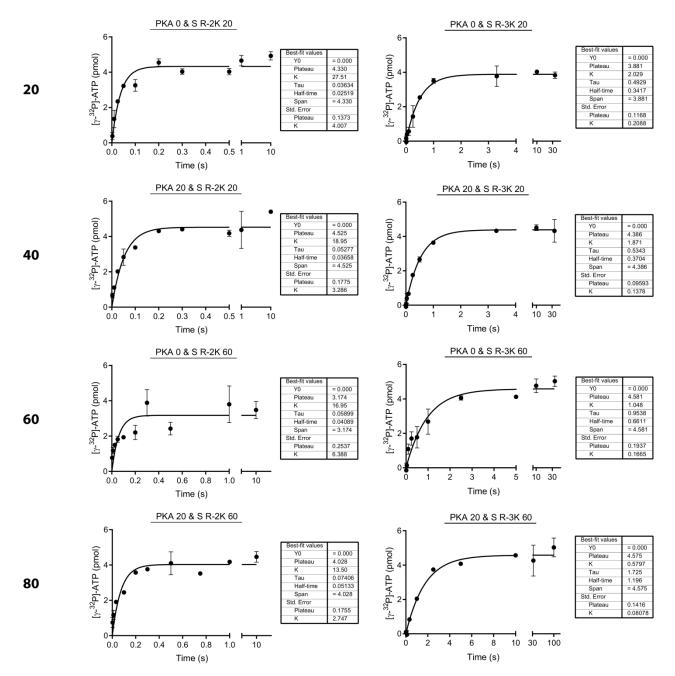
PKA & SWT

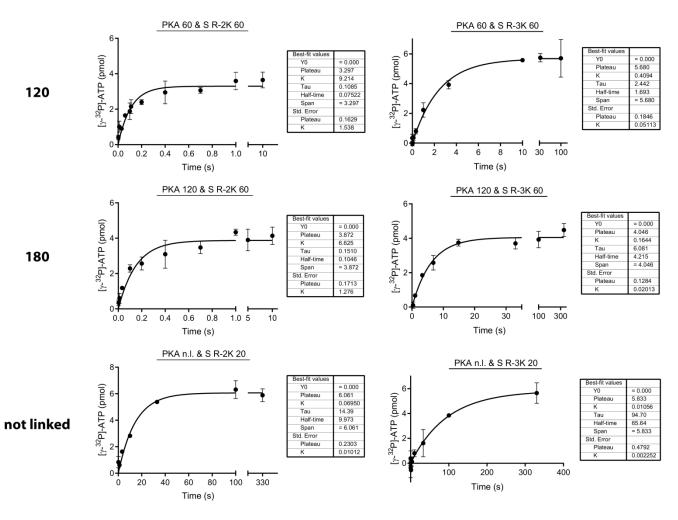


PKA & S R-3K



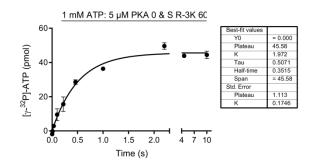
0.1 mM ATP+ 0.5 μ M PKA & S





PKA & S R-3K

 $1 \text{ mM ATP} + 5 \mu \text{M PKA & S}$



60

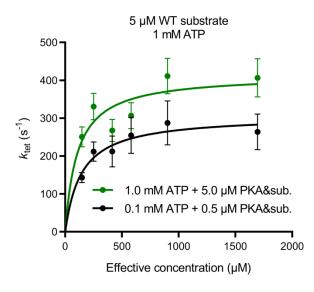


Fig. S3: ATP dependence of the tethered reaction. The ATP dependence of the tethered phosphorylation was tested at 1 mM ATP, whereas all other experiments were conducted at 100 μ M. The amount of [γ -³²P]ATP was already at maximally permitted level, so the protein concentration was also increased 10-fold to preserve the same signal to noise.

Derivations of rate equations

Tethered system

We consider a catalytical model where product release limits steady-state reaction rates and where phosphorylation and product release are two irreversible steps.

Moreover, we use saturating ATP concentrations and assume $k_{\text{ATP binding}} >> k_{\text{cat}}$. Thus, we define the following states:

- 0 = open tethered system, bound ATP
- C = closed tethered system, bound ATP
- CP = closed, phosphorylated tethered system, bound ADP
- OP = open tethered system

The tethered system is composed of two interacting partners, and closure of this system is governed by effective concentration, $C_{\rm eff}$:

$$0 \xleftarrow[k_{-1}]{k_1 C_{eff}} C \xrightarrow[]{k_2} CP \xrightarrow[]{k_3} OP$$

The Law of Mass Action applied to the model leads to the following system of nonlinear reaction equations:

$$\frac{d[O]}{dt} = -k_1 C_{eff}[O] + k_{-1}[C]$$
$$\frac{d[C]}{dt} = k_1 C_{eff}[O] - (k_{-1} + k_2)[C]$$
$$\frac{d[CP]}{dt} = k_2[C] - k_3[CP]$$
$$\frac{d[OP]}{dt} = k_3[CP]$$

In single turnover experiments both closed and open phosphorylated products are measured, hence:

$$P = CP + OP$$
$$\frac{d[P]}{dt} = \frac{d[CP]}{dt} + \frac{d[OP]}{dt} = k_2[C]$$

From the conservation law, total concentration of the tethered system is constant:

$$\frac{d[O]}{dt} + \frac{d[C]}{dt} + \frac{d[CP]}{dt} + \frac{d[OP]}{dt} = 0$$

$$[O] + [C] + [CP] + [OP] = [E]_{T}$$
$$[O] = [E]_{T} - [C] - [P]$$

Rapid equilibrium assumption for the open/closed complex:

$$\begin{aligned} \frac{d[O]}{dt} &= 0\\ k_1 C_{eff}[O] &= k_{-1}[C]\\ k_1 C_{eff}([E]_{\mathrm{T}} - [C] - [P]) &= k_{-1}[C]\\ k_{-1}[C] &+ k_1 C_{eff}[C] &= k_1 C_{eff}[E]_{\mathrm{T}} - k_1 C_{eff}[P]\\ [C] &= \frac{k_1 C_{eff}[E]_{\mathrm{T}} - k_1 C_{eff}[P]}{k_{-1} + k_1 C_{eff}} &= \frac{C_{eff}[E]_{\mathrm{T}} - C_{eff}[P]}{\frac{k_{-1}}{k_1} + C_{eff}} \end{aligned}$$

Given $K_d = \frac{k_{-1}}{k_1}$:

$$[C] = \frac{C_{eff}[E]_{\mathrm{T}} - C_{eff}[P]}{K_d + C_{eff}}$$

Substituting [*C*] into the product formation equation:

$$\frac{d[P]}{dt} = k_2[C] = k_2 \frac{C_{eff}[E]_{\mathrm{T}} - C_{eff}[P]}{K_d + C_{eff}}$$

Integrate product formation rate:

$$\begin{aligned} \frac{d[P]}{dt} &= -\frac{k_2 C_{eff}}{K_d + C_{eff}} [P] + \frac{k_2 C_{eff} [E]_{\mathrm{T}}}{K_d + C_{eff}} \\ \frac{1}{-\frac{k_2 C_{eff}}{K_d + C_{eff}} [P] + \frac{k_2 C_{eff} [E]_{\mathrm{T}}}{K_d + C_{eff}}} d[P] = dt \\ \int_0^{[P]} \frac{1}{-\frac{k_2 C_{eff}}{K_d + C_{eff}} [P] + \frac{k_2 C_{eff} [E]_{\mathrm{T}}}{K_d + C_{eff}}} d[P] = \int_0^t dt \\ -\frac{K_d + C_{eff}}{k_2 C_{eff}} \ln \left| -\frac{k_2 C_{eff}}{K_d + C_{eff}} [P] + \frac{k_2 C_{eff} [E]_{\mathrm{T}}}{K_d + C_{eff}} \right| + \frac{K_d + C_{eff}}{k_2 C_{eff}} \ln \left| -\frac{k_2 C_{eff} [E]_{\mathrm{T}}}{K_d + C_{eff}} \right| \\ &= t - 0 \end{aligned}$$

$$\ln \left| \frac{k_2 C_{eff}([E]_{\rm T} - [P])}{K_d + C_{eff}} \right| - \ln \left| \frac{k_2 C_{eff}[E]_{\rm T}}{K_d + C_{eff}} \right| = -\frac{k_2 C_{eff}}{K_d + C_{eff}} t$$
$$\ln \left| \frac{[E]_{\rm T} - [P]}{[E]_{\rm T}} \right| = -\frac{k_2 C_{eff}}{K_d + C_{eff}} t$$
$$\frac{[E]_{\rm T} - [P]}{[E]_{\rm T}} = e^{-\frac{k_2 C_{eff}}{K_d + C_{eff}} t}$$

Formation of phosphorylated product is described by the following equation:

$$[P] = [E]_{\mathrm{T}} \left(1 - e^{-\frac{k_2 C_{eff}}{K_d + C_{eff}} t} \right)$$

Phosphorylation rates in the tethered system obtained from quench flow measurements (k_{tet}) are dependent on effective concentration:

$$k_{tet} = \frac{k_2 C_{eff}}{K_d + C_{eff}}$$

Untethered system

We consider a catalytical model where product release limits steady-state reaction rates and where phosphorylation and product release are two irreversible steps.

$$S + E \xleftarrow[k_{-1}]{k_1} ES \xrightarrow[k_2]{k_2} EP \xrightarrow[k_3]{k_3} E + P$$

The Law of Mass Action applied to the model leads to the following system of nonlinear reaction equations:

$$\frac{d[S]}{dt} = -k_1[S][E] + k_{-1}[ES]$$
$$\frac{d[E]}{dt} = -k_1[S][E] + k_{-1}[ES] + k_3[EP]$$
$$\frac{d[ES]}{dt} = k_1[S][E] - (k_{-1} + k_2)[ES]$$
$$\frac{d[EP]}{dt} = k_2[ES] - k_3[EP]$$
$$\frac{d[P]}{dt} = k_3[EP]$$

From the conservation law for the enzyme, total enzyme concentration is constant:

$$\frac{d[E]}{dt} + \frac{d[ES]}{dt} + \frac{d[EP]}{dt} = 0$$

[E] + [ES] + [EP] = [E]₀
[E] = [E]₀ - [ES] - [EP]

Rapid equilibrium assumption:

$$\frac{d[S]}{dt} = 0$$

$$k_1[S][E] = k_{-1}[ES]$$

$$k_1[S]([E]_0 - [ES] - [EP]) = k_{-1}[ES]$$

$$k_1[S][E]_0 - k_1[S][EP] = k_{-1}[ES] + k_1[S][ES]$$

$$[ES] = \frac{k_1[S][E]_0 - k_1[S][EP]}{k_1[S] + k_{-1}}$$

Quasi-steady-state approximation of the [*EP*] complex:

$$\begin{aligned} \frac{d[EP]}{dt} &= 0\\ k_2[ES] - k_3[EP] &= 0\\ \frac{k_3[EP]}{k_2} &= [ES]\\ \frac{k_3[EP]}{k_2} &= \frac{k_1[S][E]_0 - k_1[S][EP]}{k_1[S] + k_{-1}}\\ k_1k_3[S][EP] + k_{-1}k_3[EP] &= k_1k_2[S][E]_0 - k_1k_2[S][EP]\\ [EP]([S]k_1(k_2 + k_3) + k_{-1}k_3) &= k_1k_2[S][E]_0\\ [EP] &= \frac{k_1k_2[S][E]_0}{[S]k_1(k_2 + k_3) + k_{-1}k_3}\\ [EP] &= \frac{\frac{k_2[S][E]_0}{k_2 + k_3}}{[S] + \frac{k_{-1}k_3}{k_1(k_2 + k_3)}} \end{aligned}$$

Given $K_d = \frac{k_{-1}}{k_1}$:

$$[EP] = \frac{\frac{k_2[S][E]_0}{k_2 + k_3}}{[S] + K_d \frac{k_3}{k_2 + k_3}}$$

Finally, substituting [*EP*] into the product formation equation:

$$\frac{d[P]}{dt} = k_3[EP] = \frac{\frac{k_2k_3}{k_2 + k_3}[S][E]_0}{[S] + K_d \frac{k_3}{k_2 + k_3}}$$

Hence:

$$k_{cat} = \frac{k_2 k_3}{k_2 + k_3}$$
$$K_{\rm M} = K_{\rm d} \frac{k_3}{k_2 + k_3}$$