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Abstract 

Deep learning based animal pose estimation tools have greatly improved animal behaviour 

quantification. However, those tools all make predictions on individual video frames and do 

not account for variability of animal body shape in their model designs. Here, we introduce the 

first video-based animal pose estimation architecture, referred to as OptiFlex, which integrates 

a flexible base model to account for variability in animal body shape with an optical flow model 

to incorporate temporal context from nearby video frames. This approach can be combined 

with multi-view information, generating prediction enhancement using all four dimensions (3D 

space and time). To evaluate OptiFlex, we adopted datasets of four different lab animal 

species (mouse, fruit fly, zebrafish, and monkey) and proposed a more intuitive evaluation 

metric - percentage of correct key points (aPCK). Our evaluations show that OptiFlex provides 

the best prediction accuracy amongst current deep learning based tools, and that it can be 

readily applied to analyse a wide range of behaviours. 
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Introduction 

Being able to precisely describe and quantify animal behaviour has profound implications in 

fields such as neuroscience or psychology. Whereas the human visual system can readily 

interpret raw video data on animal behaviour at a qualitative level, precise quantification of 

body positions and movements requires complex computational analyses. The major 

challenge is to reliably extract essential information of animal behaviour for downstream tasks, 

such as motion clustering1, 2 or sensorimotor correlations3-6, to allow for quantitative 

descriptions. This problem can be addressed by articulated animal pose estimation, which 

consistently tracks predetermined key points on a given animal. 

 

Though key point tracking can be done with great accuracy through human labelling on a 

frame-by-frame basis, it usually incurs considerable time and labour cost, limiting the 

annotation of large datasets. The need for accurate, fast and scalable tracking of animal 

behaviours has therefore driven several efforts to automate animal pose estimation using both 

marker-based and markerless tracking. Marker-based tracking of key points usually involves 

placing reflective markers that can be detected with a camera system7, 8. Alternatively, one 

can use accelerometers to directly readout movement acceleration9. Marker-based tracking 

has the advantage of providing straightforward processing of object location and animal pose10. 

However, its invasive nature can disrupt animal behaviour.  

 

Markerless tracking on the other hand circumvents the stress and workload associated with 

marker placement and could be the method of choice, if it matches the accuracy of marker-

based tracking. Early markerless tracking used Kinect cameras11 or multi-camera systems11, 

setting constraints on the simplicity and versatility of the experimental setting in which animal 

behaviour can be measured. Developments in deep learning based computer vision 

techniques, especially convolutional neural networks, provide critical building blocks to further 

advance markerless tracking12-15. Accordingly, advances in deep learning based human pose 
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estimation have inspired novel tools in animal pose estimation. For example, DeepLabCut16 

is based on the feature detector from DeeperCut17, and StackedDenseNet from 

DeepPoseKit18 is a variation on Fully Convolutional DenseNets19, 20 that are stacked in the 

fashion of Stacked Hourglass21.  

 

While these approaches have brought meaningful advances to animal pose estimation12, they 

directly transferred computer vision techniques developed for tracking humans to lab animals, 

omitting key differences in shape and size. With regard to pose estimation, the most important 

differences concern the number and size of key points. Indeed, the number of key points can 

heavily influence the size and complexity of pose estimation models and the ratio between 

key point sizes affects the accuracy and meaning of the evaluation metric. 

 

Since humans have very similar body shapes, human pose estimation datasets usually 

contain an identical number of key points, and a constant ratio between key point sizes. As a 

consequence, pose estimation models capture the same amount of complexity and evaluation 

metrics can use the size of a specific joint as a threshold. For instance, one common metric in 

human pose estimation is that a key point estimation is correct if its distance from the ground 

truth is less than half the size of the head (PCKh@0.5)21-23. Lab animals, on the other hand, 

vary greatly in shape and size. This means that while certain datasets can be readily modelled 

by small and simple models, others require more complex models with a larger number of 

parameters. Such variability carries the risk of overfitting when using a complex model on a 

simple dataset, and underfitting when using a simple model to fit a complex dataset. Our work 

here presents a flexible base model and an adaptive, yet intuitive, evaluation metric - 

percentage of correct key points (aPCK), to account for such variability. We adopted datasets 

of four different lab animals species, i.e. mouse, fruit fly, monkey, and zebrafish, to entrain and 

test our models under various natural experimental conditions.  
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Given that animal behaviours are usually recorded in video format, we employ the first video-

based model architecture. Most animal pose estimation models to date16, 18, 24 focus on 

predicting key points using a single video frame. By taking an image-based approach, these 

models neglect the sequential nature of these images, and thus ignore valuable temporal 

context. In contrast, our video-based approach utilizes a short sequence of images, 

comprising a target frame and several adjacent frames, to make a key point prediction. With 

a video-based approach such as OptiFlex features from various time points can all be used at 

the same time to enhance prediction accuracy and robustness against temporary obstruction 

of key points.  
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Fig. 1 | Workflow and model architecture of OptiFlex. a, Overall data preprocessing and 
model training pipeline. b, Given skip ratio and frame range 𝑓. For a target frame with index 𝑡, 

we first gather a sequence of 2𝑓 + 1 images with index from 𝑡 − 𝑠 × 𝑓 to 𝑡 + 𝑠 × 𝑓. The base 
model makes a prediction on each of the images to create a sequence of heatmap tensors 
with index from 𝑡 − 𝑠 × 𝑓 to 𝑡 + 𝑠 × 𝑓. The OpticalFlow model takes the entire sequence of 

heatmap tensors and outputs the final heatmap prediction for index 𝑡 . c, Diagram of a 
“bottleneck” building block commonly used in ResNet backbone, consisting of 3 convolutional 
layers and a skip connection. d, Optional intermediate supervision for FlexibleBaseline 
through additional loss calculation between heatmap label and intermediate results from 
ResNet backbone after a single transposed convolution represented by orange trapezoidal 
blocks. e, Standard FlexibleBaseline with intermediate supervision after Conv3 block. Note 
that each Conv block consists of multiple “bottleneck” building blockings (taken from panel c).   
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Results 

Our overall workflow consists of a video-based model architecture along with a graphical user 

interface (GUI) for training data annotation and augmentation (Fig. 1a). The model 

architecture is comprised of a base model and an optical flow model. The base model makes 

initial predictions on the input images, and the optical flow model converges the predictions 

into a single prediction for the target frame of the input images (Fig. 1b). Details regarding 

GUI can be found in Supplemental Material and each component of the model architecture 

will be discussed in detail in the following sections.  

 

Fig. 2 | Comparison of evaluation methods. The ground truth is defined by a human 
generated label. Points with a given RMSE forms a circle around the ground truth. The 
heatmap label, used by aPCK, can be defined by the human labeller to cover the entire ROI, 
but the RMSE circle can be too large and include points that are not on the paw or it can be 
too small and miss valid points of the paw. 
 
 
Percentage of Correct Key Points (aPCK) vs. Root Mean Square Error (RMSE) 

RMSE is currently the default evaluation metric in recent work on animal pose estimation16, 18, 

24. While RMSE can be useful as the loss function for neural networks, this metric does not 

intuitively reflect prediction quality and can sometimes be misleading.  

 

RMSE can be faulty both when comparing the performance of different models using the same 

dataset and when comparing the performance of the same model applied to different datasets. 

When comparing two models using the same dataset, the model with a slightly larger RMSE 
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is not necessarily worse. This is because animal key points can be a few pixels in size; 

therefore, prediction values that differ by a few pixels can both be correct. Moreover, since all 

points of a given RMSE from ground truth form a circle around the ground truth location and 

an acceptable region for a key point can be of any shape, points with the same RMSE from 

ground truth can both be valid or incorrect predictions (Fig. 2). When comparing the same 

model using different datasets, RMSE can be even worse. A model with a given RMSE can 

make perfect predictions in a dataset with larger joint sizes, while being completely inaccurate 

in another dataset with smaller joint sizes (Fig. 2). All these subtle flaws of RMSE can 

eventually be amplified by the aforementioned variability that is innate to animal datasets. This 

combination of biases may explain why RMSE is not often used to evaluate human pose 

estimation21-23. 

 

A more revealing metric for model performance is the percentage of key point predictions that 

land in an accepted region around the ground truth. To avoid confusion with the predefined 

notion of PCK25 in computer vision, we denote the percentage of correct key points for animals 

as aPCK. The aPCK accounts for the variability of different animal datasets by defining the 

area that is considered acceptable or “correct” with the key point heatmap labels as generated 

by human subjects. The heatmap generated for each joint follows a truncated 2D Gaussian 

distribution with peaks at the human labelled points. The heatmap primarily functions to 

distinguish points closer to the ground truth, as they have higher weight than points further 

away even when all points in the heatmap are considered “correct”. Normalization to account 

for various scales of the animal and image will naturally happen in the human labelling process 

as users can specify label size. For the current study we define the prediction as “correct”, if 

the predicted key point location has a readout value > 0 of the ground truth label heatmap. 

This makes the metric very flexible, giving the user control over acceptable regions. Hence, 

we use aPCK as the default metric for all following evaluations. 
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FlexibleBaseline Structure of OptiFlex 

In principle, any imaged-based model that predicts a set of heatmaps of key point likelihood 

can be used as a base model. For OptiFlex, we devised a base model, FlexibleBaseline, that 

can serve as a baseline for future work in animal pose estimation. FlexibleBaseline’s overall 

structure consists of a ResNet26 backbone, 3 transposed convolution layers, and a final output 

layer (Fig. 1c-e). The ResNet backbone is a section of the original ResNet that uses weights 

pre-trained on ImageNet27 and can output after any of the Conv blocks from ResNet. It also 

allows optional intermediate supervision anywhere between the input layer and the backbone 

output layer, usually after a Conv block. The different options for backbone output and 

intermediate supervision endow the model with ample flexibility. The 3 transposed convolution 

layers all have filters of size 13×13 (i.e. the window for scanning through the input image or 

intermediate tensors is 13×13) with strides depending on output location of ResNet backbone 

and with a modifiable number of filters in each layer depending on dataset complexity. The 

final output layer always has the same number of filters as the number of prediction key points, 

each with filter size 1×1 and stride 1. This structure is inspired by the Simple Baselines28, 

which attained state-of-the-art results in many human pose estimation challenges in COCO 

201829, 30.  
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Fig. 3 | Comparison of model error rates and loss curves on different datasets. a, Test 
set prediction error rates represented in box plots with minimum, first quartile, median, third 
quartile, and maximum. The small square in the middle of each box plot represents the mean 
error rate. Note that some monkey results do not show whiskers (parameters of variability), 
because of the virtually perfect predictions. b, MSE training and validation loss; note the peak 
in zebrafish reflects the fact that the optimizer landed in a poor spot early in the training 
process.  
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FlexibleBaseline Performance and Comparison Against Previous Models 

A number of pose estimation models were included in our comparison: LEAP, DeepLabCut, 

and DeepPoseKit (StackedDenseNet). For each animal, the labelled datasets were divided 

according to the dataset division table (Table S2). All models were trained using a training set, 

hyperparameters were selected using a validation set, and final evaluation was done on a test 

set. For all datasets, our FlexibleBaseline achieved the best performance amongst all of the 

models in terms of prediction error rate (Fig. 3); in particular, FlexibleBaseline significantly 

outperformed all other models on mouse side view and zebrafish datasets. For the monkey 

and fruit fly datasets, FlexibleBaseline also had the lowest error rates, but these differences 

were not significant, because for these two datasets the other models were also performing 

virtually perfectly. A detailed comparison of model accuracy is provided in Supplemental 

Material Table S5 and a video comparison of tracking results is shown in Video S1-a~d.  

 

The inference speed of FlexibleBaseline was measured as the time the model takes to predict 

heatmaps from preprocessed input tensors of a particular dataset. The measurements were 

done on VM instances of identical configuration on Google Cloud (see Computing 

Environment). To account for potential variability, the same prediction process was run 16 

times, and the final results reflect the averages of these runtimes. For real-time inference with 

a batch size of 1, FlexibleBaseline had an average per image inference speed of 35ms for the 

fruit fly test set, 18ms for the monkey test set, 25ms for the zebrafish test set, 12ms for the 

mouse bottom view test set, and 14ms for the mouse side view test set. For larger batch sizes, 

inference speed can still increase. For example, with a batch size of 128, FlexibleBaseline has 

an average per image inference speed of 26ms for the fruit fly test set, and with a batch size 

of 256, FlexibleBaseline has an average per image inference speed of 16ms for the monkey 

test set, 24ms for the zebrafish test set, 6ms for the mouse bottom view test set, and 8ms for 

the mouse side view test set.  
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Fig. 4 | FlexibleBaseline model size evaluation. a, Performance on mouse side view dataset. 
b, Performance on fruit fly dataset. To simulate hardware constraints, all mouse side view 
models were trained for 40,000 (20×2,000) steps at a batch size of 10, and all fruit fly models 
were trained for 8,000 (10×800) steps at a batch size of 10.  
 

Flexibility in Resource Constrained Situations 

The flexibility of FlexibleBaseline derives from the fact that a user can select output from any 

of the 5 Conv blocks from ResNet50 and specify the number of filters in the last three 

transpose convolution layers. Different combinations of output block and filter numbers can 

vary greatly in the number of parameters, and thereby training and inference speed, while 

retaining a comparable accuracy across datasets. This flexibility gives users a very favourable 

trade-off between speed and accuracy when necessary. 

 

In fact, smaller models may outperform larger models in resource constrained situations, 

where not enough labelled data are available or the hardware does not support a large number 

of epochs. To simulate these conditions, we tested FlexibleBaseline with 3 different 

hyperparameter settings using a significantly reduced number of training steps and a minimal 
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amount of annotation on the mouse side view and fruit fly datasets. The number of parameters 

in these models decreased from more than 25 million in the standard version to less than 2 

million in the small version (see Methods for detailed model and training setup, and 

Supplemental Material for performance of the 3 versions under the previous non-constrained 

training setup).  

 

Recent animal pose estimation models18, 24 suggest that reasonable accuracy can be achieved 

with as few as 100 labelled frames on the fruit fly dataset. We thus started with only hundreds 

of frames for both datasets. Independent from the versions of FlexibleBaseline, training with 

100 frames in the fruit fly dataset yielded prediction error rates that were comparable to those 

obtained with the full dataset (Fig. 4a). When we gradually reduced the number of labelled 

frames, we observed a natural increase in prediction error rates with all versions. The standard 

version of FlexibleBaseline had the lowest error rate on the vast majority of the tested datasets. 

In case of the mouse side view dataset, the models had significantly higher prediction error 

rates with 300 labelled frames, so we explored training with a geometrically increased number 

of labelled frames. Our results indicated that under resource constrained training setups, small 

and reduced versions outperformed the standard version in all of the tested mouse side view 

datasets, while prediction error rates showed a plateau beyond 600 labelled frames.  
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Fig. 5 | OpticalFlow model of OptiFlex evaluation. a, Box plot of test set prediction error 
rates of models with and without OpticalFlow grouped by base model. Box plot definition as 
specified in Fig. 3a. The benefits of the OpticalFlow model appeared universal in that it also 
improved the performance of the other base models (LEAP, DeepLabCut, and 
StackedDenseNet). b, X-value traces of FlexibleBaseline key point predictions for a mouse 
side view video (video code: 00000nst_0028) without OpticalFlow correction. c, X-value traces 
of OpticalFlow model key point predictions for the same mouse side view video (video code: 
00000nst_0028, using FlexibleBaseline). Note that the differences after applying the 
OpticalFlow model were most prominently reflected in the smoothing of the trace curves of the 
key points. Sharp spikes in the trace curves corresponded to prediction errors detected by 
OpticalFlow. 
 

Improving Robustness Against Temporary Obstruction of OptiFlex with OpticalFlow 

The OpticalFlow module morphs heatmap predictions of neighbouring frames onto the target 

frame using the Lucas-Kanade method31, implemented with the Farneback algorithm32 in 

OpenCV33. This morphed information is aggregated by a 3D convolution layer that essentially 

takes the weighted sum of all the morphed heatmaps (Fig. 1b). This implies that even if some 

key points are not visible in the target frame, the morphed information from nearby frames still 
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provides sufficient information about the most likely location of the key points for the target 

frame. The morphed heatmaps from nearby frames can thus be considered as temporal 

context.  

 

Of all the training datasets, temporary obstruction occurred most frequently in the mouse side 

view as the paws frequently overlap in this view. Therefore, contrasting mouse side view 

prediction results from before and after applying the OpticalFlow model best demonstrates 

robustness against temporary obstruction (Fig. 5 and Video S2). We applied this procedure 

not only to FlexibleBaseline, but also to LEAP, DeepLabCut, and StackedDenseNet base 

models. Even though the OpticalFlow model integrated with FlexibleBaseline (i.e. OptiFlex) 

showed the best results, addition of the OpticalFlow model improved performance of all 

available base models (Fig. 5a). Results of OpticalFlow corrections are most evident through 

smoothing of trace curves of the keypoints. Sharp spikes in the trace curves were detected as 

model prediction errors, and the OpticalFlow curve comparisons in Fig. 5b and Fig. 5c provide 

good examples of where the spikes are smoothed out by OpticalFlow, indicating error 

correction. It should be noted that when the base model makes multiple consecutive erroneous 

predictions, the OpticalFlow model does not recognize those predictions as temporary 

obstructions, and does not make corrections (Hind Left Paw in Fig. 5c). 
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Fig. 6 | Multiview paw correction algorithm evaluation of OptiFlex. a, Box plot of test set 
prediction error rates of models with and without multi-view correction on paws, grouped by 
base model. Box plot definition as specified in Fig. 3a. b, X-value traces of FlexibleBaseline 
paw predictions for a mouse side view video (video code: 00000nst_0028_tst). c, X-value 
traces of FlexibleBaseline paw predictions for a mouse side view video (video code: 
00000nst_0028_tst) after multi-view correction. d, X-value traces of OptiFlex, which integrates 
FlexibleBaseline and OpticalFlow, paw predictions for the same mouse side view video (video 
code: 00000nst_0028_tst) after multi-view correction. 
 

Exploration in Multi-View Enhancement 

Instead of using multiple views to construct 3D representation of joint movements, we explored 

the idea of using heatmap predictions obtained from different views to correct each other. 
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Exploiting multiple views of the same behaviour can improve the predictions, because certain 

features are more identifiable in one view than another and the geometrical configuration of 

the different views determines the information shared between them. To demonstrate the 

potential of multi-view correction, we developed a simple algorithm that corrects paw 

predictions in the mouse dataset using initial predictions from both the side and bottom views. 

 

For the mouse dataset, the two perpendicular views (side and bottom) must share an axis, i.e. 

the x-axis, in 3D space. Based on analyses of the single view prediction results presented 

above, it could be determined that the bottom view model better predicted the position of the 

paws. As a consequence, the x-value of the paws from the bottom could be used as a 

reference to search for alternative prediction locations for the paws in the side view. These 

alternative prediction locations were generated by finding local maximums in the prediction 

heatmap using Gaussian filters in the side view. Finally, the optimised locations for the paws 

in the side view corresponded to the locations with the least difference in x-value from their 

respective key points in the reference (bottom) view.  

 

The effects of the multi-view correction algorithm are demonstrated in Fig. 6, Video S3 and 

Table S8. This algorithm leads to significant improvements on all base models, and a nearly 

perfect result is achieved after applying the algorithm to OptiFlex, which now integrates 

FlexibleBaseline, OpticalFlow, and multi-view corrections. 
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Discussion 

This paper introduces the first video-based architecture for animal pose estimation, which we 

refer to as OptiFlex. We exploit a new intuitive metric, i.e. the percentage of correct key points 

or aPCK, to evaluate performance in the context of animal pose estimation. Based on analyses 

of behavioural experiments in four different animal species, OptiFlex achieved the lowest 

prediction error rates compared to other commonly used models for animal pose estimation. 

Our architecture leveraged the temporal context information through optical flow to enhance 

our FlexibleBaseline model, allowing this architecture to correct for temporarily obstructed key 

points. Moreover, the architecture also facilitated exploitation of multi-view analysis, further 

reducing prediction errors. Overall, the effectiveness and robustness of our OptiFlex 

architecture, which is available through our open source Github repository 

(https://github.com/saptera/OptiFlex), make it a potentially valuable component in any system 

that wishes to track animal behaviour.  

 

Dataset Considerations 

With diverse body plans of different species and distinct experimental setups, each of the 

datasets used in our model assessments posed unique challenges. The mouse dataset was 

obtained on a setup with both side and bottom views, allowing the combination of spatial 

geometric information from both views. In the mouse side view dataset, it was challenging to 

continuously track mouse paw movements during locomotion as the paws are constantly 

alternating, often leading to temporary obstruction. This made the mouse dataset a perfect 

test case for handling temporary obstruction of key points.  

 

The fruit fly dataset on the other hand, which was from the same dataset as used by LEAP24, 

had the largest number of key points to track, making models for this dataset more memory 

intensive than models of other datasets. At the same time, the tracking process was simplified 

by removal of image backgrounds and high visibility of the key points. The monkey dataset 
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comprised only facial features, with one of the key points, the tongue, having a very low rate 

of occurrence. This feature made the monkey dataset a proper example for testing datasets 

with highly imbalanced key point occurrences. The zebrafish dataset, finally, was the only 

dataset that required tracking of multiple animals at the same time. This endeavour was 

particularly challenging as individual zebrafish are hard to distinguish, while they frequently 

traverse the field of view. Currently, OptiFlex can only track multiple animals under constraints 

such as a predetermined number of animals and consistent animal body shape throughout 

the dataset. This ability could be generalized to tracking an arbitrary number of animals by 

adding an extra object detection module, which is a potential direction for future work. 

Together, the data of the different species comprised a rich and diverse set of behavioural 

measurements that allowed us to test the limitations of OptiFlex and competing models to their 

full extent.  

 

Temporary Obstruction  

Applying OpticalFlow turned out to be beneficial not only for FlexibleBaseline of OptiFlex, but 

also for all other base models tested here. In all cases, it was particularly instrumental in 

correcting for temporary obstruction. The issue of temporary obstruction has been identified 

before by others, but it has been partly circumvented by using applying different strategies18, 

24, 34. For example, some models analysed selected datasets with a relatively high visibility of 

the key points18, 34, while others reported error distances at the 90th percentile level even 

though the occurrence of obstructions was probably less than 10%24.  

 

Spatial, Geometrical, and Temporal Context 

Fundamentally, animal key point movements happen in 3D space over time, making the 

intrinsic information four dimensional. If we attempt to make predictions on animal key point 

movements using only two dimensional data, such as a single video frame, then we have 

forfeited 2 dimensions of the information available. This fundamental flaw will persist despite 

improvements in models or training datasets. In the current paper, we demonstrated ways to 
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take all 4 dimensions into account by using FlexibleBaseline to generate predictions based on 

2D video frames, combining multi-view analysis to generate predictions in a 3D geometric 

context, and adding optical flow to utilize the fourth temporal dimension. By integrating all 

these features into a single architecture, OptiFlex provides the next step forward to use 

advanced deep learning tools to analyse animal behaviour non-invasively at a high 

spatiotemporal resolution.    
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Methods 

 

Formulation  

The goal of OptiFlex is to produce a set of heatmaps representing the likelihood of each key 

point appearing at each location of the image. We denote the pixel location of the 𝑝𝑡ℎ key point 

as 𝑌𝑝 ∈ 𝑍 ⊂ ℝ2, where 𝑍 is the set of all (𝑥, 𝑦) locations in an image and 𝑝 ∈ {1 . . . 𝑃}.  

 

The base model will have 𝑁outputs, each considered as a function. With the 𝑖𝑡ℎoutput denoted 

by 𝑏𝑖(⋅), where 𝑖 ∈ {1 . . . 𝑁}. Usually, there are 1 to 2 outputs from the base model. Each output 

goes through a resizing process (usually deconvolution), denoted 𝑑𝑖(⋅), to produce a set of 

intermediate heatmaps  𝐡𝑖 . Thus, if we let the input frame be denoted as 𝐱 , we have 

𝑑𝑖(𝑏𝑖(𝑥))  → {𝐡𝑖
𝑝

}𝑝 ∈ {1 ...𝑃} = 𝐡𝑖 , where 𝐡𝑖
𝑝

 is the heatmap for the 𝑝𝑡ℎ  key point from the  𝑖𝑡ℎ 

output. The intermediate heatmaps 𝐡𝑖  is used to compare against labels for intermediate 

supervision, and the final set of heatmaps 𝐡𝑁, denoted 𝐟, is used as the output heatmap for 

the base model. 

 

To use context information from surrounding frames, the base model is first applied to predict 

heatmaps for all surrounding frames. Let {𝐱𝑘}𝑘 ∈ {𝑡−𝑠×𝑓 ...𝑡 ...𝑡+𝑠×𝑓}be a sequence of input frames, 

where 𝑡 is the index of the target frame, 𝑠 is the skip ratio, and 𝐟 is the frame range. We apply 

the base model to each frame to get the output heatmaps 𝑑𝑁(𝑔𝑁(𝐱𝑘)) = 𝐟𝑘. Next, we compute 

optical flow between each of the output heatmaps of surrounding frames and target frame 𝐱𝑡. 

We denote the optical flow function as 𝜙(⋅,⋅), which outputs optical flow morphed heatmaps of 

input heatmaps 𝐟𝑘 with reference to target frame heatmaps 𝐟𝑡:  𝜙(𝐟𝑘 , 𝐟𝑡) = 𝐨𝑘. Note that 𝐟𝑡 =

𝜙(𝐟𝑡 , 𝐟𝑡) = 𝐨𝑡. We pass all of the optical flow morphed heatmaps through a 1x1 convolution 

layer to get the final output heatmaps of the entire model: 𝐲 = 𝑐𝑜𝑛𝑣1𝑥1({𝐨𝑘}𝑘 ∈ {𝑡−𝑠×𝑓 ...𝑡 ...𝑡+𝑠×𝑓}). 

This 1x1 convolution essentially acts as a weighted sum of all the optical flow morphed 

heatmaps. Finally, we can get the predicted pixel location of the 𝑝𝑡ℎ key point, denoted �̂�𝑝, by 
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getting the global maximum of the 𝑝𝑡ℎ final output heatmap 𝐲𝑝.  aPCK calculations can be 

done by comparing �̂�𝑝 against 𝑌𝑝.  

 

Datasets  

Our multi-species datasets cover some commonly used animal body plans in locomotion 

experiments: mouse (Mus musculus), zebrafish (Danio rerio), fruit fly (Drosophila 

melanogaster), and monkey (Rhesus macaque). The mouse dataset was acquired on a 

LocoMouse setup35, which contains a straight corridor and a bottom mirror that permits 

observation of side and bottom views of the mouse with a single camera. The zebrafish dataset 

was recorded with a  camera mounted above a fish tank to film the activity of multiple fish. The 

fruit fly dataset was downloaded from the Princeton Neuroscience Institute 

(http://arks.princeton.edu/ark:/88435/dsp01pz50gz79z)24. The monkey dataset was obtained 

with a camera filming the facial behaviour of a rhesus monkey, with an installed lick port. 

 

Dataset Preprocessing  

The raw dataset is first split into train, validation, and test sets, with roughly a 3꞉1꞉1 ratio. After 

the split, the validation and test sets are ready after resizing to the target dimension, while the 

train set requires further processing. Three major steps were performed on the train set of 

each dataset before being used for the data generators of the base models: augment, resize 

image and labels, and label conversion.   

 

1. Augment all images and labels within the training set with random rotation and flipping. 

Images are kept without cropping and padded with black background, thus retaining all image 

information. For our datasets, the angle range for random rotation is (-10°, 10°). No flipping is 

applied to the mouse or fruit fly train sets; the monkey train set is randomly flipped about the 

y-axis, and zebrafish train set is randomly flipped about all axes (x-axis, y-axis, xy-axis).  
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2. Resize all augmented images and labels to the same size. Images were resampled using 

pixel area relation, a preferred method for decimating images33. The same transformations 

were also applied to the labels. 

 

3. Convert human defined labels to heatmaps. Human defined labels are either pixel 

coordinates or bounding boxes. For the heatmap of each key point, a 2D tensor of image size 

is initialized with all zeros. The heatmap is image size, so small key points such as mouse 

paws do not get shrunk to a single pixel. A 2D Gaussian distribution is generated by probability 

density function (PDF) within a user defined area or the bounding box area on the tensor, with 

the center of the area being the ground truth location for the joint and location of peak value 

for the 2D Gaussian distribution. Then, the heatmap is normalized to make the maximum value 

1.0, and any value on the heatmap smaller than 0.1 is set to 0. The third step is the most 

crucial step as it is closely tied to the eventual evaluation using aPCK, because the area 

defined by the labeller for the 2D Gaussian distribution will be the area considered accepted 

or “correct”. 

 

Since the datasets were too large to be directly stored in memory, train and validation sets 

were converted to data generators before feeding them into the model. For each base model, 

a single training input consists of a batch of images converted to tensors and a batch of 

multiple copies of label heatmap tensor, depending on number of stages. The tensors are 

multiplied by a user defined peak value to increase contrast between label region and 

remaining pixels. From our training experience, most models cannot be trained without this 

process. 

 

To train the OpticalFlow model, we first need an ordered sequence of 2𝑛 + 1 images to be 

used as inputs to a pre-trained base model. The base model produces an ordered sequence 

of 2𝑛 + 1 heatmap tensors as output, which is then fed into the OpticalFlow component and 

the labels for the OpticalFlow training process will be a single set of heatmap labels. 
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Base Model Training Setup 

To make fair comparisons between various base model designs, we set the training length at 

50 epochs and the batch size at 10 for all base models on all datasets. We also tried to keep 

a constant learning rate of 0.0001 across different models and datasets. However, when using 

the LEAP model, a learning rate of 0.0001 led to wrong predictions on one of the key points 

for the mouse bottom view dataset. We therefore used a learning rate of 0.0003 instead in this 

specific instance. All heatmap labels had a truncated normal distribution with peak value of 16 

located at the manually labeled key point position. All models were trained using an ADAM36 

optimizer with beta1=0.9, beta2=0.999, and no decay. 

 

Base Model Implementation 

Again, to make fair comparisons between base model designs, all training, data generation 

and evaluation procedures were identical. All base models were implemented using Keras37 

and are available on Github. 

 

The standard FlexibleBaseline models used in model comparisons all had the same 

hyperparameter: ImageNet pre-trained ResNet50 backbone outputs after Conv4 block and the 

filter number for the last 3 transposed convolution layers are 64, 64, and 2× number of key 

points respectively. There is an intermediate supervision after Conv3 block of ResNet50 

backbone. 

 

LEAP models were implemented exactly based on the specification of the original paper. Since 

LEAP also produces heatmaps of original image size, our data generation process worked 

perfectly with the model. 

 

DeepLabCut models were also implemented according to the original paper, except the 

original hyperparameters produced prediction heatmaps were smaller than the original images. 
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For DeepLabCut to train using the same data generation process, we changed the kernel size 

and stride of the final transpose convolution layer to 36×36 and 32×32 respectively. 

 

DeepPoseKit was originally implemented using Keras18, so our StackedDenseNet 

implementation was nearly identical to the DeepPoseKit Github implementation, with some 

minor refactoring to ensure the model works with the rest of the code base. Since the original 

Stacked DenseNet also produced prediction heatmaps of a smaller size, an additional 

TransitionUp module (from DenseNet) was added before each output layer to ensure the 

model produce output of original image size. 

 

Flexibility Comparison Setup 

The 3 versions of FlexibleBaseline had hyperparameters specified in Table S3. For fruit fly 

datasets, all model and dataset combinations were trained with 8,000 images randomly 

sampled with replacement from their respective training set. For mouse side view datasets, all 

model and dataset combinations are trained with 400,000 images randomly sampled with 

replacement from their respective training set. 

 

OpticalFlow Implementation and Setup. 

Our OpticalFlow model was similar in principle to a component of Flowing ConvNet38, but had 

significant changes in implementation to allow for skip ratio and predefined frame range.  The 

hyperparameter values for OpticalFlow from Farneback algorithm are: window size of 27 pixels, 

pyramid scale of 0.5 with 5 levels and 8 iteration on each pyramid level; pixel neighbourhood 

size was 7 for polynomial expansion, with a corresponding poly_sigma of 1.5. 

 

In our OpticalFlow models comparisons, all OpticalFlow models were trained for 30 epochs 

with a skip ratio of 1. All OpticalFlow models had a learning rate of 0.0001, except for 

StackedDenseNet, which had a learning rate of 0.00015. The OpticalFlow model for 

StackedDenseNet used a slightly higher learning rate because its validation curve did not 
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plateau with learning rate 0.0001 after 30 epochs. All OpticalFlow models had a frame range 

of 4, except for LEAP, which had a frame range of 2. The LEAP base model had many more 

prediction errors than other base models, so including more frames often introduced false 

information to the target frame. 

 

Computing Environment 

All training and inference were done on VM instances from Computing Engine of Google 

Cloud with identical configuration. Each VM instance was a general-purpose N1 series 

machine with 24 vCPU ,156GB of memory and 2 Nvidia Tesla V100 16GB VRAM GPU. The 

OS image on each instance was “Deep Learning Image: TensorFlow 1.13.1 m27” with 

CUDA 10.0 installed. 
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