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Figure S1. HMGB1 depletion occurs in enlarged nuclei and is marked by gene expression changes.

(A) Pie charts (top) showing senescent IMR90 populations containing larger-than-average cell nuclei,
which can be enriched via FACS. Bar graphs (bottom) show stratification of cells according to
increasing nuclear size (compared to the population average). *: significantly different to
proliferating cells, P<0.05; Fisher’s exact test.

(B) Representative images of proliferating (top row) and FACS-sorted senescent IMR90 (bottom row)
immunostained for HMGB1 and counterstained by DAPI. Bar: 5 pm.

(C) Bar graphs showing declining HMGB1 (/eft) and H3K27me3 levels (mean +S.D.; right) in
proliferating (grey), senescent (green) and FACS-sorted IMR90 (black) stratified according to
nuclear size from images like those in panel B. The number of cells analyzed in each subgroup (N)
is indicated.



(D)Bar graphs showing HMGB1/B2 levels (mean + S.D.) detected in the growth media of proliferating
(grey) or FACS-sorted IMR90 (black). *: P<0.01; unpaired two-tailed Student’s t-test (N=2).

(E) Gene set enrichment analysis (GSEA) of genes whose expression is “buffered” in Ribo-seq data.
Normalized enrichment scores (NES) and associated P-values for each set are shown.
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Figure S2. Single-cell sequencing of nascent RNA.

(A) Strategy for nascent scRNA-seq involving isolation of intact HUVEC nuclei, detachment of non-
transcribed chromatin (b/ue) via DNase | digestion, and in situ polyadenylation of nascent RNA
(red) at transcription foci (spheres), before standard processing on a 10X Genomics platform.

(B) t-SNE clustering of data from 623 nuclei separates three proliferating cell groups (blue, red, purple,
and green) from the senescent ones (grey oval); N indicates the number of cells per cluster.

(C) Bar graphs showing (-log) enrichment P-values for GO terms associated with differentially-

expressed genes amongst the clusters from panel B.
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(D)Heatmaps showing normalized expression levels of selected senescence marker genes in individual
cells clustered as in panel B.

(E) UMAP reduction plot showlING results from Velocity analysis. Arrows indicate trajectories of
proliferating HUVECs (orange) towards senescent ones (green) based on unspliced/spliced RNA
ratios in individual cells.

(F) Heatmaps showing normalized expression levels of selected genes in individual cells clustered as in
panel E.
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Figure S3. HMGB1 chromatin-binding features in proliferating cells.
(A) Genome browser views showing raw HMGB1 ChlP-seq signal at loci in chrl, 16, and 22 from both

HUVEC and IMR90 (black); input tracks

(grey) provide a control.

(B) Line plots and heat maps showing distribution of H3K27ac (magenta), H3K27me3 (light blue), and
CTCF ChlIP-seq signal (grey) in the 20 kbp around HMGB1 peaks from HUVECs and IMR0,

respectively.

(C) Venn diagrams showing minimal overlap between HMGB1 binding peaks from HUVEC and IMR90.

Overlap is not more than what is expected by chance; P>0.1, Chi-square Goodness-of-Fit test.

(D) Logos and associated adjusted P-values

for the most enriched de novo motifs discovered in DNase

I-accessible footprints under HMGB1 peaks.
(E) Heatmap showing most enriched TF binding motifs in the footprints from panel C; up- (>0.6 log,-

fold change; orange) or downregulated

TFs (<-0.6 log,-fold change; green) are indicated.
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(F) Genome browser views (top) showing clustered HMGB1 ChIP-seq peaks (black boxes) near the
ZFP37 gene promoter on HUVEC chr9. Plots (middle) showing the cumulative distribution of
HMGB1 ChIP-seq peaks along HUVEC chr2, 6 and 9 (green); CTCF peak distributions (black) provide
a control. Plot (bottom left) ranking “stitched” H3K27ac-marked enhancers (grey) and HMGB1-
bound sites; those over the cutoff (magenta) qualify as “superenhancers”. mRNA fold-changes
(log,) of the 48 genes linked to HMGB1 “superenhancers” are plotted as a heatmap (bottom right).

(G)Box plots showing mRNA fold-changes (log,) of genes differentially-expressed upon senescence
and bound by HMGB1 in HUVECs (top) and IMR90 (bottom). GO terms associated with each
subgroup and their enrichment P-values are shown. The number of genes in each group (N) is
indicated.
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Figure S4. HMGB1 demarcates TAD boundaries in proliferating IMR90 and HUVECs.
(A) Exemplary Hi-C heatmap for a subregion in IMR90 chré6 aligned to HMGB1 ChlIP-seq; peaks at TAD
boundaries (orange lines) are indicated (magenta arrowheads).



(B) Line plots showing average HMGB1 (green) and CTCF ChlP-seq profiles (grey) along TADs +20 kbp
from proliferating (top) or senescent IMR90 (bottom).

(C) As in panel F, but for TADs that do not change (top left), shift one boundary (top right) or merge
upon senescence entry (bottom left). N indicates the number of TADs in each subgroup.

(D)Exemplary Hi-C data (25-kbp resolution) in an 8.6-Mbp region of HUVEC chr5 aligned to positions
of TADs, HMGB1 and CTCF loops, as well as to ENCODE ChlIP-seq and own RNA-seq data. The
positions of HMGB1 peaks at downregulated promoters (green gene names) are highlighted (grey).
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Figure S5. HMGB1 demarcates specific TAD subsets in primary human cells.

(A) Bar plots showing the number of TADs contained in progressively larger clusters derived using TiLO
on proliferating (grey) and senescent Hi-C data (green) from HUVEC (top) and IMR90 (bottom). *:
P<0.01; Fisher’s exact test.

(B) lllustration of TAD clusters identified using proliferating (/eft) and senescent HUVEC Hi-C data
(right) for chr10 and 14. Spheres represent TADs; the most 5°/3’ TADs (purple and yellow dots,
respectively) and “singular” TADs (arrows) are indicated.

(C) Line plots showing average HMGB1 (green), CTCF (grey), and H3K27ac ChlP-seq profiles (magenta)
at the extremities of all clustered TADs (+20 kbp; top), of clusters of >3 TADs (middle) or of
“singular” TADs (bottom) from proliferating IMR90.

(D)Exemplary Hi-C data (40-kbp resolution) around a “singular” TAD (magenta) in HUVEC chr10
aligned to TAD positions, HMGB1 peaks, and ENCODE ChlP-seq.

(E) As in panel D, but for TADs that form a >3-TAD cluster in TiLO data.

(F) Heatmap showing senescence-induced changes in expression levels (log2FC) of SASP-related genes
embedded in singular TADs like those in panel B. Genes bound by HMGB1 are indicated (arrows),
and are not morethan what would be expected by chance; P>0.1, Chi-square Goodness-of-Fit test.
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Figure S6. Effects of HMGB1 knockdown in proliferating HUVECs and IMR90.

(A) Representative immunofluorescence images of siHMGB1-treated HUVECs showing reduced
HMGB1 levels compared to control cells (/eft). Bean plots quantify knockdown efficiency (middle; N
indicates the number of cells analyzed). Bar graphs (right) show normalized HMGB1 mRNA levels
(+S.D.; N=2) in knockdown compared to control cells. Bar: 5 um. *: P<0.01; Wilcoxon-Mann-
Whitney and unpaired two-tailed Student’s t-test for bean and bar plots, respectively.

(B) Representative brightfield images of siHMGB1-treated HUVECs showing elevated B-galactosidase
activity compared to control cells (left); bar graphs quantify this increase (right; N indicates the
number of cells analyzed). *: P<0.01; Fisher’s exact test.
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(C)As in panel A, but for LMNB1 levels. Bar: 10 um. No statistically significant difference (n.s.);
Wilcoxon-Mann-Whitney test.

(D)As in panel A, but for BrdU incorporation. Bar: 10 um. P=0.123; Fisher’s exact test.

(E) As in panel A, but for p21 levels. Bar: 10 um. P=0.098; Fisher’s exact test.

(F) Line plots (left) showing average HMGB1 ChlP-seq profiles along genes up- (orange) or
downregulated upon HMGBI1-knockdown in IMR90 (green; N indicates the number of directly
HMGB1-bound genes). Bar plots (middle/right) showing GO terms associated with either gene set
and their enrichment P-values; terms relevant to senescence are highlighted (black).

(G)Scatter plots (left) showing correlation between differentially-expressed genes (log,FC) upon
senescence entry and HMGB1-knockdown in IMR90. The Pearson’s correlation (p) and its
associated P-value are shown alongside the number of genes (N) in each subgroup. Bar plots
(middle/right) showing GO terms and enrichment P-values associated with genes commonly
downregulated (“DOWN/DOWN?”) or downregulated in senescence but upregulated upon HMGB1-
knockdown (“DOWN/UP”); terms relevant to RNA processing are highlighted (black).
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Figure S7. HMGB1 sCLIP controls and analysis of HMGB1-interacting RBPs.

(A) Electrophoretic profiles of control (beads only; black dotted square) and HMGB1 IP (orange dotted
rectangle) probed for RNA (top) or the HMGB1 protein (bottom) in both sCLIP replicates. The 35-
kDa band of the molecular mass ladder is indicated.

(B) Electrophoretic profiles of RNA eluted from control (beads only; black dotted square) or HMGB1 IP
(orange dotted rectangle) in both sCLIP replicates. The 112-nt band of the molecular mass ladder is
indicated (red star) and corresponds to ~144 pg of RNA.

(C) Scatter plots showing correlation of sCLIP data from two independent biological replicates
compared per binding peak (top) or per bound mRNA normalized read count (bottom). Spearman
correlation values (R?) are indicated.

(D) Output of ssHMM motif analysis of sCLIP data showing sequence probabilities in HMGB1-bound
motifs predicted to form different structures using the reference human genome (hg19).

(E) Box plots (left) showing expression fold-changes (log,) of mRNAs differentially-regulated upon
senescence and bound by HMGB1 in IMR90 sCLIP. The number of peaks (N) analyzed is indicated
below each bar. Bar graphs (right) with GO terms associated with each subgroup and their
enrichment P-values are also shown.

(F) Line plots (left) showing average HMGB1 sCLIP profiles along mRNAs up- (orange) or
downregulated upon HMGBI1-knockdown in IMRSO0 (green; N indicates the number of directly
HMGB1-bound genes).

(G)As in panel E, but for the up-/downregulated genes from panel F.

(H)Experimentally-validated protein-protein interaction network for HMGB1 co-immunoprecipitating
RBPs (colored spheres) that are also downregulated in senescence. Their secondary interactors
(grey spheres) from the STRING database are also shown.

(I) Western blots using antisera recognizing ILF3 on proteins co-immunoprecipitating with HMGB1
(left) or 1gG (right) in IMR90; blots on 10% of input material provides a loading control.

(J) Representative images of IMR90 overexpressing HMGB1-GFP and immunostained for ILF3. Nuclear
outlines are indicated (dashed lines based on DAPI counterstaining). IMR90 transfected with empty
vectors provide a control. Bar: 10 um. Signal intensities are quantified in the violin plots (right). *:
significantly different to control; P<0.001, Wilcoxon-Mann-Whitney test

(K) As in panel I, but immunostained for phospho-NFkB. Bar: 10 um.

(L) Bar graphs showing mean fold-enrichments (over IgG controls S.D., N=2) of selected mRNAs from
ILF3 RIP experiments in proliferating IMR90. *: significantly different to control; P<0.05, unpaired
two-tailed Student’s t-test
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Supplemental Table Legends (tables are provided as .xIsx files online)

Table S1. HMGB1 sCLIP target mRNAs. List of high-confidence HMGB1-bound mRNAs from two sCLIP
biological replicates.

Table S2. HMGB1 ChlIP-seq peaks and long-range loops. List of high confidence HMGB1 ChIP-seq peaks
from (A) proliferating HUVEC and (B) proliferating IMR90. (C) List of intrachromosomal HMGB1 long-
range loops from proliferating HUVEC.

Table S3. Differentially-expressed genes. Differentially-expressed genes between (A) all clusters in single
cell nascent RNA-seq data; (B) proliferating and senescent HUVEC; (C) proliferating and senescent
IMR90; (D) control and HMGBI1-knockdown IMR90.

Table S4. HMGB1 interacting proteins. Full list of proteins (A) co-immunoprecipitating with HMGB1
(significant ones highlighted in bold), alongside a summary of the biological replicates submitted, and
the technical parameters of the proteomics run; (B) recovered by whole-cell proteomics comparing
proliferating to senescent IMR90.

Table S5. Ribo-seq data analysis. Full list of genes tested in Ribo-seq (performed in biological triplicates)
alongside their total RNA, translation, and buffering indexes.
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