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Abstract: In modern microscopy imaging systems, optical components are carefully designed
to obtain diffraction-limited resolution. However, live imaging of large biological samples rarely
attains this limit because of sample induced refractive index inhomogeneities that create unknown
temporally variant optical aberrations. Importantly, these aberrations are also spatially variant,
thus making it challenging to correct over wide fields of view. Here, we present a framework for
deep-learning based wide-field optical aberration sensing and correction. Our model consists of
two modules which take in a set of three phase-diverse images and (i) estimate the wavefront phase
in terms of its constituent Zernike polynomial coefficients and (ii) perform blind-deconvolution
to yield an aberration-free image. First, we demonstrate our framework on simulations that
incorporate optical aberrations, spatial variance, and realistic modelling of sensor noise. We find
that our blind deconvolution achieves a 2-fold improvement in frequency support compared to
input images, and our phase-estimation achieves a coefficient of determination (r2) of at least 80%
when estimating astigmatism, spherical aberration and coma. Second, we show that our results
mostly hold for strongly varying spatially-variant aberrations with a 30% resolution improvement.
Third, we demonstrate practical usability for light-sheet microscopy: we show a 46% increase in
frequency support even in imaging regions affected by detection and illumination scattering.

1. Introduction

High-resolution optical imaging is of great importance in fields like astronomy, microscopy,
and biomedical imaging. However, the resolution of the acquired images is often limited by
system as well as sample-induced optical aberrations. While system aberrations are caused by
limitations in optical design, sample-induced aberrations may be caused by complex refractive
index changes within the sample that vary in both space and time. One such example is the live
imaging of fluorescently labelled embryos using light-sheet microscopy [1, 2]. Given a known
and invariant Point Spread Function (PSF), a popular solution for addressing system aberrations
is to apply deconvolution algorithms such as Richardson-Lucy (RL) [3] which can be extended
for multi-view imaging [4, 5]. If the PSF is unknown, blind deconvolution (BD) algorithms can
jointly estimate the image and PSF [6]. Another solution of choice is Adaptive Optics (AO) which
implements wavefront sensing (i.e. measures deviation from a planar wavefront) and correction
in hardware by means of a Shack-Hartmann sensor and deformable mirror, respectively. While
highly effective, corrections afforded by AO are generally only valid over a small field-of-view,
or require prohibitively complex hardware setups capable of multi-conjugate correction [7]. In
contrast, other phase retrieval approaches can estimate lower order aberrations across a wide
field-of-view from multiple images acquired with known phase offsets [8], and can jointly
estimate object and aberrations [9].

With the success of Convolutional Neural Networks (CNNs) in performing various image-based
tasks (see [10] for a comprehensive review), CNN models have been developed for deconvolution
and wavefront sensing. Some of these approaches use a blur kernel that includes focus and
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astigmatism only or use larger kernels that are not physically realisable in a microscope [11, 12]
and typically do not take advantage of additional information from phase-diverse images. Other
approaches model the image estimation part with a CNN and use a deconvolution module [11,13]
to extract the PSF, or use existing CNN architectures such as ResNet and Inception to regress
Zernike coefficients [12, 14, 15], and use iterative Richardson-Lucy to estimate the image but not
both.

Here we present a CNN approach for blind deconvolution and phase estimation, both of which
take advantage of phase-diverse image acquisitions. The key aspects of our work are: (i) the
extraction of 3D convolutional features from phase-diversity stacks – so as to capture axial extent
of PSF and thus facilitate deconvolution; (ii) the estimation of up to 4th order Zernike coefficients
including astigmatism, coma and trefoil; (iii) the training of an end-to-end framework for joint
estimation of the PSF and deconvolved image; (iv) a demonstration of correction on spatially
varying aberrations; (v) the application on a phase-diverse dataset acquired on a light-sheet
microscope – to better understand the performance and limits of our approach.

Related Work. Earlier CNN models for deconvolution unroll the iterative algorithm and solve
it as a nonlinear regression problem. Zhang et. al. developed a cascaded Fully Convolutional
Neural Network (FCNN) to address the effect of noise and sensitivity to image-priors in non-blind
deconvolution of natural images. The model denoised the vertical and horizontal gradients which
were used as image priors to an iterative deconvolution algorithm [11]. Schuler et.al. used a
similar multistage model for blind deconvolution of natural images with each stage consisting
of a feature extraction, kernel estimation, and image estimation module. The resulting model
outperformed conventional approaches for small and medium size blur kernels, but failed for
larger kernels [13]. Recently, Shajkofci et. al. fine-tuned Alex-net and Res-net to estimate
optical aberrations in microscopy images, and performed semi-blind deconvolution using total
variation RL [12]. On a related note, Paine et.al. trained an Inception model and its variant
for estimating a good initial guess of the wavefront [14]. and Nishizaki et.al. used iterative
wavefront sensing approaches in combination with an image pre-conditioner for overexposure,
defocus, and scatter [15].

2. Theory

Wavefront parameterization. Wavefront phase is commonly modeled as a series expansion
of Zernike polynomials [16], which are orthogonal polynomials on the unit circle:

Zm
n (ρ, θ) = Rm

n (ρ) cos mθ

Z−mn (ρ, θ) = Rm
n (ρ) sin mθ

A double indexing scheme is used, where index n represents the highest power of the polynomial
for the radial component (ρ: 0 - 1), indexm represents the frequency of the azimuthal component(θ:
0 - 2π), and Rm

n is the radial component of the Zernike polynomials [12]. Wavefront aberrations
are described as the sum of Zernike modes Z j multiplied by their coefficient Cj indexed by the
Zernike mode number j:

W(ρ, θ) =
∑
j

CjZ j(ρ, θ) where j =
n(n + 2) + m

2

Hence, the Zernike coefficient vector Z = [Cj] is sufficient to fully characterise the wavefront.

Image formation. At a focus distance ε , the point spread function is related to wavefront
distortion by:

PSF(ε) = |F(P(ρ, θ)eiW (ρ,θ)+id(ρ,ε ))|2 (1)
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Where, P is the pupil function and F is the Fourier transform. The defocus-only phase diversity [8]
under paraxial approximation is given by:

d(ρ, ε) = εNA2ρ2

2λ

where NA is the numerical aperture, λ is the optical wavelength, and ε is the focus distance. For
simplicity our model assumes that light is emitted from a single plane within the sample – as
if illuminated by an infinitely thin and extended light-sheet. In what follows we consider an
objective with a numerical aperture of N A = 0.8 and a pixel size of 0.406 µm.

Problem statement. The observed aberrated image is given by: I0 = I ∗ PSF(0) where I is
the non-aberrated image. In addition to optical aberrations, these images are also degraded by
shot noise and electronic noise. For the purpose of phase retrieval, we also acquire two additional
slightly out-of-focus phase-diverse images: I−1 = I ∗ PSF(−ε) and I+1 = I ∗ PSF(+ε) where ε
is the absolute defocus. While more than three phase-diverse images can be used, one should
also consider the practicality and cost in time of acquiring more than three images. Our goal is,
given the images I0, I−1, and I+1, to obtain an estimate I ′ of the the true object image I and the
corresponding estimate Z ′ of the true Zernike coefficients Z .

Implicitly learned image prior. Classical iterative solutions [8, 17] for estimating the true
object image I impose analytical constrains – such as e.g. non-negativity – on the structure
of solutions I ′. The strength of generality of classical – non deep-learning – methods is
also a weakness because for specific imaging applications strong solution priors exist that can
substantially improve reconstruction quality. One of the key advantages of CNNs is their ability
to learn both the inverse function but also an implicit prior on solutions [10, 18]. In this work
we focus our attention on light-sheet microscopy images of fluorescently labelled nuclei in
developing zebrafish (D. rerio) and fruit fly (D. melanogaster) embryos. Imaging within such
large embryos is challenging because of sample induced aberrations that rapidly degrade image
quality for deep imaging planes (>50µm). Yet, these images are highly stereotypical: while
exhibiting some variance, cell nuclei have a typical size, shape and spatial distribution, and
thus offers an opportunity for improved image deconvolution and phase estimation using deep
learning.

3. Methods

Sample preparation. Mounting and imaging of zebrafish embryos were handled in accordance
with the University of California San Francisco guidelines and were approved by the Institutional
Animal Care and Use Committee. Imaging experiments were performed on the zebrafish
transgenic line h2afva:h2afva-mCherry. After dechorionation, embryos were mounted in 0.8%
low melting point agarose inside a 1.5 mm inner diameter glass capillary. After agarose
solidification, the agarose section containing the embryo is extruded from the glass capillary with
a plunger. The sample is then placed in a custom-made multi-view light-sheet microscope [2]
after filling the imaging chamber with E3 fish medium.

Microscopy. We use images of developing zebrafish and fruit fly embryos previously acquired
on a light-sheet microscope [2] for the simulations described below, as well as newly acquired
phase-diverse zebrafish images for evaluation. Imaging is done with Nikon 16 × 0.8N A water-
dipping objectives and an Orca Flash 4.0 sCMOS camera resulting in a pixel size of 0.406 µm.
we illuminate the sample with a 561 nm laser light-sheet and filter detection using a 610/75
bandpass filter. Exposure is set to 20 ms.
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Simulated training data. For each dataset (zebrafish and fruit fly), the images are first denoised
using Noise2Self [19], then image tiles of size 256 × 256 pixels are randomly selected, and then
normalised to have intensity values within [0, 1]. The tiles are convolved with PSF kernels of size
31×31 pixels to generate aberrated images for training. For simplicity we assume that fluorescent
light is emitted from an infinitely thin slab of material co-planar with the detection plane. To
compute the PSF images, we use Eq. 1. To model the sample induced aberrations, Zernike
coefficients of orders 2, 3 and 4 are sampled from a uniform random distribution between [−1, 1].
The sampled Zernike coefficients are multiplied by a bi-exponential decay term that adjusts the
contributions of the various Zernike orders. We do not include lateral image shifts (Z−1

1 , Z1
1 )

and focus (Z0
2 ) since these can be corrected with registration and auto-focus methods [20]. A

defocus term is added and subtracted from these Zernike coefficients to obtain out-of-focus PSFs
to generate the phase-diverse images I0, I−1, and I+1. we use a defocus ε of +/−2µm Poisson
noise (n = 150) and Gaussian noise (σ = 0.001) are applied to the blurred tiles to simulate both
realistic sensor and photon shot noise.
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Fig. 1. Model Overview. The two networks HUnet and Znet compute the deconvolved
image I ′ and Zernike coefficients Z ′, respectively, from phase-diverse images I−, I0,
and I+. PSFnet is a differentiable model used for enforcing self-consistency that
computes the PSF from a corresponding Zernike vector Z ′. We show all four losses
considered and corresponding gradient paths.

Model overview. As shown in Fig. 1 our model consists mainly of a deconvolution model
HUnet and phase estimation model Znet. An additional pre-trained differentiable model PSFnet
is used for generating a PSF image from the predicted Zernike coefficients – this model is used
for enforcing consistency between the deconvolution and phase estimation. All models are
implemented in python using the Deep-Learning library PyTorch. In the following paragraphs
we give architectural details on each model.

HUnet. This network is a 3D-2D hybrid version of the U-net [21], where the down-sampling
arm uses 3D convolutions with 3 × 3 × 3 kernels and the up-sampling arm uses 2D convolutions
implemented via anisotropic 1 × 3 × 3 kernels (Fig. 2a). The use of 3D convolutions allows
the network to identify 3D Patterns within the three images (I−, I0, and I+), which together are
equivalent to a defocus stack. Skip connections consist of N × 1 × 1 convolutions (with no
zero-padding) followed by batch normalisation, where N is the number of phase diverse images
and batch normalization. We use nearest-neighbour interpolation for up-sampling. This network,
with 82 layers and 1.23 million trainable parameters, takes a stack of three images I0, I−1, and
I+1 and predicts the deconvolved image I ′.
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Znet. This network predicts Zernike coefficients Z from the three phase-diverse images I0, I−1,
and I+1. In a manner similar to the HUnet, we use 3D convolutions with 3 × 3 × N (N: number
of phase diverse images, N = 3) kernels, down-sampling, and residual connections to convert the
phase-diverse input image tensor of size 3x256x256 to an estimated Zernike vector Z ′ of size
1 × 1 × 12 (see Fig. 2b). The Znet has 76 layers and 14.15 million parameters.

PSFnet. This network provides a differentiable and numerically stable learned approximation
of the function that computes the PSF from estimated Zernike coefficients Z ′ (see Eq. 1). It
consists of four blocks with each block consisting of transposed convolution for up-sampling,
batch-normalization, ReLU nonlinearity and dropout layers [22] (Fig. 2c). The final block
consists of convolution and hyperbolic tangent activation layers. The network has 13 layers and
2.85 million trainable parameters.
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Fig. 2. Detailed model architectures for (a) HUnet, (b) Znet, and (c) PSFnet. HUnet
is a hybrid 3D-2D UNet [23] that receives three phase diverse images I−, I0, and I+
as a single stacked 3D image, and returns a single 2D deconvolved image I ′. Znet
is made of 8 residual convolutional blocks that take the three phase-diverse images
and returns a single vector of 12 Zernike coefficients. PSFnet takes a vector of 12
Zernike coefficients and returns the PSF sampled on a 32 × 32 image. Note: these
architectures can be easily be adapted to accommodate an arbitrary number N of phase
diverse inputs.

Joint training. We hypothesise that training both HUnet and Znet jointly and enforcing
consistency between the deconvolved image I ′ and the estimated Zernike coefficients Z ′ will
encourage the networks to truly learn image deconvolution and Zernike coefficient estimation
and possibly prevent the models from over-fitting on image features. Four losses are used for
joint training: L1 loss between I and I ′, between Z and Z ′, between the output of PSFnet and the
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true PSF (PSFnet weights are held fixed but gradients can pass through Znet), and a consistency
loss. The deconvolved image I ′ from HUnet is convolved with the predicted PSF to infer a
reconstructed aberrated image I ′0 from both I ′ – computed by HUnet, and Z ′ – computed by
Znet. The L1 loss between this predicted blurred image I ′0 and the center image (I0) provides the
consistency loss that is backpropagated to update parameters of both HUnet and Znet (Fig. 1).

Training parameters. HUnet and Znet are trained using L1 loss, the Adam optimiser, and a
learning rate of 10−4. We use a batch size of 16 and the models are trained for 300 epochs with a
70− 15− 15 split for train, validation and test sets. To prevent overfitting we use a dropout of 0.2
and use a random subset of tiles for training in every epoch. Training takes 17 hours for HUnet
and 24 hours for Znet (NVIDIA Titan X). PSFnet is trained on a separate set of 10000 pairs of
Zernike coefficients (sampled in the same manner as previously described for the HUnet training
data) and analytically computed PSF images of size 31 × 31 pixels. The PSFs are normalized to
have an area under the curve of one. The PSFnet achieves an SSIM of 0.967 between the target
and predicted PSF images.

Iterative non-blind deconvolution. We compare the performance of our approach against
three iterative non-blind deconvolution algorithms: (i) Richardson-Lucy Total Variation (RLTV)
which augments Richardson-Lucy’s approach [24] with a TV prior [25], (ii) Iterative Constraint
Tikhonov-Miller (ICTM) which minimizes a Tikhonov functional and enforces non-negativity
at each iteration [26], and (iii) Bounded-Variable Least Squares (BVLS) [27]. For all three
approaches we use DeconvolutionLab2 implementations [27].

Evaluation metrics. Mean structural similarity (SSIM) [28], mean coefficient of determination
(r2) over the test set are used as metrics for evaluating HUnet performance. Mean coefficient of
determination and mean absolute error (MAE) for each predicted Zernike coefficient is used for
evaluating Znet performance.

4. Results

Deconvolution performance. Overall, our blind deconvolution model (HUnet) trained on the
zebrafish dataset performed slightly better than that trained on fly dataset (SSIM of 0.421 for fly
versus 0.932 for zebrafish, see Table 1) which might be attributed to the larger nuclei found in
the zebrafish dataset. Importantly, both models generalised well when trained on one dataset
and applied onto the other – with models trained on zebrafish generalizing marginally better
(Table 2).

Comparison with state-of-the-art iterative non-blind deconvolution. As stated previously,
We compared our phase diversity blind deconvolution against classical deconvolution non-blind
algorithms to which we provide the true PSF. Of the three deconvolution methods compared,
ICTM performs best with a mean SSIM of 0.317 on the fly dataset and 0.556 on the zebrafish
dataset, which is an improvement of approximately 20% and 17% compared to blurry input
images for the respective datasets (Table 1). However, our deconvolution model ( HUnet) achieved
a mean SSIM of 0.421 on the fly dataset and of 0.932 on the zebrafish dataset – an improvement
of approximately 60% and 95% compared to the blurry input images (Table 2). The better
performance of HUnet compared to non-blind deconvolution is most likely due to its ability to
implicitly learn a strong reconstruction prior from the stereotypy of nuclei images – i.e. from the
repetitive features found in nuclei images.
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Frequency domain resolution analysis and comparison. As shown in Fig. 3 our HUnet
deconvolution model recovers noise-free deconvolved images. Detailed image frequency analysis
shows that for low frequencies (red triangle marker, features above 5 pixels) the performance of
HUnet is comparable to that of the best performing deconvolution (ICTM), but for higher spatial
frequencies (features of scale below 5 pixels), HUnet outperforms ICTM by rejecting the noise
and in-filling lost frequency details with a very natural-looking apodization. In contrast, ICTM
restored images show strong artifacts, which as shown in Fig. 3 have their origin in erroneous
high frequency restitution (see black triangle marker). Using Mizutani’s single image resolution
estimate [29] we can quantify that improvement further: we find that HUnet deconvolved images
have 2-fold wider frequency support than the best focussed input image: 1.99 and 2.34 for fly
and zebrafish, respectively. Despite the artefacts mentioned previously, ICTM deconvolution
performs well but still underperforms compared to HUnet: 1.52 and 1.89 fold improvement
in frequency support for fly and zebrafish, respectively. Paradoxically, and yet as expected,
HUnet exhibits a wider frequency support than the ground truth itself – this is because of (i) the
denoising and frequency in-painting at high frequencies, (ii) the nuclei prior is learned over the
whole training set based on real microscopy images with a wide distribution of sharpness which
affords opportunities for further sharpening.

Spatially-variant blind deconvolution. In-toto live imaging of developing embryos involves
imaging large fields of view of up to 800 µm. Almost certainly, the sample’s varying refractive
index composition is not constant over the field of view [30] which leads us to consider the
problem of deconvolving images with spatially varying optical aberrations. Tackling spatial
variance is challenging for standard wavefront correction approaches because corrections are
necessarily limited to a small region of the field of view [30]. In contrast, blind deconvolution –
possibly informed by phase information – can address this problem. First, wee simulate spatial
variance by varying the PSF over tiles of dimensions 32 × 32. At inference time, for Znet, we
simply break large images into smaller tiles (256 × 256). For HUnet we rely on translation
invariance. The results are shown in Fig. 4. Deconvolution with HUnet produces sharper outputs
with overall 33% wider frequency support. Similarly, Znet predictions seem to match the expected
behaviour of predicting the average PSF over the tile – however, in some cases (yellow inset) the
predicted PSF is incorrect. These results suggest that for estimating spatially varying aberrations,
training should be best done directly on a variant dataset.

Importance of phase diversity. We found very similar deconvolution performance for HUnet
trained with and without phase diversity (SSIM reduction of 0.017 for fly and 0.010 for zebrafish,
see Table 1) suggesting that the implicit phase information is either not used or not necessary
to achieve deconvolution. Our interpretation is that the implicitly learned image prior – cell
nuclei – is strong enough, rendering the phase information mostly superfluous. This encouraging
result suggests that for moderate optical aberrations, blind deconvolution of stereotypical images
does not require phase information. This is in agreement with previous results on isotropy
restoration [18, 31] that showed that axial deconvolution is possible in the absence of phase
information for images that have strong stereotypy. However, for more severe aberrations and
noisier acquisitions, phase retrieval – as proposed here or otherwise – in concert with wavefront
correction is likely required for good results.

Aberration estimation. The phase estimation model Znet performed reliably in predicting
astigmatism (Z−2,2

2 ), coma and trefoil aberrations (Z−3,−1,1,3
3 ), as well as spherical aberration (Z0

4 ),
but less so for quadrafoil and secondary astigmatism (Fig. 5). In contrast to the deconvolution
model (HUnet), the aberration estimation model (Znet) trained on fly images generalized better
to zebrafish images (5% vs 11% performance reduction) suggesting less reliance on nuclei image
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Fig. 3. Comparison between phase-diversity based HUnet deconvolution (3 image
input I−1, I0, I+1), non-blind ICTM deconvolution (I0 as input), and ground truth, for
both (a) D. melanogaster (fly) and (b) D. rerio (zebrafish) embryo images. In addition,
line profiles and Fourier frequency analysis are shown for aiding comparison of results.
Quantitatively, HUnet deconvolved images have a wider frequency (2.3 fold) support
and a low noise floor compared to the input images (according to Mizutani’s single
image resolution estimate [29]).
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frequency support is comparable to that of the ground truth, only with less noise at high
frequencies.
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priors and actual utilisation of the phase diversity information (Table 3). As expected, and
in contrast to our deconvolution model, aberration estimation (Znet) models trained without
phase-diversity completely fail to generalise to the test set. In the best case, these models over-fit
to the training set in the absence of dropout regularisation.
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Fig. 5. (a) Znet Example PSF predictions versus corresponding ground truth PSFs. (b)
Znet model performance per coefficient on fly (top) and zebrafish (bottom) datasets.
The coefficient of determination (r2, within [0, 1]) is given for each Zernike coefficient.
Gray background area identifies coefficients for which model performance is high
(above 80%). Defocus is not considered as we assume in-focus imaging. (c) Bar chart
showing that Zernike coefficients with high angular meridional frequency are difficult
to predict – for example Z−4

4 and Z4
4 .

Application to light-sheet acquisitions. After promising results on simulations, we wanted to
test our deconvolution model (HUnet) on images acquired on a light-sheet microscope – with all
the imperfections and non-idealities that this entails. In light of these circumstances, our results
are promising: Fig. 6 shows an overall 46% increase in resolution as well as suppression of all
high-frequency noise – a typical and beneficial side-effect of CNN inference. Yet, for deeper
imaging regions (lower panels in Fig. 6) our model only marginally improves image quality
because of the limits of our assumptions. Indeed, our simulation model implicitly assumes (i) an
illumination confined to an infinitely thin light-sheet and (ii) no scattering on both illumination
and detection paths. While overall performance is satisfactory for images taken at shallow
imaging depths within the zebrafish embryo, for deeper regions, we observe strong out-of-focus
light and background due to a thick light-sheet and detection scattering – the resulting images,
while apparently sharper, should be treated with caution because the input images strongly violate
our assumptions. Overall, our observations reinforce the notion that low-order aberrations (as
corrected by HUnet) are not the only – or even dominant – cause of image quality degradation
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in light-sheet imaging of large samples such as zebrafish embryos [30]. Instead, higher-order
aberrations and scattering on both illumination and detection paths account for most of the image
quality degradation.
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Fig. 6. Applying HUnet deconvolution on phase-diverse acquisitions from a light-sheet
microscope (0.8 NA, 16×, pixels 0.406). Applying HUnet to input images I−1, I0, and
I+1 results in sharper images as evidenced by the Fourier spectra comparison between
input in-focus image I0 and the HUnet image. Frequency analysis suggests that HUnet
images have a 46% wider frequency support (median value for all 7 images). Moreover,
HUnet expectedly suppresses high-frequency noise and in-paints missing frequencies
to achieve sharper nuclei boundaries.
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Varying network size for Znet. We investigated whether increasing the phase estimation
network size from 14 to 19 million parameters could further improve results. Our results show
the same overall performance. The larger network performance on the fourth order coefficients
was slightly reduced in the fly dataset and marginally better on the zebrafish dataset with similar
performance on the second and third order coefficients (Fig. 5). However the generalization of
the larger network trained on zebrafish embryo images was reduced when applied to fly embryo
images – suggesting over-fitting to dataset specific features (Table 3).

Table 1. HUnet performance and comparison with iterative non-blind deconvolution.
PD stands for Phase Diversity.

fly zebrafish

r2 SSIM r2 SSIM

HUnet With PD 0.929 0.421 0.987 0.932

HUnet No PD 0.927 0.404 0.982 0.922

ICTM 0.693 0.317 0.870 0.556

BVLS 0.662 0.294 0.856 0.512

RLTV 0.623 0.295 0.818 0.458

in-focus 0.691 0.264 0.869 0.475

Table 2. HUnet generalisation between fly and zebrafish. Training dataset along rows
and testing dataset along columns. Numbers are SSIM.

fly (test) zebrafish (test)

fly (train) 0.421 0.727

zebrafish (train) 0.466 0.932

Table 3. Znet performance. Training dataset along rows and testing dataset along
columns. Two Znet architectures with 14 and 19 million parameters where tested.

fly (test) zebrafish (test)

r2 MAE r2 MAE

14M fly 0.739 0.134 0.791 0.124

zebrafish 0.622 0.163 0.841 0.106

19M fly 0.738 0.136 0.786 0.125

zebrafish 0.576 0.176 0.838 0.107
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To train jointly, or not. Unfortunately, we could not find a configuration in which joint training
would significantly improve the performance of HUnet for both datasets. While it improves
Znet performance slightly for zebrafish dataset, it reduces performance for fly dataset. Possible
explanations are: (i) using a trained PSFnet instead of a differentiable analytical model is
sub-optimal since a network can only approach and not attain the exactness of an analytical
model, (ii) the consistency loss only refers to I0 instead of to the whole phase diversity stack I−1,
I0, and I+1, which likely would provide stronger consistency information, (iii) the large mismatch
between the number of parameters in HUnet and Znet (Table 4), (iv) finally, the non-ideal nature
of self-consistency loss: the mean absolute error on blurred images might not be helpful. Overall,
more work is needed to understand how and in which circumstances physics based consistency
losses could help.

Table 4. Joint training performance. Training dataset along rows and testing dataset
along columns.

fly (test) zebrafish (test)

r2 SSIM r2 SSIM

in-focus 0.691 0.264 0.869 0.475

HUnet fly 0.925 0.416 0.971 0.750

zebra 0.920 0.464 0.974 0.891

r2 MAE r2 MAE

Znet fly 0.688 0.148 0.742 0.140

zebra 0.581 0.168 0.844 0.103

5. Discussion

We have shown on simulations that convolutional models can be trained to deconvolve (HUnet)
and estimate aberrations (Znet) from simulated phase diverse acquisitions. Moreover, our
experiments with images from a light-sheet microscope also confirm improved resolution (46%
wider frequency support) even in regions where assumptions made during training are not fully
guaranteed – i.e. in the presence of confounding factors such as high-order aberrations, scattering
and variance in the light-sheet thickness.

The most interesting observation is the robust performance of our deconvolution model (HUnet)
in the absence of phase-diversity. This suggests that the model can directly be used for blind
deconvolution of single images. How is this possible? Our interpretation is that the model
captures an implicit prior of the highly stereotypical structure of fluorescently labelled nuclei and
does not require phase information to be competitive. This suggests that such models can be
made quite robust against uncertain aberration regimes as long as the aberrations are not too
severe. Of course, such trained models are necessarily limited to the stereotypy of their training
data.
In contrast, and as expected, phase estimation via Znet does require phase-diverse images

as input. With the caveat that a direct comparison of models trained on different datasets is
non-ideal, our phase estimation model outperforms the semi-blind model in [12]. Znet achieved
a mean r2 of 0.74 and 0.84 on fly and zebrafish datasets respectively for regressing astigmatism,
coma and trefoil – numbers to be compared to a r2 of 0.58 in [12] for regressing focus and
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astigmatism. The reduced performance on the fourth order coefficients could be attributed to
potential aliasing of the PSF.

Future work could focus on technical aspects such as investigating how to improve performance
with adversarial loss training, optimising the architecture for single image inputs, as well as
improving our simulation model. Moreover, it is possible to replace PSFnet with a non-learned
differentiable analytical function. More importantly, extending our framework in 3D would be
key to be able to deconvolve acquisitions axially.

From an adaptive optics perspective, the strong performance of Znet suggests that it could be
used as part of an online adaptive optics setup for the purpose of closed-loop wavefront estimation
and correction. In this context, the advantage of using neural network inference is its speed
compared to iterative schemes – it runs a single pass per input and is often hardware accelerated.
However, it is unclear that defocus-only phase-diversity per se is the right approach due to the
lack of contrast between the images within the stack. Another approach, perhaps involving
complex phase relations like those in spiral phase masks, may provide better contrast [32], and
would thus provide more robustness to noise and better performance for higher order aberrations.

From a light-sheet imaging perspective, our experimental evidence suggests that low-order
optical aberrations are not the sole, and perhaps not the dominant, cause of image degradation. As
we have shown, scattering on both illumination and detection paths offer considerable obstacles
to methods that assume a thin light-sheet, low-order aberrations, and only ballistic photons. It
would interesting to see what deep learning can do to address these issues.
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