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Abstract

Motivation: Protein structures provide basic insight into how they can interact
with other proteins, their functions and biological roles in an organism. Experimen-
tal methods (e.g., X-ray crystallography, nuclear magnetic resonance spectroscopy)
for predicting the secondary structure (SS) of proteins are very expensive and time
consuming. Therefore, developing efficient computational approaches for predicting
the secondary structure of protein is of utmost importance. Advances in developing
highly accurate SS prediction methods have mostly been focused on 3-class (Q3)
structure prediction. However, 8-class (Q8) resolution of secondary structure con-
tains more useful information and is much more challenging than the Q3 prediction.

Results: We present SAINT, a highly accurate method for Q8 structure predic-
tion, which incorporates self-attention mechanism (a concept from natural language
processing) with the Deep Inception-Inside-Inception (Deep3I) network in order
to effectively capture both the short-range and long-range interactions among the
amino acid residues. SAINT offers a more interpretable framework than the typical
black-box deep neural network methods. Through an extensive evaluation study,
we report the performance of SAINT in comparison with the existing best methods
on a collection of benchmark datasets, namely, TEST2016, TEST2018, CASP12
and CASP13. Our results suggest that self-attention mechanism improves the pre-
diction accuracy and outperforms the existing best alternate methods. SAINT is
the first of its kind and offers the best known Q8 accuracy. Thus, we believe SAINT
represents a major step towards the accurate and reliable prediction of secondary
structures of proteins.

Availability: SAINT is freely available as an open source project at https:

//github.com/SAINTProtein/SAINT.
Keywords: Protein secondary structure, deep learning, self-attention.
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1 Introduction

Proteins are bio-molecules made of long chains of amino acid residues connected by
peptide bonds. The functions of proteins are usually determined by the their tertiary
structure and for determining the tertiary structure and related properties, the secondary
structure information is crucial. Protein structure can be experimentally determined
by X-ray crystallography and multi-dimensional magnetic resonance in laboratory, but
these methods are very costly and time consuming and are yet to be consistent with
the proliferation of protein sequence data [1]. Thus, the proteins with known primary
sequence continue to outnumber the proteins with experimentally determined secondary
structures. The structural properties of a protein depend on its primary sequence [2–5],
yet it remains as a difficult task to accurately determine the secondary and tertiary
structures of proteins. Hence, the problem of predicting the structures of a protein –
given its primary sequence – is crucially important and remains as one of the greatest
challenges in computational biology.

Secondary structure – a conformation of the local structure of the polypeptide back-
bone – prediction dates back to the work of Pauling and Corey in 1951 [6]. The secondary
structures of proteins are traditionally characterized as 3 states (Q3): helix (H), strand
(E), and coil (C). Afterwards, a more fine-grained characterization of the secondary struc-
tures was proposed [7] for more precise information by extending the three states into
eight states (Q8): α-helix (H), 310-helix (G), π-helix (I), β-strand (E), isolated β-bridge
(B), turn (T), bend (S), and Others (C). Q8 prediction is more challenging and can reveal
more precise and high resolution on the structural properties of proteins.

Protein secondary structure prediction is an extensively studied field of research [8–
30]. Developing computational approaches (especially using machine learning techniques)
for 3-state SS prediction has a long history which dates back to the works of Qian &
Sejnowski [8] and Holley & Karplus [9] who first used neural networks to predict SS. In
the 1980s, only statistical model based methods were used on raw sequence data which
could ensure Q3 accuracy merely below 60%. Afterwards, significant improvement was
achieved [10–12] by leveraging the evolutionary information such as the position-specific
score matrices (PSSM) derived from multiple sequence alignments. Subsequently, many
machine learning methods have been developed for Q3 prediction which include support
vector machines (SVM) [13–15, 31], probabilistic graphical models [16, 32, 33], hidden
Markov models [17,18], bidirectional recurrent neural networks [19–22,34,35], and other
deep learning frameworks [23,36].

The performance of Q3 prediction methods has approached the postulated theoreti-
cal limit [24]. At the same time, there has now been a growing awareness that 8-state
prediction can reveal more valuable structural properties. Accurate 8-state secondary
structures predictions can reduce the search space in template-free protein tertiary struc-
ture modeling by restricting the variations of backbone dihedral angles within a small
range according to the Ramachandran plots [37, 38]. Also, differentiation among 310 he-
lix, α-helix, and π-helix in secondary structure prediction helps to assign residues and fit
protein structure models in cryo-electron microscopy density maps [38,39]. As such, the
interest of the research community has recently shifted from Q3 prediction to relatively
more challenging Q8 prediction. Quite a few deep learning methods for Q8 prediction have
been proposed over the last few years [19,25,26,28–30,40]. To the best of our knowledge,
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the first notable success in Q8 prediction methods was SSpro8 [19] which was published
in 2002 and achieved 63.5% Q8 accuracy on the benchmark CB513 dataset [41], 64.9% on
CASP10 and 65.6% on CASP11 [25]. Later in 2011, RaptorX-SS8 [40], another 8 state
predictor using conditional neural fields, surpassed SSpro8 by demonstrating 64.9% Q8
accuracy on CB513. In 2014, Zhou and Troyanskaya [26] highlighted the challenges in
8-state prediction and obtained 66.4% Q8 accuracy on CB513 dataset using deep gen-
erative stochastic network (GSN). Some of the notable subsequent works include deep
conditional random fields (DeepCNF) [25], cascaded convolutional and recurrent neural
network (DCRNN) [27], next-step conditioned deep convolutional neural network (NC-
CNN) [28], multi-scale CNN with highway (CNNH PSS) [29], DeepACLSTM [42] with
an asymmetric convolutional neural networks (ACNNs) combined with bidirectional long
short-term memory (BLSTM), deep inception-inside-inception (Deep3I) network named
MUFOLD-SS [30], CNN and Bidirectional LSTM based network NetSurfP-2.0 [43], and
SPOT-1D [44] which is an ensemble of of hybrid models consisting of Residual Con-
volutional Neural Networks (ResNet) and 2-Dimensional Bidirectional Residual LSTM
Networks (2D-BRLSTM). While most of the methods use sequence data and sequence
profiles obtained from Position Specific Scoring Matrix (PSSM) as features, the more
recent methods, such as, MUFOLD-SS, CRRNN, NetSurfP-2.0, and SPOT-1D leveraged
HMM profiles and physicochemical properties of residues as well. The most recent and ac-
curate method SPOT-1D [44] also used predicted contact map information as features and
could achieve a significant boost in accuracy. Although these works demonstrate a steady
improvement in the published Q8 accuracy over the past few years, the improvements
across successive publications are very small. Nevertheless, these small improvements are
considered significant given the high complexity of 8-state SS prediction.

Usually the models that focus more on short range dependencies (local context of the
amino acid residues) face difficulties in effectively capturing the long range dependencies
(interactions between amino acid residues that are close in three-dimensional space, but
far from each other in the primary sequence) [22, 27, 45]. Various deep learning based
models have been leveraged to handle the long-range interactions by using recurrent or
highway networks [28,29], deeper networks with convolutional blocks [30], long short-term
memory (LSTM) cells [22,27], whereas the short-range interactions have been handled by
convolutional blocks of smaller window size [27,28,30]. These methods circumvent some
challenging issues in capturing the non-local interactions, but have limitations of their
own. Models, using recurrent neural networks to capture long range dependencies, may
suffer from vanishing gradient or exploding gradient problems [46–49]. Moreover, these
methods may fail to effectively capture the dependencies when the sequences are very
long [50]. Furthermore, as the models grow deeper, the number of parameters also grows
which makes it prone to over-fitting. It is also likely that the short range relationships
captured in the earlier (shallow) layers may disappear as the models grow deeper [29]. As
a result, developing techniques which can capture both long-range and short-range de-
pendencies simultaneously is of utmost importance. Another limiting factor of the deep
learning methods is that the high accuracy comes at the expense of high abstraction
(less interpretability) due to their black-box nature [51–54]. Although there has been a
flurry of recent works towards designing deep learning techniques for bio-molecular data,
no notable attempt has been made in developing methods with improved interpretablity
and explainability – models that are able to summarize the reasons of the network be-
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havior, or produce insights about the causes of their decisions and thus gain trust of users.

In this study, we present SAINT (Self-Attention Augmented Inception Inside Incep-
tion NeTwork) – a novel method for 8-state SS prediction which uniquely incorporates
the self-attention mechanism [55] with a state-of-the-art Deep Inception-Inside-Inception
(Deep3I) network [30]. We proposed a novel architecture called attention-augmented
3I (2A3I) in order to capture both the local- and long-range interactions. SAINT was
compared with a collection of the best alternate methods for Q8 prediction on CASP12
and CASP13 as well as on more recent, challenging and larger test sets (TEST2016 and
TEST2018 ), that were analyzed by a recent and highly accurate method SPOT-1D [44].
SAINT obtained superior Q8 accuracy compared to state-of-the-art predictors on the
benchmark datasets – 77.73% accuracy on TEST2016, 76.09% on TEST2018, 74.78% on
CASP13, 74.17% in CASP12, and 72.25% on the CASP Free Modeling (FM) targets.
SAINT also obtained high precision, recall and F1-score for individual states. Moreover,
SAINT provides interesting insights regarding the interactions and roles of amino acid
residues while forming secondary structures, which help to interpret how the predictions
are made. Thus, we have made the following significant contributions: 1) we, for the
first time, successfully translated the success of self-attention mechanism from natural
language processing to the domain of protein structure prediction, and demonstrated that
self-attention improves the accuracy SS prediction, 2) introduced a method which can
capture both the short- and long-range dependencies, and offers the best known Q8 ac-
curacy, and 3) improved the interpretability of the black-box deep neural network based
methods which are often criticized for lack of interpretability.

2 Approach

2.1 Feature Representation

SAINT takes a protein sequence feature vector X = (x1, x2, x3, . . . , xN) as input, where xi
is the vector corresponding to the ith residue, and it returns the protein structure label se-
quence vector Y = (y1, y2, y3, . . . , yN) as output, where yi is the structure label (one of the
eight possible states) of the ith residue. Similar to SPOT-1D-base and MUFOLD-SS, our
base model contains 57 features from PSSM profiles, HHM profiles and physicochemical
properties. To generate PSSM, PSI-BLAST [56] was run against Uniref90 database [57]
with inclusion threshold 0.001 and three iterations. The HHM profiles were generated us-
ing HHblits [58] using default parameters against uniprot20 2013 03 sequence database,
which can be downloaded from http://wwwuser.gwdg.de/~compbiol/data/hhsuite/

databases/hhsuite_dbs/. HHblits also generates 7 transition probabilities and 3 lo-
cal alignment diversity values which we used as features as well. Seven physicochemical
properties of each amino acid (e.g., steric parameters (graph-shape index), polarizability,
normalized van der Waals volume, hydrophobicity, isoelectric point, helix probability,
and sheet probability) were obtained from Meiler et al. [59]. So, in our base model,
the dimension of xi is 57 as this is the concatenation of x hhmi ∈ Rdhhm (dhhm = 30),
x pssmi ∈ Rdpssm (dpssm = 20), and x physicali ∈ Rdphysical(dphysical = 7). Additional
features were generated by windowing the predicted contact information as was done in
SPOT-1D. The contact maps were generated using SPOT-contact [60] locally and were
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used as our features by varying window lengths(the number of preceding or succeeding
residues whose pairwise contact information were extracted for a target residue). Our
ensemble model constitutes of four different models, that we trained with varying input
features: one without the contact maps (base model) and three with different window
lengths (10,20, and 50) of the contact-map-based features. The features were normalized
to ensure 0 mean and standard deviation of 1 in the training data, similar to SPOT-1D.

2.2 Architecture of SAINT

The architecture of SAINT can be split into three separate discussions: 1) the architecture
of our proposed self-attention module, 2) the architecture of the existing inception mod-
ule and the proposed attention augmented inception module, and finally 3) the overall
pipeline of SAINT.

2.2.1 Self-attention module

Attention mechanism implies paying attention to specific parts of input data or features
while generating output sequence [55,61]. It calculates a probability distribution over the
elements in the input sequence and then takes the weighted sum of those elements based
on this probability distribution while generating outputs.

In self-attention mechanism [55, 62, 63], each vector in the input sequence is trans-
formed into three vectors- query, key and value, by three different functions. Each of the
output vectors is a weighted sum of the value vectors, where the weights are calculated
based on the compatibility of the query vectors with the key vectors by a special function,
called compatibility function (discussed later in this section).

The self-attention module we designed and augmented with the Deep3I network [30]
is inspired from the self-attention module proposed by Vaswani et al. [55] and is depicted
in Fig. 1. Our self-attention module takes two inputs: 1) the features from the previous
inception module or layer, x ∈ Rdprotein × dfeature , and 2) position identifiers, pos id ∈
Rdprotein , where dprotein is the length of the protein sequence, and dfeature is the length of
the feature vector.

Positional Encoding Sub-module. The objective of positional encodings is to
inject some information about the relative or absolute positions of the residues in a
protein sequence. The Positional Encoding PosEncp for a position p can be defined as
follows [55].

PosEnc(p,2i) = sin(p/100002i/dfeature) (1)

PosEnc(p,2i+1) = cos(p/100002i/dfeature) (2)

where i is the dimension. We used such function as it may allow the model to easily learn
to attend by relative positions since for any fixed offset k, PosEncp+k can be represented
as a linear function of PosEncp [55]. For every position p, PosEncp has the dimension
dprotein×dfeature. The output of positional encoding is added with the inputs x, resulting
in new representations h (see Eqn. 3) which contain not only the information extracted
by the former layers or modules, but also the information about individual positions.

hpos = xpos + PosEncpos. (3)
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Scaled dot-product attention sub-module. The input features in this sub-
module, h ∈ Rdprotein × dfeature are first transformed into three feature spaces Q, K and
V , representing query, key and value respectively, in order to compute the scaled dot-
product attention, where Q(h) = WQh, K(h) = WKh, V (h) = WV h. Here WQ,WK ,WV

are parameter matrices to be learned. Figure 2 shows a schematic diagram of this module.
Among various compatibility functions (e.g. scaled dot-product attention [55], addi-

tive attention [61], similarity-attention [64], multiplicative-attention [65], biased general
attention [66], etc.), we have chosen the scaled dot-product attention as it showed much
promise in case of sequential data. Vaswani et al. [55] showed that in practice, the dot-
product attention is much faster and space-efficient as it can be implemented using highly
optimized matrix multiplication code, though theoretically both dot-product and addi-
tive attention have similar complexity. Scaled dot-product si,j of two vectors hi and hj
is calculated as shown in Equation 4.

si,j =
Q(hi)K(hj)

T

√
dK

(4)

where dK is the dimension of the feature space K. The numerator of the equation,
Q(hi)K(hj)

T is the dot product between these two vectors, resulting in the similarity
between them in a specific vector space. Here

√
dK is the scaling factor which ensures

that the result of the dot product does not get prohibitively large for very long sequences.
The attention weights e ∈ Rdprotein × dfeature are calculated as shown in Equation 5,

where ej,i represents how much attention have been given to the vector at position i
while synthesizing the vector at position j.

ej,i =
exp(si,j)∑dprotein

n=1 exp(si,j)
(5)

The attention distribution e is multiplied with the feature vectors V (h) and then in
order to reduce the internal covariate shift this multiplicand is normalized using batch
normalization [67], producing g, the output of the scaled dot-product attention sub-
module, following the Equation 6.

gj = BatchNorm(

dprotein∑
n=1

ej,iV (hi)) (6)

Here, BatchNorm(.) is the batch-normalization function and gj is the j-th vector in the
output sequence of this sub-module. Finally, according to the Equation 7, g is multiplied
by a scalar parameter α, the original input feature map x is multiplied by (1 − α) and
these two multiplicands are summed to synthesize the final output y.

yi = (α)gi + (1− α)xi (7)

where yi is the ith output and α is a learnable scalar. By introducing weighed sum of
gi and xi, we give our model the freedom to chose how much weight should be given to
each of the features maps, gi and xi while generating the output yi. The optimal value
of the parameter α is learnt through back propagation along with the rest of the model.
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2.2.2 Attention augmented inception-inside-inception (2A3I) module

A novel deep convolutional neural network architecture, Inception, was first introduced
by Szegedy et al. [68], which demonstrated state-of-the-art performance for image clas-
sification and detection. An inception module has several branches, each having one or
more convolutional layers. Fang et al. used an assembly of inception modules, which
they call Inception-inside-Inception (3I module), in their proposed method MUFOLD-
SS to predict protein secondary structure. They tried to leverage the inception blocks
to retrieve both short-range and long-range dependencies and achieved the best known
accuracy at the time. However, convolutional layers cannot capture enough information
about long-range similarities or dependencies among feature vectors of a sequence, syn-
thesized by a certain level of the network [69]. In protein secondary structure prediction,
this issue leaves more impact on the overall accuracy when the sequence grows in length.
Though these types of neural networks that use only convolutional layers need to be
deeper to capture the long range dependency, it is often not feasible to add arbitrarily
large numbers of layers. Moreover, the authors of MUFOLD-SS showed that using more
than two inception-inside-inception modules sequentially does not result into significant
increase in the overall accuracy, rather increases the computational expense. Earlier
works [19,20,22,27,70,71] used Recurrent Neural Network(RNN) based architectures for
capturing global features, but incorporating RNN or its derivatives (Gated Recurrent
Units (GRU) [72], Long Short Term Memory (LSTM) [73]) inside 3I module would es-
calate the complexity and computational cost of the model. Therefore, we incorporated
the self-attention mechanism to effectively capture both the short-range and long-range
dependencies and to bring a better balance between the ability to model long-range de-
pendencies and the computational efficiency. We placed our self attention modules in
each branch of the 3I module as shown in Fig. 3. We call this an attention augmented
inception-inside-inception (2A3I) module.

2.2.3 Overview of SAINT

A schematic diagram of the overall architecture of SAINT is depicted in Fig. 4. SAINT
starts with two consecutive 2A3I modules followed by a self-attention module to sup-
plement the non-local interactions captured by the initial two 2A3I modules. We also
observed that this attention module helps achieve faster learning rate. MUFOLD-SS used
one convolutional layer with window size 11 after two 3I modules. The level of long-range
interactions being captured varies with varying lengths of the window. However, we ob-
served that using window size larger than 11 increases the computational cost without
significantly increasing the performance. As a result, we used similar convolutional layer
as MUFOLD-SS. However, we included another self-attention module after the convo-
lutional layer to help capture the relations among vectors that the convolutional layer
failed to retrieve. The last two dense layers in the MUFOLD-SS were also used in SAINT.
However, we placed an attention module in between the two dense layers. We did so to
understand how the residues align and interact with each other just before generating
the output. This paves the way to have an interpretable deep learning model (as we will
discuss in Sec. 3.3.1).
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3 Results and Discussion

We performed an extensive evaluation study, comparing SAINT with the state-of-the-art
Q8 prediction methods on a collection of publicly available benchmark datasets.

3.1 Dataset

To make a fair comparison with the most recent state-of-the-art methods, especially with
SPOT-1D (the most accurate method to date), we used the same training and validation
sets that were used in SPOT-1D. However, apart from comparing our model against the
most recent and large test sets TEST2016 and TEST2018 generated and analyzed by
Hanson et al. [44, 60], we evaluated SAINT on CASP12, CASP13 and the template free
modelling targets of four CASP datasets (CASP10 ∼ CASP13). CB513 [41], which is a
relatively old, yet widely used benchmark dataset has been excluded from our evaluation
as there are many sequences in CB513 with > 25% sequence similarity to the training
set.

The training set contains 10,029 proteins from CullPDB with resolution < 2.5 Å,
R-factor < 1.0 and a sequence identity cutoff of 25% according to BlastClust (Altschul
et al. [56]). The validation set contains 983 proteins from CullPDB with the same speci-
fications applied to training set (see [44] and [60] for more details on these dataset). We
provide brief descriptions of the test sets in subsequent sections.

3.1.1 TEST2016

TEST2016 dataset contains 1,213 proteins that were all deposited on PDB between June
2015 and February 2017 with similar parameter settings as the training set and do not
contain more than 700 residues. It has less than 25% sequence similarity with the training
and validation sets according to BlastClust [56]. It was compiled by Hanson et al. [60]
and is available at https://servers.sparks-lab.org/downloads/SPOT-1D-dataset.

tar.gz.

3.1.2 TEST2018

TEST2018 dataset contains 250 high-quality, non-redundant proteins that were all de-
posited on PDB between January 2018 and July 2018. The dataset was also filtered
to remove redundancy at a 25% sequence identity cutoff and to remove proteins hav-
ing more than 700 residues. It was generated by Hanson et al. [60] and is available at
https://servers.sparks-lab.org/downloads/SPOT-1D-dataset.tar.gz.

3.1.3 CASP

CASP stands for Critical Assessment of protein Structure Prediction. This is an biennial
competition for protein structure prediction and a community wide effort to advance
the state-of-the-art in modelling protein structure from its amino acid sequences since
1994 [74]. Among the CASP datasets, we took into account the most recent ones CASP13
and CASP12. We removed one domain sequence out of 32 in CASP13 (T0951-D1) and six
domain sequences out of 55 in CASP12 as they had more than 25% sequence similarity
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to the training set according to CD-HIT [75]. Apart from these, we prepared a dataset
comprising the template free modelling (FM) targets in CASP datasets to show the
performance of SAINT where the query sequences do not have statistically significant
similar protein sequences with known structures. Some of the FM targets had > 25%
sequence similarity with our training set, which were therefore excluded from the test set.
Thus, we compiled a test set which we call CASP-FM comprising 56 domain sequences:
10 FM targets from CASP13, 22 FM targets from CASP12, 16 FM targets (out of 30)
from CASP11, and 8 FM targets (out of 12) from CASP10. The CASP proteins were
downloaded from its official website http://predictioncenter.org/.

3.2 Method comparison

We compared SAINT with the most recent and accurate Q8 predictors: MUFOLD-
SS [30], NetSurfP [43] and SPOT-1D [44]. These state-of-the-art methods have been
shown to outperform other popular Q8 predictors, namely, SSPro8 [19], RaptorX-SS8 [40],
DeepGSN [26], DeepCNF [25], DCRNN [27], NCCNN [28], CNNH PSS [29], CBRNN [71],
etc.

We evaluated the methods under various evaluation metrics, such as, Q8 accuracy,
precision, recall and F1-score. We performed Wilcoxon signed-rank test (with α = 0.05)
to measure the statistical significance of the differences between SAINT and each of the
compared state-of-the-art methods.

3.3 Results on benchmark dataset

The comparison of SAINT with the state-of-the-art Q8 structure prediction methods
on TEST2016, TEST2018, CASP13, CASP12, and CASPFM is shown in Table 1. To
train SAINT and tune necessary hyper-parameters, we have used the same training and
validation sets that were used by SPOT-1D. Notably, SPOT-1D is an ensemble of 9 mod-
els where each single model uses predicted contact map in addition to other features.
SAINT, on the other hand, is an ensemble of only 4 models, 3 of which take advan-
tage of predicted contact map with different windows sizes. Experimental results show
that SAINT outperforms all other methods across all the test sets. It is worth mention-
ing that SAINT’s accuracy on the validation set (78.18%) was also better than that of
SPOT-1D (77.60%). SPOT-1D’s base model, which does not require contact maps as
features is also an ensemble of 9 models, whereas SAINT-base model is a single model.
Despite being a single model, SAINT-base consistently outperformed SPOT-1D base in
TEST2016 and TEST2018. We could not evaluate SPOT-1D base on CASP12, CASP13,
and CASPFM as it is not publicly available. From Table 1, it is also evident that
SAINT is substantially better than the other recent methods, namely, NetSurfP-2.0 and
MUFOLD-SS. Even the base model of SAINT consistently outperformed both NetSurfP-
2.0 and MUFOLD-SS. The remarkably large improvement of SAINT over MUFOLD-SS
across all the dataset suggests the advantage of augmenting our proposed self-attention
mechanism in the Deep3I network used in MUFOLD-SS. Statistical tests (see Table 2)
suggests that these improvements of SAINT over other methods are statistically signifi-
cant (P << 0.05).
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In addition to the model accuracy, we also investigated the precision, recall and F1-
score to obtain better insights on the performances of various methods. Precision, also
know as predictivity, denotes the confidence that can be imposed on a prediction. Recall
signifies how accurately an algorithm can predict a sample from a particular class. Some-
times an algorithm tends to over-classify which results into high recall but low precision.
On the other hand, some algorithms tend to under-classify, preserving the precision at
the cost of recall. In order to get an unbiased evaluation of the performance, F1-score
is considered to be an appropriate measure and has been being used for over 25 years in
various domains [76, 77]. Tables 3, 4, and 5 show the precision, recall and F1-score on
each of the 8 states obtained by SAINT and other methods. These results suggest that
SAINT achieves better F1-score than other methods on 5 states (out of 8 states), show-
ing that SAINT produced more balanced and meaningful results than other methods.
SAINT substantially outperforms other methods on the non-ordinary states [25] such as
I, G, S, and T. However, MUFOLD-SS and SPOT-1D achieved slightly better F1-score
for the ‘B’ and ‘E’ states respectively. State ‘I’ (π-helix) is extremely rare which comprises
seven or more residues and is present in 15% of all known protein structures [78]). They
are very difficult to predict, but mostly found at functionally important regions such as
ligand- and ion-binding sites [78]. Therefore, specialized predictors, such as PiPred [78], is
also available that only predicts the π-helix structures. SAINT significantly outperforms
SPOT-1D, NetSurfP-2.0, and MUFOLD-SS in predicting π-helix in TEST2016 dataset
by correctly predicting 21 out of 47 ‘I’ states and thus achieving a recall of 0.45 for this
structure. SAINT’s precision for π-helix, on the other hand, is 1. This is remarkable con-
sidering the fact that the π-helix specific predictor, PiPred, reports precision and recall
of 0.48 and 0.46 respectively on a different dataset which they analyzed in [78].

We analyzed the CASPFM dataset comprising the free modeling targets in the CASP
dataset to demonstrate the performance of models on proteins with previously unseen
folds. SAINT achieved the best accuracy on CASPFM, suggesting SAINT’s superiority
in predicting structures of proteins having very low sequence homology with proteins of
known structures.

While the advantage of utilizing our proposed self-attention mechanism in the Deep3I
framework of MUFOLD-SS is evident from the significant improvement of SAINT over
MUFOLD-SS across all the dataset analyzed in this study, we further investigated the ef-
ficacy of our proposed attention mechanism in capturing the long-range interactions. We
computed the number of non-local interactions per residue for each of the 1,213 proteins
in TEST2016, and sorted them in an ascending order. Next, we put them in six equal
sized bins b1, b2, . . . , b6 (each containing 202 proteins except for b6 which contains 203
proteins), where b1 contains the proteins with the lowest level of non-local interactions
and b6 represents the model condition with the highest level of non-local interactions.
We show the Q8 accuracy of SAINT-base and MUFOLD-SS on these model conditions
in Table 6 and Fig. 5. Note that, instead of our ensemble model which is more accurate
than our base model, we deliberately show the results for our single base model, which
uses the same feature set as MUFOLD-SS, and the only difference between them is the
self-attention modules introduced in our architecture. These results show that the dif-
ference in predictive performance between SAINT-base and MUFOLD-SS significantly
increases with increasing levels of non-local interactions. There is no statistically signifi-
cant difference between them on b1, but as we increase the level of non-local interactions,
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SAINT becomes significantly more accurate than MUFOLD-SS and attains the highest
level of improvement on b6. This clearly indicates that capturing non-local interactions by
self-attention is the key factor in the improvement. We also performed the same analyses
on other methods (see Fig. 6). The results in Fig. 6 show that the differences among
of these methods are not that substantial on the model conditions with low levels of
long-range interactions, but the differences become notable as we increase the non-local
interactions. SAINT not only achieved the best accuracy, its improvement over other
methods increases with increasing amount of long-range interactions as well – suggest-
ing the superiority of our proposed self-attention mechanism compared to CNN+LSTM
(used in NetSurfP-2.0) and CNN (ResNet)+BRLSTM (used in SPOT-1D) in terms of
capturing the non-local interactions.

In order to demonstrate the efficacy of SAINT and other methods in capturing the
continuous structure of a protein, we show the one-dimensional map of the native and pre-
dicted secondary structure of a representative protein 5M2PA in TEST2016 (see Fig. 7).

3.3.1 Interpretability

One notable feature of SAINT is that, unlike most of the existing deep learning techniques,
it can provide insights on how the architecture is making decisions, especially regarding
the long-range interactions. Self-attention alignment matrix has already been used to
interpret how different parts of input are dependent on each other while generating the
output [55,79–82], and hence it was used to develop interpretable models [83–86]. Thus,
we made an attempt at using attention matrix to capture and provide insight into the
long-range interactions. Long-range interactions are crucial for predicting the secondary
structure of proteins. For example, a secondary structure state β-strand is stabilized by
hydrogen bonds formed with other β-strands that can be far apart from each other in
the protein sequence [26].

As mentioned earlier, we placed an attention module just before the last dense layer
in the architecture of SAINT. In addition to improving the prediction performance, a mo-
tivation behind this attention module has been to introduce some form of interpretability
to the deep learning model. Indeed we are able to relate the self-attention alignment score
matrix of this attention module to the spatial proximity of a residue with other residues
far apart in the primary sequence. In Fig. 8, we show the relation between the spatial
proximity and attention scores for a sample protein 5epmD in TEST2016. We selected a
short sequence 5epmD (only 33 residues) to easily demonstrate with visualizations how
the alignment matrix provides insight about the long-range interactions. We show the
distances of the first five residues (‘D’, ‘C’, ‘L’, ‘G’, ‘M’) to all other subsequent residues
as line graphs and superimpose them on the attention matrix obtained by a single model
of SAINT. We choose only the first 5 residues for the sake of readability and clarity of
this figure. For this protein, highest attention has been given to the 15-th residue ‘K’
and 28-th residue ‘W’, meaning that most of the residues generated the highest attention
score with respect to these two residues. Interestingly, these two residues are where the
spatial distance lines reach their local minima, indicating a possible turn, bend or con-
tact pair. Being inspired by this, we systematically analyzed the attention matrices and
spatial distance graphs of all the 1213 proteins in TEST2016. We consider only those
“downslopes” in the spatial proximity line graphs that continue to decrease for at least
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three consecutive residues, and thereby ignoring very small decreasing regions which span
less than 3 residues. We have observed that, in 93.33% of these proteins, the residues
with most attention on them are within a downslope region of another residue’s spatial
distance line curve. This indicates that the residues with relatively higher attention scores
are likely to be spatially closer to some other distant residues in the primary sequence.
While these results are promising, especially considering the black-box nature of other
deep learning based methods, they should be interpreted with care. The long-range inter-
actions suggested by the attention matrix may contain false positives and false negatives.
Higher attention scores do not necessarily guarantee a contact pair, nor is it certain that
all the contact pairs will have relatively higher attention scores. More work is required to
design an attention mechanism so that the attention matrix is more closely related to the
contact map. This is an interesting research avenue which we left as a future work. We
believe that this matrix with appropriate modifications will be useful to understand the
complex relationship between the primary sequence and various structural and functional
properties of proteins.

3.3.2 Running time

SAINT is much faster than the best alternate method SPOT-1D. For generating the
structures of 1,213 protein chains in TEST2016, given the necessary input files, SAINT
took approximately 360 ± 5 seconds whereas SPOT-1D took approximately 2, 485 ± 5
seconds on our local machine (Intel corei7-7700 CPU 3.60 GHz (4 cores), 16GB RAM,
NVIDIA GeForce GTX 1070 GPU). Under the same settings, SAINT took approximately
197 ± 5 seconds to generate secondary structures for the 250 proteins in TEST2018,
whereas SPOT-1D took approximately 668 ± 5 seconds. Since both these methods use
the same input files for feature generation, this substantial difference in running time can
be attributed to the efficiency of our attention based method over the LSTM network-
based model used in SPOT-1D.

4 Conclusions

We have presented SAINT, a highly accurate, fast, and interpretable method for 8-state
SS prediction. We demonstrate for the first time that the self-attention mechanism pro-
posed by Vaswani et al. [55] is a valuable tool to apply in the structural analyses of pro-
teins. Another earlier type of attention mechanism proposed by Bahdanau et al. [61] cou-
pled with recurrent neural network (RNN) based encoder-decoder architectures achieved
state-of-the-art performance on various natural language processing tasks (e.g. neural
machine translation [65,87], question answering task [88,89], text summarization [90,91],
document classification [92,93], sentiment classification [94,95], etc.). As proteins are also
sequences similar to sentences in a language, this type of architecture is expected do well
in protein secondary structure prediction as well. However, previous attempts [96] on us-
ing attention with LSTM based encoder-decoder only achieved 68.4% accuracy on CB513
dataset which is significantly worse than the performance of MUFOLD-SS (70.63% on
CB513) [30]. In this study, we have used the self-attention mechanism in a unique way
and proposed a novel attention augmented 3I module (2A3I module) and achieved no-
table success. We have used the self-attention mechanism to retrieve the relation between
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vectors that lay far from each other in a sequence. As self-attention mechanism looks at
a single vector and measures its similarity or relationship with all other vectors in the
same sequence, it does not need to encode all the information in a sequence into a single
vector like recurrent neural networks. This reduces the loss of contextual information for
long sequences.

SAINT contributes towards simultaneously capturing the local and non-local depen-
dencies among the amino acid residues. Unlike some of the existing deep learning meth-
ods, SAINT can capture the long-range dependencies without using computationally
expensive recurrent networks or convolution networks with large window sizes. SAINT
was assessed for its performance against the state-of-the-art 8-state SS prediction meth-
ods on a collection of widely used benchmark dataset. Experimental results suggest that
SAINT consistently improved upon the best existing methods across various widely used
benchmark dataset.

One of the most significant conclusions from the demonstrated experimental results is
that appropriate use of self-attention mechanism can significantly boost the performance
of deep neural networks and is capable of producing results which rank SAINT at the
very top of the current SS prediction methods. Thus, the idea of applying self-attention
mechanism can be applied to predicting various other protein attributes (e.g., torsion
angles, turns, etc. [97]) as well. Therefore, we believe SAINT advances the state-of-the-
art in this domain, and will be considered as a useful tool for predicting the secondary
structures of proteins.
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Tables

Method TEST2016 TEST2018 CASP13 CASP12 CASPFM
SAINT1 77.73 76.10 74.78 74.17 72.25
SPOT-1D1 77.10 75.41 73.91 73.67 71.85
SAINT-base 76.23 74.48 73.5 71.78 70.00
SPOT-1D-base1,2 76.03 74.26 - - -
NetSurfP-2.0 75.68 73.04 72.85 71.43 70.16
MUFOLD-SS 75.56 73.66 73.44 71.44 70.21
1 Indicates ensemble model
2 Not publicly available. Results reported by SPOT-1D [44].

Table 1: A comparison of the Q8 accuracy (%) obtained by SAINT and other state-of-
the-art methods on TEST2016 and TEST2018 dataset. Best results for each benchmark
dataset are shown in bold.

Method TEST2016 TEST2018 CASP13 CASP12 CASPFM
(1213) (250) (31) (49) (56)

SPOT-1D 8.168e-27 3.893e-5 0.101 0.0345 0.0791
NetSurfP-2.0 2.607e-57 3.258e-18 0.179 1.55e-6 0.0001
MUFOLD-SS 1.531e-88 3.145e-21 0.179 6.51e-5 0.005

Table 2: Statistical significance of the Q8 accuracy between SAINT and other
state-of-the-art methods. The numbers of protein chains or domains in these datasets
are shown in parentheses. We show the p-values using a Wilcoxon signed rank test.
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Q8 Label SAINT SPOT-1D NetSurfP-2.0 MUFOLD-SS
H 0.879 0.884 0.885 0.868
B 0.76 0.671 0.65 0.609
E 0.843 0.852 0.822 0.85
G 0.581 0.547 0.536 0.519
I 1 1 0.044 0.857
T 0.663 0.641 0.615 0.631
S 0.639 0.624 0.579 0.589
C 0.648 0.631 0.613 0.607

Table 3: Predictive precision on each of the 8 states obtained by SAINT and other state-
of-the-art methods on TEST2016 dataset.

Q8 Label SAINT SPOT-1D NetSurfP-2.0 MUFOLD-SS
H 0.948 0.941 0.933 0.943
B 0.104 0.097 0.07 0.115
E 0.887 0.878 0.903 0.842
G 0.39 0.375 0.334 0.348
I 0.447 0.128 0.426 0.383
T 0.618 0.612 0.585 0.586
S 0.367 0.337 0.278 0.313
C 0.731 0.741 0.704 0.727

Table 4: Recall on each of the 8 states obtained by SAINT and other state-of-the-art
methods on TEST2016 dataset.

Q8 Label Frequency SAINT SPOT-1D NetSurfP-2.0 MUFOLD-SS
H 98139 0.912 0.911 0.908 0.904
B 3018 0.183 0.169 0.126 0.193
E 62657 0.864 0.865 0.861 0.846
G 10770 0.467 0.445 0.412 0.417
I 47 0.618 0.227 0.079 0.529
T 32297 0.639 0.626 0.599 0.608
S 23466 0.466 0.438 0.376 0.409
C 57483 0.687 0.682 0.655 0.662

Table 5: F1-score on each of the 8 states obtained by SAINT and other state-of-the-art
methods on TEST2016 dataset.
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Non-local contacts Q8 Accuracy (%) Q8 Accuracy (%) Accuracy p-value
per residue of SAINT-base of MUFOLD-SS Difference
0-0.61 83.01 83.05 -0.04 0.721287
0.61-0.99 78.77 78.46 0.31 0.01036
0.99-1.24 75.80 75.37 0.43 0.004
1.24-1.45 75.79 75.14 0.65 0.0003
1.45-1.64 75.46 74.60 0.86 0.0001
1.64-2.70 73.79 72.63 1.16 1.36e-6

Table 6: Accuracy of SAINT(base) and MUFOLD-SS under various levels of
non-local interactions. 1,213 proteins in TEST2016 were divided into 6 disjoint bins
each having 202 proteins except the last one which had 203 proteins. The binning was
based on the number of non-local contacts per residue in the proteins.
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Figure 1: Architecture of the self-attention module used in SAINT.
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Figure 2: Architecture of the scaled dot-product attention sub-module.
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Figure 3: Architecture of our proposed 2A3I module by augmenting self-attention within
the inception-inside-inception (3I) network.
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Figure 4: A schematic diagram of the overall architecture of SAINT. It comprises
two 2A3I modules, three self-attention modules, convolutional layers with window size
11 and two dense layers.
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Figure 5: Accuracy of SAINT-base and MUFOLD-SS under various levels of
non-local interactions. We show the results on the TEST2016 test set using six bins
of proteins as shown in Table 6.
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Figure 6: Accuracy of SAINT, SPOT-1D, NetSurfP-2.0 and MUFOLD-SS as a
function of the average number of non-local interactions per residue. We show
the results on the six bins as shown in Table 6.
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Figure 7: Structure prediction on 5M2PA protein chain by various methods. (a)
One-dimensional map of the native structure of 5M2PA and the predicted structures by
various methods. (b) Superposition of the structures predicted by SAINT (cyan) with the
structures obtained from PDB (red) for 5M2PA. This image is generated in Pymol [98].
Since Pymol does not differentiate between all the 8 distinct states, we translated the
8-state structure to 3-state structure according to the Rost and Sander scheme [10].
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Figure 8: Demonstration of the interpretability of SAINT using the attention
map. Spatial distances of the first five residues (‘D’, ‘C’, ‘L’, ‘G’, ‘M’) in 5epmD to all
other subsequent residues are shown by line graphs and they are superimposed on the
attention matrix. Deeper hue on the 15-th residue ‘K’ and the 28-th residue ‘W’ indicates
higher attention scores.
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