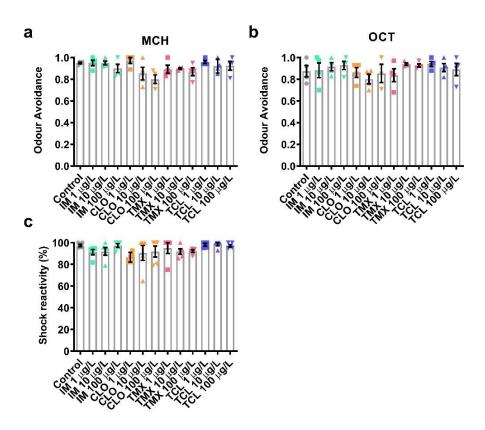
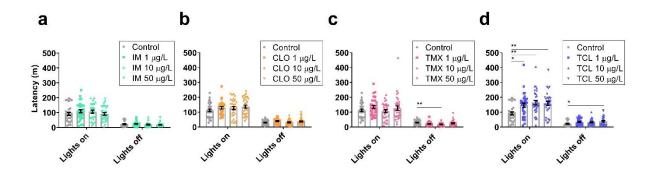

Extended Data


Extended data Fig. 1| Field relevant concentrations of neonicotinoids reduced longevity. Compared to the median lifespan for control flies (49 days) flies exposed to 10 μ g/L of **a**, IM (36 days,(χ^2_1 =8.3,p=0.004), **b**, CLO (28 days,(χ^2_1 =41.0,p<0.001), **c**, TMX (36 days, (χ^2_1 =5.8, p=0.016) and **d**, TCL (39 days, (χ^2_1 =18.5, p<0.001) had shorter lives. n=100 flies for each group.

Extended data Fig. 2| Field-relevant concentrations of neonicotinoids reduce viability. The viability of offspring of flies exposed to 1, 10 or 100 µg/L of **a**, IM ($F_{3,80} = 31.7$, $p \le 0.001$), **b**, CLO ($F_{3,132} = 6.9$, p < 0.001), **c**, TMX ($F_{3,135} = 5.4$, p = 0.002) and **d**, TCL ($F_{3,76} = 3.8$, p = 0.014), n=10 groups of 10 once mated female flies for each treatment. Viability was measured by counting the number of eggs laid by 10 once mated female in 24 h period and then counting the % of those eggs that completed development, eclosing viable adults ~15-18 days later.


Extended data Fig. 3| **Field relevant concentrations of neonicotinoids reduce locomotor performance.** Locomotor performance was measured using the negative geotaxis climbing assay, flies exposed to 10 or 50 µg/L of the banned neonicotinoids: **a,** IM ($F_{3,96} = 9.9$, p < 0.001), **b,** CLO ($F_{3,96} = 32.0$, p < 0.001), **c,** TMX ($F_{3,96} = 15.8$, p < 0.001) significantly reduced climbing performance, while the non-banned neonicotinoid **D)** TCL ($F_{3,96} = 0.4$, p = 0.762) did not affect locomotion. n=25 flies for each treatment group.

Extended data Fig. 4| Field relevant concentrations of neonicotinoids do not disrupt olfaction or shock reactivity. Sensory controls for olfactory-shock conditioning memory assays (Fig. 1) show 1, 10 and 100 µg/L of IM, CLO, TMX and TCL did not affect **a**, odour avoidance of 4-methylcyclohexanol (MCH) ($\chi^2_{12} = 19.5$, p = 0.076), or **b**, 3-octanol (OCT) ($\chi^2_{12} = 10.0$, p = 0.674) and **c**, shock reactivity ($\chi^2_{12} = 22.6$, p = 0.031). Each data point represents a group of ~50 flies, tested together, n=4 for each group.

Extended data Table 1| Field relevant concentrations of neonicotinoids increase the proportion of the population (%) exhibiting arrhythmicity compared to controls

	IM	CLO	TMX	TCL	
1 μg/L	8%	11%	10%	1%	
10 μg/L	19%	19%	23%	4%	
50 μg/L	27%	36%	65%	0%	

Extended data Fig. 5| **Field relevant concentrations of thiacloprid increase daytime sleep latency.** The mean latency in minutes (m) before sleep was initiated after lights on or lights off, for flies exposed to 1, 10 or 50 μ g/L of **a,** IM, day ($F_{3,114}$ =0.9, p=0.441) and night ($F_{3,114}$ =0.9, p=0.468), **b,** CLO, day ($F_{3,120}$ =1.1, p=0.333) and night ($F_{3,120}$ =2.0, p=0.124), **c,** TMX, day ($F_{3,124}$ =1.3, p=0.264) and night ($F_{3,124}$ =4.3, p=0.007) or **d,** TCL, day ($F_{3,120}$ =5.6, p=0.001) and night ($F_{3,120}$ =2.7, p=0.50). Each datapoint represents a single fly, n=28-32 flies per treatment.