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Abstract The neural circuits responsible for animal behavior remain largely unknown. We31

summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly32

Drosophila melanogaster. Improved methods include new procedures to prepare, image, align,33

segment, find synapses in, and proofread such large data sets. We define cell types, refine34

computational compartments, and provide an exhaustive atlas of cell examples and types, many of35

them novel. We provide detailed circuits consisting of neurons and their chemical synapses for36

most of the central brain. We make the data public and simplify access, reducing the effort needed37

to answer circuit questions, and provide procedures linking the neurons defined by our analysis38

with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs39

on different scales, electrical consequences of compartmentalization, and evidence that40

maximizing packing density is an important criterion in the evolution of the fly’s brain.41
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42

Introduction43

The connectome we present is a dense reconstruction of a portion of the central brain (referred to44

here as the hemibrain) of the fruit fly, Drosophila melanogaster, as shown in Figure 1. This region45

was chosen since it contains all the circuits of the central brain (assuming bilateral symmetry), and46

in particular contains circuits critical to unlocking mysteries involving associative learning in the47

mushroom body, navigation and sleep in the central complex, and circadian rhythms among clock48

circuits. The largest dense reconstruction to date, it contains around 25,000 neurons, most of which49

were rigorously clustered and named, with about 20 ⋅ 106 chemical synapses between them, plus50

portions of many other neurons truncated by the boundary of the data set (details in Figure 151

below). Each neuron is documented at many levels - the detailed voxels that constitute it, a skeleton52

with segment diameters, its synaptic partners and the location of most of their synapses.

Neurons traced, most arbors in volume (uncropped) 21,662

Neurons traced, large (≥ 1000 connections) but cropped by edge
of volume

4,495

Remaining traced, small (< 1000 connections) and cropped 67,475

Presynaptic sites (T-Bars) in uncropped/traced/total T-bars 6M/8.6M/9.5M

Postsynaptic densities(PSDs) in uncropped/traced/total 18M/23M/64M

Figure 1. The hemibrain and some basic statistics. The highlighted area shows the portion of the central brain
that was imaged and reconstructed, superimposed on a grayscale representation of the entire Drosophila brain.
For the table, a neuron is traced if all its main branches within the volume are reconstructed. A neuron is

considered uncropped if most arbors (though perhaps not the soma) are contained in the volume. Others are

considered cropped. Note: 1) our definition of cropped is somewhat subjective; 2) the usefulness of a cropped

neuron depends on the application; and 3) some small fragments are known to be distinct neurons. For

simplicity, we will often state that the hemibrain contains ≈25K neurons.

53

Producing this data set required advances in sample preparation, imaging, image alignment, ma-54

chine segmentation of cells, synapse detection, data storage, proofreading software, and protocols55

to arbitrate each decision. A number of new tests for estimating the completeness and accuracy56

were required and therefore developed, in order to verify the correctness of the connectome.57

These data describe whole-brain properties and circuits, as well as contain new methods to58

classify cell types based on connectivity. Computational compartments are now more carefully59

defined, we identify actual synaptic circuits, and each neuron is annotated by name and putative60

cell type, making this the first complete census of neuropils, tracts, cells, and connections in this61
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Figure 2. Brain regions contained and defined in the hemibrain, following the naming conventions of (Ito et al.,2014) with the addition of (R) and (L) to specify the side of the soma for that region. Gray italics indicate master
regions not explicitly defined in the hemibrain. Region LA is not included in the volume. The regions are

hierarchical, with the more indented regions forming subsets of the less indented. The only exceptions are

dACA, lACA, and vACA which are considered part of the mushroom body but are not contained in the master

region MB.

portion of the brain. We compare the statistics and structure of different brain regions, and for62

the brain as a whole, without the confounds introduced by studying different circuitry in different63

animals.64

All data are publicly available through web interfaces. This includes a browser interface, Ne-65

uPrint(Clements et al., 2020), designed so that any interested user can query the hemibrain con-66

nectome even without specific training. NeuPrint can query the connectivity, partners, connection67

strengths and morphologies of all specified neurons, thus making identification of upstream and68

downstream partners orders of magnitude easier than through existing genetic methods. In addi-69

tion, for those who are willing to program, the full data set - the gray scale voxels, the segmentation70

and proofreading results, skeletons, and graph model of connectivity, are also available through71

publicly accessible application program interfaces (APIs).72

This effort differs from previous EM reconstructions in its social and collaborative aspects.73

Previous reconstructions were either dense in much smaller EM volumes(such as (Meinertzhagen74

and O’neil, 1991)(Helmstaedter et al., 2013)(Takemura et al., 2017)) or sparse in larger volumes75

(such as (Eichler et al., 2017) or (Zheng et al., 2018)). All have concentrated on the reconstruction76

of specific circuits to answer specific questions. When the same EM volume is used for many77
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such efforts, as has occurred in the Drosophila larva and the full adult fly brain, this leads to an78

overall reconstruction that is the union of many individual efforts(Saalfeld et al., 2009). The result79

is inconsistent coverage of the brain, with some regions well reconstructed and others missing80

entirely. In contrast, here we have analyzed the entire volume, not just the subsets of interest to81

specific groups of researchers with the expertise to tackle EM reconstruction. We are making these82

data available without restriction, with only the requirement to cite the source. This allows the83

benefits of known circuits and connectivity to accrue to the field as a whole, a much larger audience84

than those with expertise in EM reconstruction. This is analogous to progress in genomics, which85

transitioned from individual groups studying subsets of genes, to publicly available genomes that86

can be queried for information about genes of choice(Altschul et al., 1990).87

One major benefit to this effort is to facilitate research into the circuits of the fly’s brain. A88

common question among researchers, for example, is the identity of upstream and downstream89

(respectively input and output) partners of specific neurons. Previously this could only be addressed90

by genetic trans-synpatic labelling, such as trans-Tango(Talay et al., 2017), or by sparse tracing in91

previously imaged EM volumes(Zheng et al., 2018). However, the genetic methods may give false92

positives and negatives, and both alternatives require specialized expertise and are time consuming,93

often taking months of effort. Now, for any circuits contained in our volume, a researcher can94

obtain the same answers in seconds by querying a publicly available database.95

Another major benefit of dense reconstruction is its exhaustive nature. Genetic methods such96

as stochastic labeling may miss cell types, and counts of cells of a given type are dependent on97

expression levels, which are always uncertain. Previous dense reconstructions have demonstrated98

that existing catalogs of cell types are incomplete, even in well-covered regions(Takemura et al.,99

2017). In our hemibrain sample, we have identified all the cells within the reconstructed volume,100

thus providing a complete and unbiased census of all cell types in the fly’s central brain (at least in101

this single female), and a precise count of the instances of each type.102

Another scientific benefit lies in an analysis without the uncertainty of pooling data obtained103

from different animals. The detailed circuitry of the fly’s brain is known to depend on nutritional104

history, age, and circadian rhythm. Here these factors are held constant, as are the experimental105

methods, facilitating comparison between different fly brain regions in this single animal. Evaluating106

stereotypy across animals will of course eventually require additional connectomes.107

Previous reconstructions of compartmentalized brains have concentrated on particular regions108

and circuits. The mammalian retina(Helmstaedter et al., 2013) and cortex(Kasthuri et al., 2015),109

and insect mushroom bodies(Eichler et al., 2017)(Takemura et al., 2017) and optic lobes(Takemura110

et al., 2015) have all been popular targets. Additional studies have examined circuits that cross111

regions, such as those for sensory integration(Ohyama et al., 2015) or motion vision(Shinomiya112

et al., 2019).113

So far lacking are systematic studies of the statistical properties of computational compartments114

and their connections. Neural circuit motifs have been studied(Song et al., 2005), but only those115

restricted to small motifs and at most a few cell types, usually in a single portion of the brain. Many116

of these results are in mammals, leading to questions of whether they also apply to invertebrates,117

and whether they extend to other regions of the brain. While there have been efforts to build118

reduced, but still accurate, electrical models of neurons(Marasco et al., 2012), none of these to our119

knowledge have used the compartments structure of the brain.120

What is included121

Figure 2 shows the hierarchy of the named brain regions that are included in the hemibrain. Table 1122

shows the primary regions that are at least 50% included in the hemibrain sample, their approximate123

size, and their completion percentage. Our names for brain regions follow the conventions of (Ito124

et al., 2014) with the addition of ‘(L)’ or ‘(R)’ to indicate whether the region (most of which occur on125

both sides of the fly) has its cell bodies in the left or right, respectively. The mushroom body(Tanaka126

et al., 2008)(Aso et al., 2014) and central complex(Wolff et al., 2015) are further divided into finer127
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compartments.128

The supplementary material includes a section on known sensory input, and motor outputs,129

included in the volume.130

Differences from connectomes of vertebrates131

Most accounts of neurobiology define the operation of the mammalian nervous system with, at132

most, only passing reference to invertebrate brains. Fly (or other insect) nervous systems differ from133

those of vertebrates in several respects(Meinertzhagen, 2016b). Some main differences include:134

∙ Most synapses are polyadic. Each synapse structure comprises a single presynaptic release135

site and, adjacent to this, several neurites experessing neurotranmitter receptors. An element,136

T-shaped and typically called a T-bar in flies, marks the site of transmitter release into the cleft137

between cells. This site typically abuts the neurites of several other cells, where a postsynaptic138

density (PSD) marks the receptor location.139

∙ Most neurites are neither purely axonic or dendritic, but have both pre- and postsynaptic part-140

ners, a feature that may be more prominent in mammalian brains than recognized(Morgan141

and Lichtman, 2020). Within a single brain region, however, neurites are frequently predomi-142

nantly dendritic (postsynaptic) or axonic (presynaptic).143

∙ Unlike some synapses in mammals, EM imagery (at least as we have acquired and analyzed it144

here) fails to reveal obvious information about whether a synapse is excitatory or inhibitory.145

∙ The soma or cell body of each fly neuron resides in a rind (the cell body layer) on the periphery146

Name %inV T-bars comp% Name %inV T-bars comp%

PED(R) 100% 54805 85% aL(R) 100% 95375 84%

b’L(R) 100% 67695 83% bL(R) 100% 71112 83%

gL(R) 100% 176785 83% a’L(R) 100% 39091 82%

EB 100% 164286 81% bL(L) 56% 58799 80%

NO 100% 36722 79% b’L(L) 88% 57802 78%

gL(L) 55% 133256 76% CA(R) 100% 69515 73%

AB(R) 100% 2734 64% aL(L) 51% 44803 62%

FB 100% 451040 61% AL(R) 83% 501007 58%

AB(L) 100% 572 57% PB 100% 46557 55%

AME(R) 100% 6045 47% BU(R) 100% 9381 46%

CRE(R) 100% 137946 39% AOTU(R) 100% 92579 37%

LAL(R) 100% 234398 36% SMP(R) 100% 510943 33%

PVLP(R) 100% 475228 29% ATL(R) 100% 25472 28%

SPS(R) 100% 253821 28% ATL(L) 100% 28153 28%

VES(R) 84% 157171 27% IB 100% 200447 27%

CRE(L) 90% 130498 27% SIP(R) 100% 187494 26%

BU(L) 52% 7014 26% GOR(R) 100% 27140 25%

WED(R) 100% 232901 24% SMP(L) 100% 460793 24%

EPA(R) 100% 31439 24% PLP(R) 100% 429106 24%

AVLP(R) 100% 630542 22% ICL(R) 100% 202550 22%

SLP(R) 100% 475903 21% LO(R) 64% 855261 21%

SCL(R) 100% 187674 21% GOR(L) 60% 19558 20%

LH(R) 100% 231667 18% CAN(R) 68% 6513 15%

Table 1. Regions with ≥50% included in the hemibrain, sorted by completion percentage. The approximate
percentage of the region included in the hemibrain volume is shown as ‘%inV’. ‘T-bars’ gives a rough estimate of

the size of the region. ‘comp%’ is the fraction of the PSDs contained in the brain region for which both the PSD,

and the corresponding T-bar, are in neurons marked as ‘Traced’.
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of the brain, mostly disjoint from the main neurites innervating the internal neuropil. As147

a result, unlike vertebrate neurons, no synapses form directly on the soma. The neuronal148

process between the soma and the first branch point is the cell body fiber (CBF), which is149

likewise not involved in the synaptic transmission of information.150

∙ Synapse sizes are much more uniform than those of mammals. Stronger connections are151

formed by increasing the number of synapses in parallel, not by forming larger synapses, as in152

vertebrates. In this paper we will refer to the ‘strength’ of a connection as the synapse count,153

even though we acknowledge that we lack information on the relative activity and strength of154

the synapses, and thus a true measure of their coupling strength..155

∙ The brain is small, about 250 �m per side, and has roughly the same size as the dendritic156

arbor of a single pyramidal neuron in the mammalian cortex.157

∙ Axons of fly neurons are not myelinated.158

∙ Some fly neurons relay on graded transmission (as opposed to spiking), without obvious159

anatomical distinction. Some neurons even switch between graded and spiking opera-160

tion(Pimentel et al., 2016).161

Connectome Reconstruction162

Producing a connectome comprising reconstructed neurons and the chemical synapses between163

them required several steps. The first step, preparing a fly brain and imaging half of its center,164

produced a dataset consisting of 26 teravoxels of data, each with 8 bits of information. We applied165

numerous machine learning algorithms and over 50 person-years of proofreading effort over ≈2166

calendar years to extract a variety of more compact and useful representations, such as neuron167

skeletons, synapse locations, and connectivity graphs. These are both more useful and much168

smaller than the raw grayscale data. For example, the connectivity could be reasonably summarized169

by a graph with ≈25,000 nodes and ≈3 million edges. Even when the connections were assigned to170

different brain regions, such a graph took only 26 MB, still large but roughly a million fold reduction171

in data size.172

Many of the supporting methods for this reconstruction have been recently published. Here173

we briefly survey each major area, with more details reported in the companion papers. Major174

advances include:175

∙ New methods to fix and stain the sample, preparing a whole fly brain with well-preserved176

subcellular detail particularly suitable for machine analysis.177

∙ Methods that have enabled us to collect the largest EM dataset yet using Focused Ion Beam178

Scanning Electron Microscopy (FIB-SEM), resulting in isotropic data with few artifacts, features179

that significantly speed up reconstruction.180

∙ A coarse-to-fine, automated flood-filling network segmentation pipeline applied to image181

data normalized with cycle-consistent generative adversarial networks, and an aggressive182

automated agglomeration regime enabled by advances in proofreading.183

∙ A new hybrid synapse prediction method, using two differing underlying techniques, for184

accurate synapse prediction throughout the volume.185

∙ New top-down proofreadingmethods that utilize visualization andmachine learning to achieve186

orders of magnitude faster reconstruction compared with previous approaches in the fly’s187

brain.188

Each of these is explained in more detail in the following sections and, where necessary, in the189

Supplemental Methods.190

Image stack collection191

The first steps, fixing and staining the specimen, have been accomplished taking advantage of192

three new developments. These improved methods allow us to fix and stain a full fly’s brain193

but nevertheless recover neurons as round profiles with darkly stained synapses, suitable for194
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machine segmentation and automatic synapse detection. Starting with a five day old female of195

wild-type Canton S strain G1 x w1118, we used a custom-made jig to microdissect the central nervous196

system, which was then fixed and embedded in Epon, an epoxy resin. We then enhanced the197

electron contrast by staining with heavy metals, and progressively lowered the temperature during198

dehydration of the sample. Collectively these methods optimize morphological preservation, allow199

full-brain preparation without distortion (unlike fast freezing methods), and provide increased200

staining intensity that speeds the rate of FIB-SEM imaging(Lu et al., 2019).201

The hemibrain sample is roughly 250 x 250 x 250 �m, larger than we can FIB-SEM without202

introducing milling artifacts. Therefore we subdivided our epoxy-embedded samples into 20 �m203

thick slabs, both to avoid artifacts and allow imaging in parallel (each slab imaged in a different FIB204

machine) for increased throughput. To be effective, the cut surfaces of the slabs must be smooth at205

the ultrastructural level and have only minimal material loss. Specifically, for connectomic research,206

all long-distance processes must remain traceable across sequential slabs. We used an improved207

version of our previously published ‘hot-knife’ ultrathick sectioning procedure(Hayworth et al.,208

2015) which uses a heated, oil-lubricated diamond knife, to section the Drosophila brain into 37209

sagittal slabs of 20 �m thickness with an estimated material loss between consecutive slabs of only210

∼30 nm - sufficiently small to allow tracing of long-distance neurites. Each slab was re-embedded,211

mounted, and trimmed, then examined in 3-D with X-ray tomography to check for sample quality212

and establish a scale factor for Z-axis cutting by FIB. The resulting slabs were FIB-SEM imaged213

separately (often in parallel, for increased throughput) and the resulting volume datasets were214

stitched together computationally.215

Figure 3. The 13 slabs of the hemibrain, each flattened and co-aligned. Colors are arbitrary and added to the
monochrome data to define the brain regions, as computed in section 2.5 .

Connectome studies comewith clearly defined resolution requirements - the finest neuritesmust216
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be traceable by humans and should be reliably segmented by automated algorithms(Januszewski217

et al., 2018). In Drosophila, the very finest neural processes are usually 50 nm but can be as218

little as 15 nm(Meinertzhagen, 2016a). This fundamental biological dimension determines the219

minimum isotropic resolution requirements for tracing neural circuits. To meet the demand for high220

isotropic resolution and large volume imaging, we chose the FIB-SEM imaging platform, which offers221

high isotropic resolution (< 10 nm in x, y, and z), minimal artifacts, and robust image alignment.222

The high-resolution and isotropic dataset possible with FIB-SEM has substantially expedited the223

Drosophila connectome pipeline. Compared to serial-section imaging, with its sectioning artifacts224

and inferior Z-axis resolution, FIB-SEM offers high quality image alignment, a smaller number of225

artifacts, and isotropic resolution. This allows higher quality automated segmentation and makes226

manual proofreading and correction easier and faster.227

At the beginning, deficiencies in imaging speed and system reliability of any commercial FIB-SEM228

system capped the maximum possible image volume to less than 0.01% of a full fly brain, problems229

that persist even now. To remedy them, we redesigned the entire control system, improved the230

imaging speed more than 10x, and created innovative solutions addressing all known failure modes,231

which thereby expanded the practical imaging volume of conventional FIB-SEM by more than four232

orders of magnitude from 103�m3 to 3 ⋅ 107�m3, while maintaining an isotropic resolution of 8 x 8 x233

8 nm voxels(Xu et al., 2017)(Xu et al., 2019). In order to overcome the aberration of a large field of234

view (up to 300 �mwide), we developed a novel tiling approach without sample stage movement, in235

which the imaging parameters of each tile are individually optimized through an in-line auto focus236

routine without overhead(Xu et al., 2018). After numerous improvements, we have transformed237

the conventional FIB-SEM from a laboratory tool that is unreliable for more than a few days of238

imaging to a robust volume EM platform with effective long-term reliability, able to perform years239

of continuous imaging without defects in the final image stack. Imaging time, rather than FIB-SEM240

reliability, is now the main impediment to obtaining even larger volumes.241

In our study here, the Drosophila “hemibrain”, thirteen consecutive hot-knifed slabs were imaged242

using two customized enhanced FIB-SEM systems, in which an FEI Magnum FIB column was243

mounted at 90◦ upon a Zeiss Merlin SEM. After data collection, streaking artifacts generated by244

secondary electrons along the FIB milling direction were computationally removed using a mask245

in the frequency domain. The image stacks were then aligned using a customized version of the246

software platform developed for serial section transmission electron microscopy (Zheng et al.,247

2018)(Khairy et al., 2018), followed by binning along z-axis to form the final 8 x 8 x 8 nm3 voxel248

datasets. Milling thickness variations in the aligned series were compensated using a modified249

version of the method described by Hanslovsky et al.(Hanslovsky et al., 2017), with the absolute250

scale calibrated by reference to the MicroCT images.251

The 20 �m slabs generated by the hot-knife sectioning were re-imbedded in larger plastic tabs252

prior to FIB-SEM imaging. To correct for the warping of the slab that can occur in this process,253

methods adapted from Kainmueller(Kainmueller et al., 2008) were used to find the tissue-plastic254

interface and flatten each slab’s image stack.255

The series of flattened slabs was then stitched using a custommethod for large scale deformable256

registration to account for deformations introduced during sectioning, imaging, embedding, and257

alignment (Saalfeld et al. in prep). These volumes were then contrast adjusted using slice-wise258

contrast limited adaptive histogram equalization (CLAHE)(Pizer et al., 1987), and converted into a259

versioned database(Distributed, Versioned, Image-oriented Database, or DVID), which formed the260

raw data for the reconstruction, as illustrated in Figure 3.261

Automated Segmentation262

Computational reconstruction of the image data was performed using flood-filling networks (FFNs)263

trained on roughly five-billion voxels of volumetric ground truth contained in two tabs of the264

hemibrain dataset(Januszewski et al., 2018). Initially, the FFNs generalized poorly to other tabs of265

the hemibrain, whose image content had a different appearance. Therefore we adjusted the image266
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Figure 4. (a) Original EM data from tab 34 at a resolution of 16 nm / resolution, (b) EM data after CycleGAN
processing, (c-d) FFN segmentation results with the 16 nm model applied to original and processed data,

respectively. Scale bar in (a) represents 1 �m.

content to be more uniform using cycle-consistent generative adversarial networks (CycleGANs)(Zhu267

et al., 2017). Specifically, “generator” networks were trained to alter image content such that a268

second “discriminator” network was unable to distinguish between image patches sampled from, for269

example, a tab that contained volumetric training data versus a tab that did not. A cycle-consistency270

constraint was used to ensure that the image transformations preserved ultrastructural detail. The271

improvement is illustrated in Figure 4. Overall, this allowed us to use the training data from just two272

slabs, as opposed to needing training data for each slab.273

FFNs were applied to the CycleGAN-normalized data in a coarse-to-fine manner at 32x32x32274

nm3 and 16x16x16 nm3, and to the CLAHE-normalized data at the native 8x8x8 nm3 resolution, in275

order to generate a base segmentation that was largely over-segmented. We then agglomerated the276

base segmentation, also using FFNs. We aggressively agglomerated segments despite introducing277

substantial numbers of erroneous mergers. This differs from previous algorithms, which studiously278

avoidedmerge errors since they were so difficult to fix. Here, advances in proofreadingmethodology279

described elsewhere in this report enabled efficient detection and correction of such mergers.280

We evaluated the accuracy of the FFN segmentation of the hemibrain using metrics for expected281

run length (ERL) and merge rate(Januszewski et al., 2018). The base segmentation (i.e., the auto-282

mated reconstruction prior to agglomeration) achieved an ERL of 163 �m with a merge rate of283

0.25%. After (automated) agglomeration, run length increased to 585 �m but with a false merge284

rate of 27.6% (i.e., nearly 30% of the path length was contained in segments with at least one merge285

error). We also evaluated a subset of neurons in the volume, ∼500 olfactory PN and KC cells chosen286

to roughly match the evaluation performed in (Li et al., 2019) which yielded an ERL of 825 �m at a287

15.9% merge rate.288
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Synapse Prediction289

Accurate synapse identification is central to our analysis, given that synapses form both a critical290

component of a connectome and are required for prioritizing and guiding the proofreading effort.291

Synapses in Drosophila are typically polyadic, with a single presynaptic site (a T-bar) contacted292

by multiple receiving dendrites (most with PSDs, postsynaptic densities) as shown in Figure 5a.293

Initial synapse prediction revealed that there are over 9 million T-bars and 60 million PSDs in the294

hemibrain. Manually validating each one, assuming a rate of 1000 connections annotated per295

trained person, per day, would have taken more than 230 working years. Given this infeasibility, we296

developed machine learning approaches to predict synapses as detailed below. The results of our297

prediction are shown in Fig 5b, where the predicted synapse sites clearly delineate many of the fly298

brain regions.299

Given the size of the hemibrain image volume, a major challenge from a machine learning300

perspective is the range of varying image statistics across the volume. In particular, model per-301

formance can quickly degrade in regions of the data set with statistics that are not well-captured302

by the training set(Buhmann et al., 2019). To address this challenge, we took an iterative

(a) Drosophila Synapse in EM (b) Cross section through a point cloud of all detected
synapses.

Figure 5. Well-preserved membranes, darkly stained synapses, and smooth round neurite profiles are
characteristics of the hemibrain sample. Panel (a) shows polyadic synapses, with a red arrow indicating the

presynaptic T-bar, and white triangles pointing to the postsynaptic densities. Mitochondria (‘M’), synaptic

vesicles (‘SV’), and the scale bar (0.5 �m) are shown. Panel (b) shows a cross section through a point cloud of all
detected synapses. This EM point cloud defines many of the compartments in the fly’s brain, much like an

optical image obtained using antibody nc82 antibody (against Bruchpilot, a component of T-bars) to stain

synapses. This point cloud is used to generate the transformation from our sample to the standard Drosophila
brain.

303

approach to synapse prediction, interleaving model re-training with manual proofreading, all based304

on previously reported methods(Huang et al., 2018). Initial prediction, followed by proofreading,305

revealed a number of false positive predictions from structures such as dense core vesicles which306

were not well-represented in the original training set. A second filtering network was trained on307

regions causing such false positives, and used to prune back the original set of predictions. We308

denote this pruned output as the ‘initial’ set of synapse predictions.309

Based on this initial set, we began collecting human-annotated dense ground-truth cubes310

throughout the various brain regions of the hemibrain, to assess variation in classifier performance311

by brain region. From these cubes, we determined that although many regions had acceptable312

precision, there were some regions in which recall was lower than desired. Consequently, a subset313

of cubes available at that time was used to train a new classifier focused on addressing recall in the314
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problematic regions. This new classifier was used in an incremental (cascaded) fashion, primarily by315

adding additional predictions to the existing initial set. This gave better performance than complete316

replacement using only the new classifier, with the resulting predictions able to improve recall while317

largely maintaining precision.318

As an independent check on synapse quality, we also trained a separate classifier(Buhmann319

et al., 2019), using a modified version of the ‘synful’ software package. Both synapse predictors give320

a confidence value associated with each synapse, a measure of how firmly the classifier believes the321

prediction to be a true synapse. We found that we were able to improve recall by taking the union of322

the two predictor’s most confident synapses, and similarly improve precision by removing synapses323

that were low confidence in both predictions. Figures 6a and 6b show the results, illustrating the324

precision and recall obtained in each brain region.325

(a) T-bars (b) PSDs
Figure 6. Precision and recall for synapse prediction, on the left for T-bars, and on the right for synapses as a
whole including the identification of PSDs. T-bar identification is better than PSD identification since this

organelle is both more distinct and typically occurs in larger neurites. Each dot is one brain region. The size of

the dot is proportional to the volume of the region. Humans proofreaders typically achieve 0.9 precision/recall

on T-bars and 0.8 precision/recall on PSDs, indicated in purple.

Proofreading326

Since machine segmentation is not perfect, we made a concerted effort to fix the errors remaining327

at this stage by several passes of human proofreading. Segmentation errors can be roughly grouped328

into two classes - “false merges”, in which two separate neurons are mistakenly merged together,329

and “false splits”, in which a single neuron is mistakenly broken into several segments. Enabled by330

advances in visualization and semi-automated proofreading using our Neu3 tool(Hubbard et al.,331

2020), we first addressed large false mergers. A human examined each putative neuron and332

determined if it had an unusual morphology suggesting that a merge might have occurred, a task333

still much easier for humans than machines. If judged to be a false merger, the operator identified334

discrete points that should be on separate neurons. The shape was then resegmented in real time335

allowing users to explore other potential corrections. Neurons with more complex problems were336

then scheduled to be re-checked, and the process repeated until few false mergers remained.337

In the next phase, the largest remaining pieces were merged into neuron shapes using a338

combination of machine-suggested edits(Plaza, 2014) and manual intuition, until the main shape of339

each neuron emerged. This requires relatively few proofreading decisions and has the advantage340
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of producing an almost complete neuron catalog early in the process. As discussed below, in the341

section on validation, emerging shapes were compared against genetic/optical image libraries342

(where available) and against other neurons of the same putative type, to guard against large343

missing or superfluous branches. These procedures (which focused on higher-level proofreading)344

produced a reasonably accurate library of the main branches of each neuron, and a connectome345

of the stronger neuronal pathways. At this point there was still considerable variations among346

the brain regions, with greater completeness achieved in regions where the initial segmentation347

performed better.348

Finally, to achieve the highest reconstruction completeness possible in the time allotted,349

and to enable confidence in weaker neuronal pathways, proofreaders connected remaining iso-350

lated fragments (segments) to already constructed neurons, using NeuTu(Zhao et al., 2018) and351

Neu3(Hubbard et al., 2020). The fragments that would result in largest connectivity changes were352

considered first, exploiting automatic guesses through focused proofreading where possible. Since353

proofreading every small segment is still prohibitive, we tried to ensure a basic level of completeness354

throughout the brain with special focus in regions of particular biological interest such as the central355

complex and mushroom body.356

Defining brain regions357

In a parallel effort to proofreading, the sample was annotated with discrete brain regions. Our358

progression in mapping the cells and circuits of the fly’s brain bears formal parallels to the history of359

mapping the earth, with many territories that are named and with known circuits, and others that360

still lack all or most of these. For the hemibrain dataset the regions are based on the brain atlas in361

Ito et al(Ito et al., 2014). The dataset covers most of the right hemisphere of the brain, except the362

optic lobe (OL), periesophageal neuropils (PENP) and gnathal ganglia (GNG), as well as part of the363

left hemisphere (Table 1). It covers about 36% of all synaptic neuropils by volume, and 54% of the364

central brain neuropils. We examined innervation patterns, synapse distribution, and connectivity365

of reconstructed neurons to define the neuropils as well as their boundaries on the dataset. We366

also made necessary, but relatively minor, revisions to some boundaries by reflecting anatomical367

features that had not been known during the creation of previous brain maps, while following the368

existing structural definitions(Ito et al., 2014). We also used information from synapse point clouds,369

a predicted glial mask, and a predicted fiber bundle mask to determine boundaries of the neuropils370

(Figure 7 A). The brain regions of the fruit fly (Figure 7, B and C) include synaptic neuropils and371

non-synaptic fiber bundles. The non-synaptic cell body layer on the brain surface, which contains372

cell bodies of the neurons and glia, surrounds these structures. The synaptic neuropils can be373

further categorized into two groups: delineated and diffuse neuropils. The delineated neuropils374

have distinct boundaries throughout their surfaces, often accompanied by glial processes, and have375

clear internal structures in many cases. They include the antennal lobe (AL), bulb (BU), as well as376

the neuropils in the optic lobe (OL), mushroom body (MB), and central complex (CX). Remaining377

are the diffuse neuropils, sometimes referred to as terra incognita, since most have been less378

investigated than the delineated neuropils. In the previous brain atlas of 2014, boundaries of many379

terra incognita neuropils were rather arbitrarily determined, due to a lack of information then of380

their innervating neurons.381

Diffuse (terra incognita) neuropils382

In the hemibrain data, we adjusted the boundaries of some terra incognita neuropils using recon-383

structed neurons and their synaptic sites. Examples include the lateral horn (LH), ventrolateral384

neuropils (VLNP), and the boundary between the crepine (CRE) and lateral accessory lobe (LAL).385

The LH has been defined as the primary projection target of the olfactory projection neurons (PNs)386

from the antennal lobe (AL) via several antennal lobe tracts (ALTs)(Ito et al., 2014)(Pereanu et al.,387

2010). The boundary between the LH and its surrounding neuropils is barely visible with synaptic388

immunolabeling such as nc82 or predicted synapse point clouds, as the synaptic contrast in these389
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Figure 7. Panel (A) A coronal section of the hemibrain dataset with synapse point clouds (white), predicted glial
tissue (green), and predicted fiber bundles (magenta). (B) Grayscale image overlaid with segmented neuropils at

the same level as (A). (C) A frontal view of the reconstructed neuropils. Scale bar: (A, B) 50�m.

regions is minimal. The olfactory PNs can be grouped into several classes, and the projection sites390

of the uniglomerular PNs that project through the medial ALT (mALT), the thickest fiber bundle391

between the AL and LH, give the most conservative and concrete boundary of the ‘core’ LH (Figure392

8A). Multiglomerular PNs, on the other hand, project to much broader regions, including the vol-393

umes around the core LH (Figure 8B). These regions include areas which are currently considered394

parts of the superior lateral protocerebrum (SLP) and posterior lateral protocerebrum (PLP). Since395

the “core” LH roughly approximates the shape of the traditional LH, and the boundaries given396

by the multiglomerular PNs are rather discrete, in this study we assumed the core to be the LH397

itself. Of course, the multiglomerular PNs convey olfactory information as well, and therefore the398

neighboring parts of the SLP and PLP to some extent also receive inputs from the antennal lobe.399

These regions might be functionally distinct from the remaining parts of the SLP or PLP, but they400

are not explicitly separated from those neuropils in this study.401

The VLNP is located in the lateral part of the central brain and receives extensive inputs from402

the optic lobe through various types of the visual projection neurons (VPNs). Among them, the403

projection sites of the lobula columnar (LC), lobula plate columnar (LPC), lobula-lobula plate colum-404

nar (LLPC), and lobula plate-lobula columnar (LPLC) cells form characteristic glomerular structures,405

or the optic glomeruli (OG), in the AOTU, PVLP, and PLP(Klapoetke et al., 2017)(Otsuna and Ito,406

2006)(Panser et al., 2016)(Wu et al., 2016). We exhaustively identified columnar VPNs and found 23407

types of LC, two types of LPC, three types of LLPC, and three types of LPLC cells. The glomeruli of408

these pathways were used to determine the medial boundary of the PVLP and PLP, following existing409

definitions(Ito et al., 2014), except for a few LC types which do not form glomerular terminals. The410

terminals of the reconstructed LC cells and other lobula complex columnar cells (LPC, LLPC, LPLC)411

are shown in Figures 8C and 8D, respectively.412

In the previous paper(Ito et al., 2014), the boundary between the CRE and LAL was defined as413

the line roughly corresponding to the posterior-ventral surface of the MB lobes, since no other414

prominent anatomical landmarks were found around this region. In this dataset, we found several415

glomerular structures surrounding the boundary both in the CRE and LAL. These structures include416

the gall (GA), rubus (RUB), and round body (ROB). Most of them turned out to be projection targets417

of several classes of central complex neurons, implying the ventral CRE and dorsal LAL are closely418

related in their function. We re-determined the boundary so that each of the glomerular structures419

would not be divided into two, while keeping the overall architecture and definition of the CRE and420

LAL. The updated boundary passes between the dorsal surface of the GA and the ventral edge of421

the ROB. Other glomerular structures, including the RUB, are included in the CRE.422
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Figure 8. Caption next page.
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Figure 8. Reconstructed brain regions and substructures. (A, B) Dorsal views of the olfactory projection
neurons (PNs) and the innervated neuropils, AL, CA, and LH. Uniglomerular PNs projecting through the mALT

are shown in (A), and multiglomerular PNs are shown in (B). (C, D) Columnar visual projection neurons. Each

subtype of cells is colorcoded. LC cells are shown in (C), and LPC, LLPC, and LPLC cells are shown in (D). (E, F) The

nine layers of the fan-shaped body (FB), along with the asymmetrical bodies (AB) and the noduli (NO), displayed

as an anterior-ventral view (E), and a lateral view (F). In (E), three FB tangential cells (FB1D (blue), FB3A (green),

FB7L (purple)) are shown as markers of the corresponding layers (FBl1, FBl3, and FBl7, respectively). (G) Zones in

the ellipsoid body (EB) defined by different types of ring neurons. In this horizontal section of the EB, the left

side shows the original grayscale data, and the seven ring neuron subtypes are color-coded. The right side

displays the seven segmented zones based on the innervation pattern. Scale bar: 20�m.

Delineated neuropils423

Substructures of the delineated neuropils have also been added to the brain region map in the424

hemibrain. The asymmetrical bodies (AB) were added as the fifth independent neuropil of the425

CX(Wolff and Rubin, 2018). The AB is a small synaptic volume adjacent to the ventral surface of the426

fan-shaped body (FB) that has historically been included in FB(Ito et al., 2014). The AB has been427

described as a fasciculin II (fasII)-positive structure that exhibits left-right structural asymmetry428

by Pascual et al.(Pascual et al., 2004), who reported that most flies have their AB only in the right429

hemisphere, while a small proportion (7.6%) of wild type flies have their AB on both sides. In430

the hemibrain dataset, a pair of ABs is situated on both sides of the midline, but the left AB is431

notably smaller than the right AB (right: 1,467�m3, left: 452 �m3), still showing an obvious left-right432

asymmetry. The AB is especially strongly connected to the neighboring neuropil, the FB, by neurons433

including Delta0A, Delta0B, and Delta0C, while it also houses postsynaptic terminals of the CX434

output neurons including FQ12a(Wolff and Rubin, 2018). While these anatomical observations435

imply that the AB is part of the central body (CB), along with the FB and the ellipsoid body (EB), this436

possibility is neither developmentally nor phylogenetically proven.437

The round body (ROB) is also a small round synaptic structure situated on the ventral limit438

of the crepine (CRE), close to the � lobe of the MB (Lin et al., 2013)(Wolff and Rubin, 2018). It439

is a glomerulus-like structure and one of the foci of the CX output neurons, including the PFR440

(protocerebral bridge – fan-shaped body – round body) neurons. It is classified as a substructure441

of the CRE along with other less-defined glomerular regions in the neuropil, many of which also442

receive signals from the CX. Among these, the most prominent one is the rubus (RUB). These are443

two distinct structures; the RUB is embedded completely within the CRE, while the ROB is located444

on the ventrolateral surface of the CRE. The lateral accessory lobe (LAL), neighboring the CRE,445

also houses similar glomerular terminals, and the gall (GA) is one of them. While the ROB and446

GA have relatively clear boundaries separating them from the surrounding regions, they may not447

qualify as independent neuropils because of their small size and the structural similarities with the448

glomerulus-like terminals around them. They may be comparable with other glomerular structures449

such as the AL glomeruli and the optic glomeruli in the lateral protocerebrum, both of which are450

considered as substructures of the surrounding neuropils.451

Substructures of independent neuropils are also defined using neuronal innervations. The452

five MB lobes on the right hemisphere are further divided into 15 compartments (�1-3, �’1-3, �1-453

2, � ’1-2, and 
1-5)(Tanaka et al., 2008)(Aso et al., 2014) by the mushroom body output neurons454

(MBONs) and dopaminergic neurons (DANs). Our compartment boundaries were defined by455

approximating the innervation of these neurons. Although the innervating regions of the MBONs456

and DANs do not perfectly tile the entire lobes, the compartments have been defined to tile the457

lobes, so every synapse in the lobes belongs to one of the 15 compartments. The FB is subdivided458

into nine horizontal layers (FBl1-9) (Figure 8E and 8F) as already illustrated(Wolff et al., 2015).459

They are determined by the pattern of innervation of 480 FB tangential cells, which form nine460

groups depending on the dorsoventral levels they innervate in the FB. While neurons innervating461

neighboring layers may overlap slightly, the layer boundaries were drawn so that the coverage of462
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the tangential arbors by each layer was maximized.463

The EB is likewise subdivided into zones by the innervating patterns of the EB ring neurons, the464

most prominent class of neurons innervating the EB. The ring neurons have six subtypes, R1-R6,465

and each projects to specific zones of the EB. Among them, the regions innervated by R2 and R4 are466

mutually exclusive but highly intermingled, so these regions are grouped together into a single zone467

(EBr2r4). R3 has the most neurons among the ring neuron subtypes and is further grouped into468

five subclasses. While each subclass projects to a distinct part of the EB, the innervation patterns469

of the subclasses R3a and R3m, and also R3p and R3w, are very similar to each other. The region470

innervated by R3 is, therefore, subdivided into three zones, including EBr3am, EBr3pm, and EBr3d.471

Along with the other three zones, EBr1, EBr5, and EBr6, the entire EB is subdivided into seven472

non-overlapping zones (Figure 8G). Unlike other zones, EBr6 is innervated only sparsely by the R6473

cells, and the space mainly filled by synaptic terminals of other neuron types, including the extrinsic474

ring neurons (ExR). Omoto et al.(Omoto et al., 2017) segmented the EB into five domains (EBa, EBoc,475

EBop, EBic, EBip) by the immunolabeling pattern of DN-cadherin, and each type of the ring neurons476

may innervate more than one domain in the EB. Our results show that the innervation pattern of477

each ring neuron subtype is highly compartmentalized at the EM level and the entire neuropil can478

be sufficiently subdivided into zones based purely on the neuronal morphologies. The neuropil479

may be subdivided differently if other neuron types, such as the extrinsic ring neurons (ExR)(Omoto480

et al., 2018), are recruited as landmarks.481

Quality of the brain region boundaries482

Since many of the terra incognita neuropils are not clearly partitioned from each other by solid483

boundaries such as glial walls, it is important to evaluate if the current boundaries reflect anatomical484

and functional compartments of the brain. We first measured the relative sizes of the boundaries485

between any two adjacent neuropil regions (Figure 9A). The map shows results for brain regions that486

are over 75% in the hemibrain region, restricted to right regions with exception to the asymmetric487

AB(L). For these regions, we counted the number of wire crossings by large traced neurons and488

estimated a cost. A bigger dot indicates a higher cost or a less clean boundary. We do not penalize489

neurons that cross a boundary once, but rather penalize when a neuron crosses the same boundary490

multiple times. By restricting our analysis to the right part of the hemibrain, we hopefully minimize491

the effect of smaller, traced-but-truncated neuron fragments on our score. Figure 9B shows the492

number of intersections normalized by the area of boundary. We spot checked many of the493

instances and in general note that the brain regions with a high cost, such as those in SNP, INP494

and VLNP, tend to have less well defined boundaries. In particular, the boundaries at SMP/CRE,495

CRE/LAL, SMP/SIP, and SIP/SLP have worse scores, indicating these boundaries may not reflect496

actual anatomical and functional segregation of the neuropils. These brain regions were defined497

based on the arborization patterns of characteristic neuron types, ut because neurons in the terra498

incognito neuropils tend to be rather heterogeneous, there are many other neuron types that do499

not follow these boundaries. The boundaries between the FB and AB also give relatively bad scores,500

and this suggests that the AB is tightly linked to the neighboring FB.501

Insights for a whole-brain remapping502

The current brain regions based on Ito et al. (Ito et al., 2014) contain a number of arbitrary503

determinations of brain regions and their boundaries in the terra incognita neuropils. In this study,504

we tried to solidify the ambiguous boundaries as much as possible using the information from505

the reconstructed neurons. However, large parts of the left hemisphere and the subesophageal506

zone (SEZ) are missing from the hemibrain dataset, and neurons innervating these regions are not507

sufficiently reconstructed. This incompleteness of the dataset is the main reason that we did not508

alter the previous map drastically and kept all the existing brain regions even if their anatomical509

and functional significance is not obvious. Once a complete EM volume of the whole fly brain is510

imaged and most of its 100,000 neurons are reconstructed, the entire brain can be re-segmented511
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Figure 9. Quality check of the brain compartments. (A) The relative sizes of the boundaries between adjacent
neuropils indicated in a log scale. (B) The number of neuronal intersections normalized by the area of neuropil

boundary.

from scratch with more comprehensive anatomical information. Arbitrary or artificial neuropil512

boundaries will thereby be minimized, if not avoided, in a new brain map. Anatomy-based neuron513

segmentation strategies such as NBLAST may be used as neutral methods to revise the neuropils514

and their boundaries. Any single method, however, is not likely to produce consistent boundaries515

throughout the brain, especially in the terra incognita regions. It may be necessary to use different516

methods and criteria to segment the entire brain into reasonable brain regions. Such a new map517

would need discussion in a working group, and approval from the community in advance (as did the518

previous map(Ito et al., 2014)), insofar as it would replace the current map and therefore require a519

major revision of the neuron mapping scheme.520
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Cell Type Classification521

Defining cell types for groups of similar neurons is a time-honored means to attempt to understand522

the anatomical and functional properties of a circuit. Presumably, neurons of the same type execute523

similar circuit roles. However, the definition of what is a distinct cell type and the exact delineation524

between one cell type and another is inherently vague and represents a classic taxonomic challenge,525

pitting ‘lumpers’ vs ‘splitters’. Despite our best efforts, we recognize that our typing of cells is not526

exact, and expect future revisions to cell type classification.527

One common method of cell type classification, used in flies, exploits the GAL4 system to528

highlight the morphology of neurons having similar gene expression(Jenett et al., 2012). Since529

these genetic lines are imaged using fluorescence and confocal microscopy, we refer to them530

as ‘light lines’. Where they exist and are sufficiently sparse, light lines provide a key method for531

identifying types by grouping morphologically similar neurons together. However, there are several532

limitations. There are no guarantees of coverage, and it is sometimes difficult to distinguish between533

neurons of very similar morphology but different connectivity.534

We enhanced the classic view of morphologically distinct cell types by defining distinct cell types535

(or sub-cell types) based on morphology and connectivity. Connectivity-based clustering often536

serves a clear arbiter of cell type distinctions, even when genetic markers have yet to be found,537

or when the morphology of different types is quite similar, sometimes sufficiently similar to be538

indistinguishable in optical images. For example, the two PEN (protocerebral bridge - ellipsoid body539

- noduli) neurons have very similar forms but quite distinct inputs (Figure 10)(Turner-Evans et al.,540

2019) Confirming their differences, PEN1 and PEN2 neurons, in fact, have been shown to have541

different functional activity(Green et al., 2017).542

Figure 10. An example of two neurons with very similar shapes but differing connectivities.

Based on our previous definition of cell type, many neurons exhibit a unique morphology or543

connectivity pattern at least within one hemisphere of the brain (presumably with a matching544

type in the other hemisphere). Therefore, in our hemibrain reconstruction, many neuron types545

consisting of a distinct morphology and connectivity have only a single example. It is possible546

in principle to provide coarser groupings of neurons. For instance, most cell types are grouped547

by their cell body fiber representing a distinct clonal unit, which we discuss in more detail below.548

Furthermore, each neuron can be grouped with neurons that innervate similar brain regions. In549

this paper, we do not explicitly formalize this higher-level grouping, but data on the innervating550

brain regions can be readily mined from the dataset.551
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Methodology for assigning cell types and nomenclature552

Assigning names and types to the more than 20,000 reconstructed cells was a difficult and con-553

tentious undertaking. Many of the neurons have no previously annotated type. Adding to the554

complexity, prior work focused on morphological similarities and differences, but here we have, for555

the first time, connectivity information to assist in cell typing as well.556

Most cell types for the visual projection neurons (VPNs), mushroom body (MB) neurons and557

central complex (CX) neurons are already described in the literature, but the existing names can be558

both inconsistent and ambiguous. The same cell type is often given differing names in different559

publications, and conversely, the same name, such as PN for projection neuron, is used for many560

different cell types. Nonetheless, for cell types already named in the literature (which we designate561

as famous cell types), we have tried to use an existing name. We apologize in advance for any562

offense given by our selection of names.563

Overall, we defined a ‘type’ of neurons as either a single cell or a group of cells that have a564

very similar cell body location, morphology, and pattern of synaptic connectivity. We found 18,478565

neuronal cell bodies in the hemibrain volume, most of which are located in the right side of the566

brain.567

We classified these neurons in a few steps. The first step classified all cells by their lineage,568

grouping neurons according to their bundle of cell body fibers (CBFs). Neuronal cell bodies are569

located in the cell body layer that surrounds the brain, and each neuron projects a single CBF570

towards a synaptic neuropil. In the central brain, cell bodies of clonally related neurons deriving571

from a single stem cell tend to form clusters, from each of which arises one or several bundles572

of CBFs. We carefully examined the trajectory and origins of CBFs of the 15,532 neurons on the573

right central brain and identified 192 distinct CBF bundles. Among them, 154 matched the CBF574

bundles of 102 known clonal units(Ito et al., 2013)(Lin et al., 2013). The rest are minor populations575

and most likely of embryonic origin.576

Different stem cells sometimes give rise to neurons with very similar morphologies. We classified577

these as different types because of their distinct developmental origin and slightly different locations578

of their cell bodies and CBFs. Thus, the next step in neuron typing was to cluster neurons within579

each CBF group. This process consisted of three further steps. First, we used NBLAST(Costa et al.,580

2016) to subject all the neurons of a particular CBF group to morphology-based clustering. Next,581

we used CBLAST, a new tool to cluster neurons based on synaptic connectivity (see below). This582

step is an iterative process, using neuron morphology as a template, to regroup neurons after583

more careful examination of neuron projection patterns and their connections. Finally, we validated584

the cell typing with extensive manual review and visual inspection. This review both allowed us to585

confirm cell type identity and help ensure neuron reconstruction accuracy.586

In the hemibrain, using the defined brain regions and reference to known expression driver587

strains, we were able to assign a cell type to many cells. Where possible, we matched previously588

defined cell types with those labeled in light data using a combination of Neuprint, an interactive589

analysis tool (described below), and human recognition to find the matching cell types, especially590

in well explored neuropils such as the mushroom body (MB) and central complex (CX), where591

abundant cell type information was already available and where we are more confident in our592

anatomical expertise. Even though most of the cell types in the MB and CX were already described,593

we still found new cell types in these regions, an important vindication of our methods. In these594

cases we tried to name them using the existing schemes for these regions, and further refined595

these morphological groupings with relevant information on connectivity.596

Outside the heavily studied regions, the fly’s circuits are largely composed of cells of unknown597

type. In this case putative type names were derived from a) the CBF group, b) the morphological598

type, and c) the connectivity type.599

∙ Each of the 192 CBF bundles was given an ID according to the location of the cell body600

cluster (split into eight sectors of the brain surface with the combination of Anterior/Posterior,601
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Figure 11. Workflow for defining cell types

Ventral/Dorsal, and Medial/Lateral) and a number within the sector given according to the602

size of cell population. Thus, a CBF group might be named ADM01, meaning a group with the603

largest number of neurons in the Anterior Dorsal Medial sector of the brain’s surface.604

∙ Morphological types were represented by the CBF group name followed by 1-3 lowercase605

letters, e.g. ADM01a.606

∙ If neurons of near-identical morphology could be further subdivided into different connectivity607

types, they were suffixed with an underscore and a lowercase letter, e.g. ADM01a_b.608

Finally, a suffix ‘ _pct ’, for putative cell type, was added. Thus, a full putative type name might be609

‘ADM01a_pct’ if all the neurons of this type shared similar connectivity patterns , or ‘ADM01b_a pct’610

and ’AMD01b_b_pct’ if there are different connectivity types within neurs having a similar form. The611

resulting names may lack elegance, but the process is systematic and scalable.612

The assignment of type names to neurons is still ongoing, and we expect the names of putative613

cell types will be refined by the research community, including simpler names that are easier to614

pronounce, as new information emerges. What will not change are the unique body ID numbers615

given in the database that refer to a particular (traced) cell in this particular image dataset. We616

strongly advise that such IDs be included in any publications based on our data to avoid confusion617

as cell type names (and possibly instance names) evolve.618

CBLAST619

As part of our effort to assign cell types, we built a tool for cell type clustering based on neuron620

connectivity, called CBLAST (by analogy with the existing NBLAST(Costa et al., 2016), which forms621

clusters based on the shapes of neurons). The tool is described in more detail in Figure 12.622

Partitioning a network into clusters of nodes that exhibit similar connectivity is known as623

community detection or graph clustering(Fortunato and Hric, 2016). Numerous methods have624

been proposed for selecting such partitions, the best known being the stochastic block model. To625

non-theoreticians, the process by which most methods choose a partitioning is not intuitive, and626

the results are not easily interpretable. Furthermore, most approaches do not readily permit a627

domain expert to guide the partitioning based on her intuition or on other features of the nodes628

that are not evident in the network structure itself. In contrast, CBLAST is based on traditional data629

clustering concepts, leading to more intuitive results. Additionally, a user can apply their domain630

expertise by manually refining the partitioning during successive iterations of the procedure. This is631

especially useful in the case of a network like ours, in which noise and missing data make it difficult632
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Figure 12. Overview of the operation of CBLAST

to rely solely on connectivity to find a good partitioning automatically. Additionally, other graph633

clustering methods do not accommodate the notion of left-right symmetry amongst communities,634

a feature that is critical for assigning cell types in a connectome.635

CBLAST clusters neurons together using a similarity feature score defined by how the neuron636

distributes inputs and outputs to different neuron types. However, this is a circular requirement637

since neuron types must already be defined to use this technique. CBLAST therefore uses an638

iterative approach, refining cell type definitions successively. Initial cell type groups are putatively639

defined using an initial set of features based on morphological overlap as in NBLAST and/or based640

on the distribution of inputs and outputs in defined brain regions. These initial groups are fed641

into CBLAST in which the user can visualize and analyze the results using plots such as that in642

Figure 13. Given the straightforward similarity measure, the user can look at the input and output643

connections for each neuron to better understand the decision made by the clustering algorithm. As644

the definitions of cell type definitions are improved, the clustering becomes more reliable. In some645

cases, this readily exposes incompleteness (e.g., due to the boundary of the hemibrain sample)646

in some neurons which would complicate clustering even for more computationally intensive647

strategies such as a stochastic block model. Based on these interactions, the user makes decisions648

and refines the clusters manually, iterating until further changes are not observed.649

Our large, dense connectome is a key requirement for CBLAST. Unless a significant fraction of650

a neuron’s inputs and outputs is known, neurons that are in fact similar may not cluster together651

correctly. This requirement is not absolute, as we note that CBLAST is often able to match left and652

right symmetric neurons, despite some of these left side neurons being truncated by the boundaries653

of the dataset. Nonetheless, reconstruction incompleteness and any noise in the reconstruction654

can contribute to noise in clustering results.655

CBLAST usually generates clusters that are consistent with the morphological groupings of the656

neurons, with CBLAST often suggesting new sub-groupings as intended. This agreement serves as657

some validation of the concepts behind CBLAST. In some cases it can be preferable to NBLAST, since658

the algorithm is less sensitive to exact neuron location, and for many applications the connectivity659

is more important than the morphology. In Figure 13, we show the results of using CBLAST on a few660

neuron types extracted from the ellipsoid body. The clusters are consistent with the morphology,661

with exception to a new sub-grouping for R3p being suggested as a more distinct group than type662

ExR7/ExR6.663
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Figure 13. Cells of five types plotted according to their connectivities. Coordinates are in arbitrary units after
dimensionality reduction using UMAP(McInnes et al., 2018). The results largely agree with those from
morphological clustering but in some cases show separation even between closely related types.

Results of cell typing664

Brain Region(s) Number of types Number of cells

Visual Projection Neurons (VPNs) 55 3,329

Antennal Lobe 159 2,439

Mushroom Body 68 2,117

Central Complex 264 2,826

Others 4,335 10,190

Total 4,890 20,901

Table 2. Cell types and cell counts for well known brain regions, and totals

Using the above semi-automated procedures, we identified 55 types for VPNs, 159 types in665

the antennal lobe (AL), 68 types in MB, and 264 types in CX, which in aggregate apply to a total of666

10,734 neurons (note that cells in CX are counted for both right and left sides) (Table 2). For the667

remaining ≈10,000 neurons in the other brain regions, over 4000 cell types were identified. Over a668

thousand of these are types with only a single instance, although presumably, for a whole brain669

reconstruction, most of these types would have partners on the opposite side of the brain. Figure670

14 shows the number of distinct neuron types found in different brain regions. Figure 15 shows the671

distribution of the number of neurons in each cell type.672

Assessing Morphologies and Cell Types673

Verifying correctness and completeness in these data is a challenging problem because no existing674

full brain connectome exists against which our data might be compared. We devised a number675

of tests to check the main features: Are the morphologies correct? Are the regions and cell types676

correctly defined? Are the synaptic connection counts representative?677
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Figure 14. The number of cell types in each major brain region. The sum of cell types in the graph is larger than
the total number of cell types, because a single cell type may contribute to many regions.

Figure 15. Histogram showing the number of cell types with a given number of constituent cells.

Assessing completeness is much easier than assessing correctness. Since the reconstruction is678

dense, we believe the census of cells, types, and regions should be essentially complete. The main679

arbors of every cell within the volume are reconstructed, and almost every cell is assigned to at680

least a putative cell type. Similarly, since the identified brain regions nearly tile the entire brain,681

these are complete as well.682

For checking morphologies, we searched for major missing or erroneous branches using a683

number of heuristics. Each neuron was reviewed by multiple proofreaders. The morphology of684

each neuron was compared with light microscopy data whenever it was available. When more than685

one cell of a given type was available (either left and right hemisphere, or multiple cells of the same686

type in one hemisphere), a human examined and compared them. This helped us find missing687

or extra branches, and also served as a double check on the cell type assignment. In addition,688

since the reconstruction is dense, all sufficiently large “orphan” neurites were examined manually689

until they were determined to form part of a neuron, or they left the volume. To help validate the690

assigned cell types, proofreaders did pairwise checks of every neuron with types that had been691

similarly scored.692

For subregions in which previous dense proofreading was available (such as the alpha lobes693

of the mushroom body) we compared the two connectomes. We were also helped by research694
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groups using both sparse tracing in the full fly brain TEM dataset(Zheng et al., 2018), and our695

hemibrain connectome. They were happy to inform us of any inconsistencies. There are limits696

to this comparison, as the two samples being compared were of different ages and raised under697

different conditions, then prepared and imaged by different techniques, but this comparison would698

nevertheless have revealed any gross errors. Finally, we generated a ‘probabilistic connectome’699

based on a different segmentation, and systematically visited regions where the two versions700

differed.701

Assessing Synapse Accuracy702

As discussed in the section on finding synapses, we evaluated both precision (the fraction of found703

synapses that are correct) and recall (fraction of true synapses that were correctly predicted) on704

sample cubes in each brain region. We also double checked by comparing our findings with a705

different, recently published, synapse detection algorithm(Buhmann et al., 2019).706

Figure 16. Connection precision of upstream and downstream partners for ≈1000 cell types.

As a final check, we also evaluated the end-to-end correctness of given connections between707

neurons for different cell types and across brain regions. Specifically, for each neuron, we sampled708

25 upstream connections (T-bar located within the neuron) and 25 downstream connections (PSD709

located within the neuron), and checked whether the annotations were correct, meaning that the710

pre/post annotation was valid and assigned to the correct neuron.711

In total, we examined 1735 traced neurons spanning 1518 unique cell types (therefore examining712

43k upstream connections and 43k downstream connections). The histogram of synapse accuracy713

(end-to-end precision of predicted synapses) is given in Figure 16. Median precision for upstream714

connections, as well as for downstream connections, is 88%. Additionally, 90% of cell types have715

an accuracy of at least 70%. For the few worst cases, we manually refined the synapse predictions716

afterwords. We note that the worst outlier, having an upstream connection accuracy of 12%, is717

both a case involving few total connections (17 T-bars), and some ambiguity in the ground-truth718

decisions (whether the annotated location is an actual T-bar).719

We also evaluated single-connection pathways across each brain region. In the fly, functionally720

important connections are thought typically to have many synapses, with the possible exception721

of cases where many neurons of the same type synapse onto the same downstream partner..722

However, the presence of connections represented by few synapses is also well known, even if723

the biological importance of these is less clear. Regardless, we wanted to ensure that even single724

connection pathways were mostly correct. We sampled over 5500 single-connection pathways,725

distributed across 57 brain regions. Mean synapse precision per brain region was 76.1%, suggesting726

that single-connection accuracy is consistent with overall synapse prediction accuracy.727
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We also undertook a preliminary evaluation of two-connection pathways (two synapses be-728

tween a single pair of bodies). We sampled 100 such two-connection pathways within the FB.729

Overall synapse precision (over the 200 synapses) is 79%, consistent with the single-edge accuracy.730

Moreover, the results also suggest that synapse-level accuracy is largely uncorrelated with path-731

way/bodies, implying that the probability that both synapses in a two-connection pathway were732

incorrect is 4.4% (1 − 0.792), close to the observed empirical value of 3%. (Applying a �2 goodness of733

fit test with a null hypothesis of independence gives a p value of 0.7.)734

Assessing connection completeness735

A synapse in the fly’s brain consists of a presynaptic density (with a characteristic T-bar) and typically736

several postsynaptic partners (PSDs). The T-bars are contained in larger neurites, and most (>90%)737

of the T-bars in our dataset were contained in identified neurons. The postsynaptic densities are738

typically in smaller neurites, and it is these that are difficult for both machine and human to connect739

with certainty.740

With current technology, tracing all fine branches in our EM images is impractical, so we sample741

among them (at completeness levels typically ranging from 20% to 85%) and trace as many as742

practical in the allotted time. The goal is to provide synapse counts that are representative, since743

completeness is beyond reach and largely superfluous. Provided the missing PSDs are independent744

(which we try to verify), then the overall circuit emerges even if a substantial fraction of the745

connections are missing. If a connection has a strength of 10, for example, then it will be found in746

the final circuit with more than 99.9% probability, provided at least half the individual synapses are747

traced.748

If unconnected small twigs are the main source of uncertainty in our data (as we believe to be749

the case), then as proofreading proceeds existing connections should only get stronger. Of course750

corrections resulting in lower connection strength, such as correcting a false connection or removing751

an incorrect synapse, are also possible, but are considerably less likely. To see if our proofreading752

process worked as expected, we took a region that had been read to a lower percentage completion753

and then spent the manual effort to reach a higher percentage, and compared the two circuits. (A754

versioned database such as DVID is enormously helpful here.) If our efforts were successful, ideally755

what we see is that almost all connections that changed got stronger, very few connections got756

weaker, and no new strong connections appeared (since all strong connections should already be757

present even in low coverage proofreading). If this is the behavior we find, we could be reasonably758

certain that the circuits found are representative for all strong connections.759

Figure 17 below shows such an analysis. The results support our view that the circuits we report760

reflect what would be observed if we extrapolated to assign all pre- and postsynaptic elements.761

Interpreting the connection counts762

Given the complexity of the reconstruction process, and the many different errors that could763

occur, how confident should the user be that the returned synapse counts are valid? This section764

gives a quick guide in the absence of detailed investigation. The number of synapses we return765

is the number we found. The true number could range from slightly less, largely due to false766

synapse predictions, to considerably more, in the regions with low percentage reconstructed. For767

connections known to be in a specific brain region, the reciprocal of the completion percentage (as768

shown in Table 1) gives a reasonable estimate of the undercount.769

If we return a count of 0 (the neurons are not connected), there are two cases. If the neurons do770

not share any brain regions, then the lack of connections is real. If they do share a brain region or771

regions, then a count of 0 is suspect. It is possible that there might be a weak connection (count 1-2)772

and less likely there is a connection of medium strength(3-9 synapses). Strong connections can be773

confidently ruled out, minus the small chance of a mis- or un-assigned branch with many synapses.774

If we report a weak connection (1-2 synapses), then the true strength might range from 0 (the775

connection does not exist) through a weak connection (3-9 synapses). If your model or analysis relies776
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Figure 17. Difference between connection strengths in the Ellipsoid Body with increased completeness in
proofreading. Roughly 40,000 paths are shown. Almost all points fall above the line Y=X, showing that almost all

paths increased in strength, with very few decreasing. In particular, no path decreased in strength by more than

5 synapses. Only two new strong (strength > 10) paths were found that were not present in the original. This
should be rarer at higher levels of proofreading since neuron fragments (orphans) are added in order of

decreasing size (see text).

on the strength of these weak connections, it is a good idea to manually check our reconstruction.777

If your analysis does not depend on knowledge of weak connections, we recommend ignoring778

connections based on 3 or fewer synapses.779

If we report a medium strength connection (3-9 synapses) then the connection is real. The true780

strength could range from weak to the lower end of a strong connection.781

If we report a strong connection (10 or more synapses), the connection not only exists, but is782

strong. It may well be considerably stronger than we report.783

Data Representation784

The representation of connectomics data is a significant problem for all connectomics efforts. The785

raw image data on which our connectome is based is larger than 20 TB, and takes 2 full days to786

download even at a rate of 1 gigabit/second. Looking forward, this problem will only get worse.787

Recent similar projects are generating petabytes worth of data(Yin et al., 2019), and a mouse brain788

of 500 mm3, at a typical FIB-SEM resolution of 8nm isotropic, would require almost 1000 petabytes.789

In contrast, most users of connectivity information want a far smaller amount of much more790

specific information. For example, a common query is ‘what neurons are downstream (or upstream)791

of a given target neuron?’. This question can be expressed in a few tens of characters, and the792

desired answer, the top few partners, fits on a single page of text.793

Managing this wide range of data, from the raw gray-scale through the connectivity graph,794

requires a variety of technologies. An overview of the data representations we used to address795

these needs is shown in Figure 18. This organization offers several advantages. In most cases,796

instead of transferring files, the user submits queries for the portion of data desired. If the user797

needs only a subset of the data (as almost all users do) then they need not cope with the full size of798

the data set. Different versions of the data can be managed efficiently behind the scenes with a799

versioned database such as DVID(Katz and Plaza, 2019) that keeps track of changes and can deliver800

data corresponding to any previous version. The use of existing software infrastructure, such as801
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Figure 18. Overview of data representations of our reconstruction. Circles are stored data representations,
rectangles are application programs, ellipses represent users, and arrows indicate the direction of data flow

labeled with transformation and/or format. Filled areas represent existing technologies and techniques; open

areas were developed for the express purpose of EM reconstruction of large circuits.

Google buckets or the graph package neo4j, which are already optimized for large data, helps with802

both performance and ease of development. The advanced user is not limited to these interfaces -803

for those who may wish to validate or extend our results; we have provided procedures whereby804

the user can make personal copies of each representation, including the grayscale, the DVID data805

storage, and our editing and proofreading software. These allow other researchers to establish806

an entirely independent version of all we have done, completely under their control. Contact the807

authors for the details of how to copy all the underlying data and software.808

What are the data types?809

Grayscale data correspond to traditional electron microscope images. This is written only once,810

after alignment, but often read, because it is required for segmentation, synapse finding, and811

proofreading. We store the grayscale data, 8 bits per voxel, in Google buckets, which facilitates812

access from geographically distributed sites.813

Segmentation, synapses, and identifying regions annotate and give biological meaning to the814

grayscale data. For segmentation, we assign a 64 bit neuron ID to each voxel. Despite the larger815

size per voxel (64 vs 8 bits) compared with the grayscale, the storage required is much smaller (by a816

factor of more than 20) since segmentation compresses well. Although the voxel level segmentation817

is not needed for connectivity queries, it may be useful for tasks such as computing areas and818

cross-sections at the full resolution available, or calculating the distance between a feature and the819

boundary.820

Synapses are stored as point annotations - one point for a presynaptic T-bar, and one point for821

each of its postsynaptic densities (or PSDs). The segmentation can then be consulted to find the822

identity of the neurons containing their connecting synapses.823

The compartment map of the brain is stored as a volume specified at a lower resolution, typically824

a 32x32x32 voxel grid. At 8nm voxels, this gives a 256 nm resolution for brain regions, comparable825

to the resolution of confocal laser scanning microscopy.826

Unlike the grayscale data, segmentation, synapses, and regions are all modified during proof-827

reading. This requires a representation that must cope with many users modifying the data828

simultaneously, log all changes, and be versioned. We use DVID(Katz and Plaza, 2019), developed829

internally, to meet these requirements.830
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Neuron skeletons are computed from the segmentation(Zhao and Plaza, 2014), and not entered831

or edited directly. A skeleton representation describes each neuron with (branching) centerlines832

and diameters, typically in the SWC format popularized by the simulator Neuron(Carnevale and833

Hines, 2006). These are necessarily approximations, since it normally not possible (for example) to834

match both the cross sectional area and the surface area of each point along a neurite with such835

a representation. But SWC skeletons are a good representation for human viewing, adequate for836

automatic morphology classification, and serve as input to neural simulations such as Neuron. SWC837

files are also well accepted as an interchange format, used by projects such as NeuroMorpho(Ascoli838

et al., 2007) and FlyBrain(Shinomiya et al., 2011).839

The connectivity graph is also derived from the data and is yet more abstract, describing only840

the identity of neurons and a summary of how they connect - for example, Neuron ID1 connects841

to neuron ID2 through a certain number of synapses. In our case it also retains the brain region842

information and the location of each synapse. Such a connectivity graph is both smaller and faster843

than the geometric data, but sufficient for most queries of interest to biologists, such as finding844

the upstream or downstream partners of a neuron. A simple connectivity graph is often desired845

by theorists, particularly within brain regions, or when considering neural circuits in which each846

neuron can be represented as a single node.847

Figure 19. Schema for the neo4j graph model of the hemibrain. Each neuron contains 0 or more SynapseSets,
each of which contains one or more synapses. All the synapses in a SynapseSet connect the same two neurons.

If the details of the synapses are not needed, the neuron to neuron weight can be obtained as a property on the

“ConnectsTo” relation, as can the distribution of this weight acrosdifferent brain regions (the roiInfo).

A final, even more abstract form is the adjacency matrix: This compresses the connectivity848

between each pair of neurons to a single number. Even this most economical form requires careful849

treatment in connectomics. As our brain sample contains more than 25K traced neurons as well as850

many unconnected fragments, the adjacency matrix has more than a billion entries (most of which851

are zero). Sparse matrix techniques, which report only the non-zero coefficients, are necessary for852

practical use of such matrices.853

Accessing the data854

For the hemibrain project we provide access to the data through a combination of a software855

interface(Clements et al., 2020) and a server (https://neuprint.janelia.org). Data are available in the856

form of gray-scale, pixel-level segmentation, skeletons, and a graph representation. Two previous857

connectomics efforts are available as well (a 7-column optic lobe reconstruction(Takemura et al.,858
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2015) and the alpha lobe of the mushroom body(Takemura et al., 2017)). These can be found at859

https://neuprint-examples.janelia.org .860

The most straightforward way to access the hemibrain data is through the Neuprint(Clements861

et al., 2020) interactive browser. This is a web-based application that is intended to be usable by862

biologists with minimal or no training. It allows the selection of neurons by name, type, or brain863

region, displays neurons, their partners, and the synapses between these in a variety of forms, and864

provides many of the graphs and summary statistics that users commonly want.865

Neuprint also supports queries from languages such as Python(Sanner et al., 1999) and R, as866

used by the neuroanatomy tool NatVerse(Manton et al., 2019). Various formats are supported,867

including SWC format for the skeletons. In particular, the graph data can be queried through an868

existing graph query language, Cypher(Francis et al., 2018), as seen in the example below. The869

schema for the graph data is shown in Figure 19.870

MATCH (n:Neuron) - [c:ConnectsTo] -> (t:Neuron) WHERE t.type = ‘MBON18’871

RETURN n.type, n.bodyId, c.weight ORDER BY c.weight DESCENDING872

This query looks for all neurons that are presynaptic to any neuron of type ‘MBON18’. For each873

such neuron it returns the types and internal identities of the presynaptic neuron, and the count of874

synapses between them. The whole list is ordered in order of decreasing synapse count. This is just875

an illustration for a particular query that is quite common and supported in Neuprint without the876

need for any programming language.877

Adjacency matrices, if needed, can be derived from the graph representation. We provide a878

small demonstration program that queries the API and generates such matrices, either with or879

without the brain regions. The two matrices themselves are available in gzipped Python format. For880

more information on accessing data and other hemibrain updates, please see https://www.janelia.881

org/project-teams/flyem/hemibrain .882

Matching EM and light microscopy data883

We registered the hemibrain EM data to the JRC2018 Drosophila template brain(Bogovic et al.,884

2018) using an automatic registration algorithm followed by manual correction. We began by using885

the automated T-bar predictions (described in section 2.3) to generate a T-bar density volume886

rendered at a resolution comparable to those from light microscopic images. This hemibrain887

synapse density volume was automatically registered to the template brain using ANTs(Avants888

et al., 2008), producing both a forward and inverse transform. The resulting registration was889

manually fine-tuned using BigWarp(Bogovic et al., 2016). The total transform is the composition of890

the ANTs and BigWarp transformations, and can be found at https://www.janelia.org/open-science/891

jrc-2018-brain-templates.892

Given a particular neuron of interest, researchers can use these resources to identify GAL4893

lines labeling that neuron. First the representation of the neuron must be spatially transformed894

into the template space that GAL4 driver line to which images have previously been registered. A895

mask based approach(Otsuna et al., 2018) enables a search for GAL4 driver line image databases896

for particular neurons. Skeletonizing hemibrain neurons can enable the enquirer to query GAL4897

neuronal skeleton databases using NBLAST(Costa et al., 2016).898

Longer term storage of data, and archival references899

Historically, archival data from biology data have been expressed as files that are included with900

supplementary data. However, for connectivity data this practice has two main problems. First, the901

data are large, and hard to store. Journals, for example, typically limit supplemental data to a few902

10s of megabytes. The data here are about 6 orders of magnitude larger. Second, connectome data903

are not static, during proofreading and even after initial publication. As proofreading proceeds, the904

data improve in their completeness and quality. The question then is how to refer to the data as905

they existed at some point in time, required for reproducibility of scientific results. If represented906
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as files, this would require many copies, checkpointed at various times - the ‘as submitted’ version,907

the ‘as published’ version, the ‘current best version’, and so on.908

We resolve this, at least for now, by hosting the data ourselves and making them available909

through query mechanisms. Underlying our connectome data is a versioned database (DVID) so it910

is technically possible to access every version of the data as it is revised. However, as it requires911

effort to host and format this data for the Neuprint browser and API, only selected versions (called912

named versions) are available by default from the website, starting with the initial version, which is913

‘hemibrain:v1.0’ Although this is only version currently, when reproducibility is required, such as914

when referencing the data in a paper, it is still best to refer explicitly to the milestone versions by915

name (such as ‘hemibrain:v1.0’) because we expect a new milestone version every few months, at916

least at first. We will supply a DOI for each of these versions, and each is archived, can be viewed917

and queried through the web browser and APIs at any time, and will not change.918

The goal of multiple versions is that later versions should be of higher quality. Towards this end919

we have implemented several systems for reporting errors so we can correct them. Users can add920

annotations in NeuroGlancer(Perlman, 2019), the application used in conjunction with Neuprint921

to view image data, where they believe there are such errors. To make this process easier, we922

provide a video explaining it. We will review these annotations and amend those that we agree are923

problems. Users can also contact us via email about problems they find.924

Archival storage is an issue since, unlike genetic data, there is not yet an institutional repository925

for connectomics data and the data are too large for journals to archive. We pledge to keep our926

data available for at least the next 10 years.927

Analysis928

Of necessity, most previous analyses have concentrated on particular circuits, cell types, or brain929

regions with relevance to specific functions or behaviors. For example, a classic paper about930

motifs(Song et al., 2005) sampled the connections between one cell type (layer 5 pyramidal neurons)931

in one brain region (rat visual cortex), and found a number of non-random features, such as over-932

represented reciprocal connections and a log-normal strength distribution. However, it has never933

been clear which of these observations generalize to other cell types, other brain regions, and the934

brain as a whole. We are now in a position to make much stronger statements, ranging over all935

brain regions and cell types.936

In addition, many analyses are best performed (or can only be performed) on dense connec-937

tomes. Type-wide observations depend on a complete census of that cell type, and depending on938

the observation, a complete census of upstream and downstream partners as well. Some analyses,939

such as null observations about motifs (where certain motifs do not occur in all or portions of the940

fly’s brain) can only be undertaken on dense connectomes.941

Compartment statistics942

One analysis enabled by a dense whole-brain reconstruction involves the comparison between the943

circuit architectures of different brain areas within a single individual.944

The compartments vary considerably. Table 3 shows the connectivity statistics of compartments945

that are completely contained within the volume, have at least 100 neurons, and have the largest946

or smallest value of various statistics. Across regions, the number of neurons varies by a factor of947

74, the average number of partners of each neuron by a factor of 36, the network diameter by a948

factor of 4, the average strength of connection between partner neurons by a factor of 5, and the949

fraction of reciprocal connections by a factor of 5. The average graph distance between neurons is950

more conserved, differing by a factor of only 2.951

Paths in the fly brain are short952

Neurons in the fly brain are tightly interconnected, as shown in Figure 20, which plots what fraction953

of neuron pairs are connected as a function of the number of interneurons between them. Three954
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Name N L <k> D <str> <non-r> <r> fracR AvgDist

MB(R) 3430 573664 167.249 8 3.270 3.076 3.383 0.632 2.189

bL(R) 1159 108134 93.299 8 2.019 1.855 2.122 0.613 2.090

EB 518 58793 113.500 4 10.053 4.627 12.172 0.719 1.756

PLP(R) 6689 224985 33.635 16 2.692 2.403 3.685 0.226 3.170

SNP(R) 9121 775474 85.021 13 2.987 2.515 4.492 0.239 2.748

RUB(L) 123 576 4.683 6 7.682 2.852 20.686 0.271 2.743

EPA(R) 1468 18199 12.397 13 2.171 2.098 2.644 0.134 3.496

Table 3. Regions with minimum or maximum characteristics, picked from those regions lying wholly within the
reconstructed volume and containing at least 100 neurons. Yellow indicates a minimum value; green a maximal

value. N is the number of neurons in the region, L the number of connections between those neurons, <k> the
average number of partners (in the region), D the network diameter, <str> the average connection strength,
broken up into non-reciprocal and reciprocal. fracR is the fraction of connections that are reciprocal, and

AvgDist is the average number of hops (one hop corresponding to a direct synaptic connection) between any

two neurons in the compartment. Network diameter is computed on the undirected graph; all other metrics

use the directed graph.

quarters of all possible pairs are connected by a path with fewer than three interneurons, even955

when only connections with ≥ 5 synapses are included. If weaker connections are allowed, the956

paths become shorter yet. These short paths and tight coupling are very different from human957

designed systems, which have much longer path lengths connecting node pairs. As an example, a958

standard electrical engineering benchmark (S38584 from (Brglez et al., 1989)) is shown alongside959

the hemibrain data in Figure 20A-B. The connection graph for this example has roughly the same960

number of nodes as the graph of the fly brain, but pair-to-pair connections involve paths more than961

an order of magnitude longer – a typical node pair is separated by 60 intervening nodes. This is962

because a typical computational element in a human designed circuit (a gate) connects only to a963

few other elements, whereas a typical neuron receives input from, and sends outputs to, hundreds964

of other neurons.965

(a) Linear scale (b) Log scale
Figure 20. Plots of the percentage of pairs connected (of all possible) versus the number of interneurons
required. (a) shows the data from the whole hemibrain, for up to 8 interneurons. (b) is a much wider view of the

same data, shown on a log scale so the curve from a human designed system is visible.

Distribution of connection strength966

The distribution of connection strengths has been studied in mammalian tissue, looking at specific967

cell types in specific brain areas. These findings, such as the log-normal distribution of connection968

strengths in rat cortex, do not appear to generalize to flies. Assuming the strength of a connection969

is proportional to the number of synapses in parallel, we can plot the distribution of connection970
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strengths, summing over the whole central brain, as shown in Figure 21. We find a nearly pure971

power law with an exponential cutoff, very different from the log-normal distribution of strengths972

found by Song(Song et al., 2005) in pyramidal cells in the rat cortex, or the bimodal distribution973

found for pyramidal cells in the mouse by Dorkenwald(Dorkenwald et al., 2019). However, we974

caution that these analyses are not strictly comparable. Even aside from the very different species975

examined, the three analyses differ. Both Song and Dorkenwald looked at only one cell type, with976

excitatory connections only, but one looked at electrical strength while the other looked at synapse977

area as a proxy for strength. In our analysis, we use synapse count as a proxy for connection978

strength, and look at all cell types, including both excitatory and inhibitory synapses.979

Figure 21. The number of connections with a given strength. Up to a strength of 100, this is well described by a
power law (exponent -1.67) with exponential cutoff (at N=42).

Small Motifs980

As mentioned earlier, there have been many studies of small motifs, usually involving limited981

circuits, cell types, and brain regions. We emphatically confirm some traditional findings, such as982

the over-representation of reciprocal connections. We observe this in all brain regions and among983

all cell types, confirming similar findings in the antennal lobe(Horne et al., 2018). This can now be984

assumed to be a general feature of the fly’s brain, and possibly all brains. In the fly, the incidence985

varies somewhat by compartment, however, as shown in Table 3.986

Large motifs987

We define a large motif as a graph structure that involves every cell of an abundant type (N ≥ 20).988

The most tightly bound motif is a clique, in which every cell of a given type is connected to every989

other cell of that type, with synapses in both directions. Such connections, as illustrated in Figure990

22(a), are extremely unlikely in a random wiring model. Consider, for example, the clique of R4d_b991

cells found in the ellipsoid body, as shown in Table 4. In the ellipsoid body, two cells are connected992

with an average probability of 0.19. Therefore the odds of finding all 600 possible connections993

between R4d_b cells, assuming a random wiring model, is 0.19600 ≈ 10−432.994

In the fly’s brain, large cliques occur in only a few cases, as shown in Table 4. All true cliques995

are in the central complex, with a near-clique among the KCab-p cells of the mushroom body. The996

cells of type PFNa form an interesting case. There are 58 such cells, 29 on each side. They do not997
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Figure 22. Large motifs searched for. Squares represent abundant types with at least 20 instances. Circles
represent sparse types with at most two instances. Panel (a) shows a clique, where all possible connections are

present. (b) shows bidirectional connections between a sparse type and all instances of an abundant type. (c)

show unidiectional connections from all of an abundant type to a sparse type. (d) illustrates a cell type that

does not form a clique overall, but does within each of two compartments.

form a clique as shown in Figure 22(a), as there are few connections between the opposite sides.998

But within each side, the 29 cells on that aside form a clique, as shown in Figure 22(d). The cliques999

within the central complex, and their potential operation, are discussed in detail in a companion1000

paper.1001

Type Region Cells Coverage Avg. Strength Synapses

KCab-p MB 55/62 3552/3782 5.04 17899

Delta7_a PB, CX 32/32 992/992 13.79 13683

R4d_b EB, CX 25/25 600/600 54.94 32961

R5 EB, CX 20/20 380/380 26.62 10114

R3m EB, CX 22/22 462/462 24.32 11238

R3d_a EB, CX 20/20 377/380 28.46 10729

PFNa NO(R) 29/29 811/812 6.73 5459

PFNa NO(L) 29/29 811/812 7.22 5858

PFNd NO(R) 20/20 377/380 7.67 2891

PFNd NO(L) 20/20 378/380 7.59 2869

Table 4. Cliques and near-cliques in the hemibrain data. To be included, a cell type must have at least 20 cell
instances, 90% or more of which connect both to and from at least 90% of all cells of the same type. Coverage is

the fraction of all possible edges in the clique that are present. Average strength is the average number of

synapses in each connection. Synapses is the total number of synapses in the clique.

The next most tightly bound motifs are individual cells that connect both to and from all cells of1002

a given type, but are themselves of a different type. This is illustrated in Figure 22(b). Such a motif1003

is often speculated to be a gain or sparseness controlling circuit, where the single neuron reads1004

the collective activation of a population and then controls their collective behavior. A well known1005

example is the APL neuron in the mushroom body, which connects both to and from all the Kenyon1006
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cells, and is thought to regulate the sparseness of the Kenyon cell activation(Lin et al., 2014).1007

We search for this motif by looking at cells with few instances (one or two) connecting bidirec-1008

tionally to almost all cells (at least 90%) of an abundant type (N >= 20). We find this motif in three1009

regions of the brain – it is common in the CX (73 different cells overseeing 22 cell types), the optic1010

lobe circuits (19 cells overseeing 14 types), and somewhat in the MB (12 types overseeing 9 types).1011

Spreadsheets containing these cell types, who they connect to, and the numbers and strengths1012

of their connections are found in the supplementary data. We only analyze the optical circuits1013

here, since the mushroom body and central complex are the subjects of companion papers. We1014

observe three variations on this motif - a single cell conected to all of a type (Figure 23(a), found 51015

times), a single cell with bi-directional connections to many types (Figure 23(b), found once), and1016

multiple cells all connected bidirectionally to a single type (Figure 23(c), found 3 times. We find1017

one circuit that is a combination: There is one cell that connects bidirectionally to all the LC171018

neurons, and then a higher order cell that connects bidirectionally to a larger set (LPLC1, LPLC2,1019

LLP1, LPC1, and LC17). In this case these are all looming-sensitive cells and hence these circuits1020

may regulate the features of the overall looming responses. It is tempting to speculate that the1021

more complex structures of Figure 23 (b) and (c) arose from the simpler structures of (a) through1022

cell type duplication followed by divergence, but the connectomes of many more related species1023

will be needed before this argument could be made quantitative.1024

Figure 23. One to many motifs found in the optic circuits. Individual neurons are named by unboxed text. Cell
type names, in boxes, represent cells with many instances, with the numeber of instances shown beneath. The

arrows show the average synapse count of each connection type. (a) shows an example of the most common

case. Here one cell, AVL19m, has bidirectional connections to all cells of type LC13. (b) shows a single cell with

exhaustive connections to several types. (c) shows an alternative motif where several cells form these

one-to-many connections. For clarity the cell names have been truncated, with the suffix _pct (for putative cell

type) removed.

The least tightly bound large motif is a cell that connects either to or from (but not both) all1025

cells of a given type, as shown in Figure 22(c). Examples include the mushroom body output1026

neurons(Takemura et al., 2017). This is a very common motif, found in many regions. We find more1027

than 500 examples of this in the fly’s brain.1028

Brain regions and electrical response1029

How does the compartmentalization of the fly brain affect neural computation? In a few cases this1030

has been established. For example, the CT1 neuron performs largely independent computations in1031

each branch(Meier and Borst, 2019), whereas estimates show that within the medulla, the delays1032

within each neuron are likely not significant for single column optic lobe neurons, and hence the1033

neurons likely perform only a single computation(Takemura et al., 2013). Similarly, compartments1034

of PEN2 neurons in the protocerebral bridge have been shown to respond entirely differently from1035

their compartments in the ellipsoid body(Green et al., 2017)(Turner-Evans et al., 2019).1036

Our detailed skeleton models allow us to construct electrical models of neurons. In particular,1037

to look more generally at the issues of intra– vs inter–compartment delays and amplitudes, we can1038
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construct a linear passive model for each neuron. Our method is similar to that elsewhere(Segev1039

et al., 1985), except that instead of using right cylinders, we represent each segment of the skeleton1040

as a truncated cone. This is then used to derive the axonic resistance, the membrane resistance,1041

and membrane capacitance for each segment. To analyze the effect of compartment structure on1042

neuron operation, we inject the neuron at a postsynaptic density (input) with a signal corresponding1043

to a typical synaptic input (1 nS conductance, 1 ms width, 0.1 ms rise time constant, 1 ms fall1044

time constant, 60 mV reversal potential). We then compute the response at each of the T-bar1045

sites (outputs). Since the synapses, both input and output, are annotated by the brain region that1046

contains them, this allows us to calculate the amplitudes and delays from each synapse (or a sample1047

of synapses) in each compartment to each output synapse in all other compartments.1048

Figure 24. (a) An EPG neuron, with arbors in three compartments. (b) Two neurons that connect in more than
one ROI, in this case the calyx and the lateral horn. They are each pre- and postsynaptic to each other in both

compartments.

In general, we find the ROI structure of the neuron is clearly reflected in the electrical response.1049

Consider, for example, the EPG neuron (Figure 24(a)) with arbors in the ellipsoid body, the protocere-1050

bral bridge, and the gall. Figure 25(a) shows the responses to synaptic input in the gall. Within the1051

gall, the delays are very short, and the amplitude relatively high and variable, depending somewhat1052

on the input and output synapse within the gall. From the gall to other regions the delays are1053

longer (typically a few milliseconds) and the amplitudes much smaller and nearly constant, largely1054

independent of the exact transmitting and receiving synapse. There is a very clean separation1055

between the within-ROI and across-ROI delays and amplitudes, as shown in Figure 25(a). The same1056

overall behavior is true for inputs into the other regions - short delays and strong responses within1057

the ROI, with longer delays and smaller amplitudes to other compartments.1058

This simple pattern motivates a model that describes delays and amplitudes not as a single1059

number, but as NxN matrix, where N is the number of ROIs. Each row contains the estimated1060

amplitude and delay, measured in each compartment, for a synaptic input in the given compartment.1061

This gives a much improved estimate of the linear response. For the example EPG neuron above,1062

with nominal values for Ra, Rm, and Cm, if we represent all delays by a single number then the1063

standard deviation of the error is 0.446 ms. If instead we represent the delays as a 3x3 matrix1064

indexed by the compartment, the average error is 0.045 ms, for 10x greater accuracy. Similarly, the1065

average error in amplitude drops from 0.168 mv to 0.021 mv, an eightfold improvement. While the1066

improvement in error will depend on the neuron topology, in all cases it will be more accurate than1067

a point model, for relatively little increase in complexity.1068

The absolute values of delay and amplitude are strongly dependent on the electrical parameters1069

of the cell, however. A wide range of electrical properties have been reported in the fly literature1070

(see Table 5) and it is plausible that these vary on a cell-to-cell basis. We therefore simulate with1071

minimum, medium, and maximal values of Ra and Rm, for a total of 9 cases, as shown in Figure1072
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(a) Amplitude vs. delay (b) Operating conditions
Figure 25. (a) The linear response to inputs in the gall(GA) for an EPG neuron, which also has arbors in the
ellipsoid body(EB) and the protocerebral bridge (PB). Each point in the modeled plot shows the time each

response reached its peak amplitude (the delay), and the amplitude at that time, for an input injected at one of

the PSDs in the Gall. (b) Delays and amplitudes for gall to PB response, for all combinations of three values of

cytoplasmic resistance RA and three values of membrane resistance RM .

25(b). All are needed since the resistance parameters interact non-linearly. We fix the value of Cm at1073

0.01 F/m2 since this value is determined by the membrane thickness and is not expected to vary1074

from cell to cell(Kandel et al., 2000). The results over the parameter range are shown in Figure1075

25(b) for the case of the EPG neuron above for delay from the gall to the PB. The intra-ROI and1076

between-ROI values are well separated for any value of the parameters (not shown).1077

Reference Ra,Ω ⋅m Rm,Ω∕m2 Cm, F/m2

Borst(Borst and Haag, 1996), CH cells 0.60 0.25 0.015

Borst(Borst and Haag, 1996), HS cells 0.40 0.20 0.009

Borst(Borst and Haag, 1996), VS cells 0.40 0.20 0.008

Gouers(Gouwens and Wilson, 2009), DM1 cell 1 1.62 0.83 0.026

Gouers(Gouwens and Wilson, 2009), DM1 cell 2 1.02 2.04 0.015

Gouers(Gouwens and Wilson, 2009), DM1 cell 3 2.66 2.08 0.008

Gouers(Gouwens and Wilson, 2009), dendrite 1 2.44 1.92 0.008

Gouers(Gouwens and Wilson, 2009), dendrite 2 2.66 2.08 0.008

Gouers(Gouwens and Wilson, 2009), dendrite 3 3.11 2.64 0.006

Cuntz(Cuntz et al., 2013), HS cells 4.00 0.82 0.006

Meier(Meier and Borst, 2019), CT1 cells 4.00 0.80 0.006

Table 5. Values reported in the literature

Programs that deduce synaptic strength and sign by fitting a computed response to a con-1078

nectome and measured electrical or calucium imagindg data(Tschopp et al., 2018) may at some1079

point require estimates of the delays within cells. If this is required, the above results suggest this1080

could be accomplished with reasonable accuracy with a ROI-to-ROI delay table and 2 additional1081

parameters per neuron, RA and RM . This is relatively few new parameters in addition to the many1082

synaptic strengths already fitted.1083

A number of neurons have parallel connections in separate ROIs (see Figure 24(b)). This motif1084

is common in the fly’s brain – about 5% of all connections having a strength ≥ 6 are spread1085

across two or more non-adjacent ROIs. Given the increased delays and lower amplitudes of1086
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cross-compartment responses, this type of interaction differs electrically from those in which all1087

connections are contained in a single ROI. A point neuron model cannot generate an accurate1088

response for such connections – a synapse in region A will result in a fast response in A and a slower,1089

smaller response in B, and vice versa, even though both of these events involve communication1090

between the same two neurons. It is not known if this configuration has a significant influence on1091

the neurons’ operation.1092

From these models we conclude (a) the compartment structure of the fly brain shows up1093

directly in the electrical response of the neurons. (b) the compartment structure, though defined1094

anatomically, matches that of the electrical response. From the clear separation in Figure 25, it is1095

likely that the same compartment definitions could be found starting with the electrical response,1096

though we have not tried this. (c) These results suggest a low dimensional model for neural1097

operation, at least in the linear region. A small region-to-region matrix can represent the delays1098

and amplitudes well. (d) Absolute delays depend strongly (but in a very predicable manner) on the1099

values of axial and membrane resistance, which can vary both from animal to animal and from1100

cell to cell. (e) Neurons that have parallel connections in separate ROIs have a different electrical1101

response than they would have with the same total number of synapses in a single ROI.1102

Rent’s rule analysis1103

Rent’s rule(Lanzerotti et al., 2005) is an empirical observation that in human designed computing1104

systems, when the system is packed as tightly as possible, at every level of the hierarchy the required1105

communication (the number of pins) scales as a power law of the amount of contained computation,1106

measured in gates. Rent’s rule is an observed relationship, not derived from underlying theory,1107

and the relationship is not exact and still contains scatter. A biological equivalent might be the1108

observation that brain size tends to vary as a power law of body size(Harvey and Krebs, 1990),1109

across a wide range of species occupying very different ecological and behavioral niches. Rent’s rule1110

is roughly true over many orders of magnitude in scale, and for almost every system in which it has1111

been measured. Somewhat surprisingly, Rent’s rule applies almost independently of the function1112

performed by the computation being performed, and at every level of a hierarchical system. It1113

also applies whether the compactness criterion is minimization of communication (partitioning) or1114

physical close packing.1115

Rent’s rule is expressed as

P ins = a ∗ (computation)b

where a is a scale factor (typically in the range 1-4), and b is the ‘Rent exponent’ describing how the1116

number of connections to the compartment varies as a function of the amount of computation1117

performed in the compartment. The Rent exponent has a theoretical range of 0.0 to 1.0, where 01118

represents a constant number of connections, with no dependence on the amount of computation1119

performed, and 1.0 represents a circuit in which every computation is visible on a connection.1120

Human designed computational systems occupy almost the full range, from spreadsheets in which1121

every computation is visible, to largely serial systems in which minimizing communication (pins) is1122

critical. This relationship is shown in Figure 26. However, when the overriding criterion is that the1123

system must be packed as tightly as possible, Rent observed that the exponent of the power law1124

falls in a close range of roughly 0.5-0.7.1125

For electrical circuits, the computation is measured in gates, and the connections are measured1126

by pin count. These ranges are shown in Figure 26 for circuits that are roughly the size of the fly’s1127

brain, packed in either two(Yang et al., 2001) or three(Das et al., 2004) dimensions.1128

Also shown in this plot are the values for the fly’s brain computational regions. In this case,1129

the computation is measured as the number of contained T-bars, and the connection count is the1130

number of neurons that have at least one synapse both inside and outside the compartment. (Very1131

similar results are obtained if the computation is measured as the number of PSDs, or the number1132

of unique connection pairs). Almost all the fly brain compartments fall well within the range of1133
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Figure 26. Rent’s rule for the hemi-brain. The yellow region is the theoretical bounds for computation. Human
systems designed for visibility into computation achieve the upper bound, while human designed systems

designed for minimum communication approach the lower bounds (Microprocessors ST7LU55, LPC1102, and

STM32). Human designed systems where efficient packing is the main criterion occupy the shaded area (in 2D

and 3D). The hemi-brain compartments fall very nearly in the same range as human designed systems.
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exponents expected for packing-dominated systems, while the ellipsoid body (EB) falls just outside1134

the expected area. This is perhaps due to the large number of clique-containing circuits in the1135

ellipsoid body (see Table 4), since such circuits have few connections for the amount of synapses1136

they contain.1137

Both human designed and biological systems have huge incentives to pack their computation as1138

tightly as possible. A tighter packing of the same computation yields faster operation, lower energy1139

consumption, less material cost, and lower mass. A natural speculation, therefore, is that both the1140

human-designed and evolved systems are dominated by packing considerations, and that both1141

have found similar solutions.1142

Conclusions and future work1143

In this work we have achieved a dream of anatomists that is more than a century old. For at least1144

the central brain of at least one animal with a complex brain and sophisticated behavior, we have a1145

complete census of all the neurons and all the cell types that constitute the brain, a definitive atlas1146

of the regions in which they reside, and a graph representing how they are connected.1147

To achieve this, we have made improvements to every stage of the reconstruction process.1148

Better means of sample preparation, imaging, alignment, segmentation, synapse finding, and1149

proofreading are all summarized in this work and will form the basis of yet larger and faster1150

reconstructions in the future.1151

We have provided the data for all the circuits of the central brain, at least as defined by nerve1152

cells and chemical synapses. This includes not only circuits of regions that are already the subject1153

of extensive study, but also a trove of circuits whose structure and function are yet unknown.1154

We have provided a public resource that should be a huge help to all who study fly neural circuits.1155

Finding upstream and downstream partners, a task that until now has typically taken months of1156

challenging experiments, is now replaced by a lookup on a publicly available web site. Detailed1157

circuits, which used to require considerable patience, expertise, and expertise to acquire, are now1158

available for the cost of an internet query.1159

More widely, a dense connectome is a valuable resource for all neuroscientists, enabling novel,1160

system-wide analyses, as well as suggesting roles for specific pathways. A surprising revelation is1161

the richness of anatomical synaptic engagements, which far exceeds pathways required to support1162

identified fly behaviors, and suggests that most behaviors have yet to be identified.1163

Finally, we have started the process of analyzing the connectome, though much remains to be1164

done. We have quantified the difference between computational compartments, determined that1165

the distribution of strengths is different from that reported in mammals, discovered cliques and1166

other structures and where these occur, examined the effect of compartmentalization on electrical1167

properties, and provided evidence that the wiring of the brain is consistent with optimizing packing.1168

Many of the extensions of this work are obvious and already underway. Not all regions of the1169

hemibrain have been read to the highest accuracy possible, insofar as we have concentrated first1170

on the regions overlapping with other projects, such as the central complex and the mushroom1171

body. We will continue to update other sections of the brain, and distributed circuits such as clock1172

neurons that are not confined to one region, but spread throughout the brain.1173

There is much more to be learned about the graph properties of the brain, and how these relate1174

to its function.1175

The two sexes of the Drosophila brain are known to differ(Auer and Benton, 2016). so that1176

reconstructing a male fly is critical to compare the circuits of the two sexes. The ventral nerve1177

cord (VNC) should be included since the circuits in the VNC are known to be crucial for fly motor1178

behavior(Yellman et al., 1997). At least one optic lobe should be included to simplify analysis of1179

visual inputs to the central brain. A whole brain connectome is preferable to the hemibrain, since1180

then most cell types would have at least two examples, left and right, which would lend increased1181

confidence to our reconstructions. It would also provide complete reconstruction to the many1182
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neurons that span the brain, especially the clock neurons, and are incomplete in the hemibrain.1183

These three goals are combined in a project that is currently underway, to image and reconstruct1184

an entire male central nervous system (CNS) including the VNC and optic lobes.1185

We continue to improve sample preparation, imaging, and reconstruction both to decrease the1186

efforts expended on reconstruction and to speed reconstruction of more specimens. Improvements1187

include multi-beam imaging, etching methods(Hayworth et al., 2019) that can handle larger areas,1188

and yet better reconstruction techniques.1189
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Supplemental Methods1217

Sensory inputs and motor outputs1218

The dataset covers most of the antennal lobe (AL) glomeruli, which house the presynaptic terminals1219

of the olfactory receptor neurons (ORNs) from the antennae. The ORNs are named after their1220

innervating glomeruli, e.g., ORN_DA2, and the olfactory receptors they express, as well as their lig-1221

ands, and have been identified through various physiological studies(Couto et al., 2005)(Fishilevich1222

and Vosshall, 2005)(Hallem and Carlson, 2006). The olfactory signals are then transmitted by the1223

olfactory projections neurons (PNs) to the calyx (CA) of the mushroom body, the lateral horn (LH)1224

and beyond.1225

While a large part of the optic lobe (OL) neuropils are missing, more than half of the lobula1226

(LO) and small pieces of the lobula plate (LOP) and medulla (ME) are within the dataset. Many1227

neurons connecting the OL and the central brain, or the visual projection neurons (VPNs), are1228

identified and annotated, along with their synaptic terminals in the central brain, and in the1229
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optic lobe when possible. Among them, the columnar VPNs, including the lobula columnar (LC),1230

lobula plate columnar (LPC), lobula-lobula plate columnar (LLPC), and lobula plate-lobula columnar1231

(LPLC) neurons(Ache et al., 2019)(Fischbach and Dittrich, 1989)(Klapoetke et al., 2017)(Otsuna and1232

Ito, 2006)(Wu et al., 2016), account for the vast majority of the population and are more or less1233

densely identified. Since the distribution of the columnar neurons follows the arrangement of the1234

photoreceptor cells in the compound eye, the retinotopy can be traced even in their terminals in1235

the central brain. In most cases, these neurons terminate in synapse-rich structures called the1236

optic glomeruli in the ventrolateral neuropils, where they relay visual information to higher-order1237

neurons(Panser et al., 2016)(Wu et al., 2016).1238

The antennal mechanosensory and motor center (AMMC) is located lateral and ventral to the1239

esophagus foramen. It houses terminals of the Johnston’s organ neurons (JONs), the mechanosen-1240

sory neurons from the Johnston’s organ in the second segment of the antennae, as well as their1241

synaptic partners. The AMMC is subdivided into five functionally and anatomically segregated1242

zones, A, B, C, D, and E(Kamikouchi et al., 2006). Since the neuropil is partially truncated especially1243

in the medial and ventral part corresponding to the zones D and E in the hemibrain dataset, only a1244

limited number of the JONs innervating zones A, B, and C have been annotated, as JO-A/B/C.1245

The gustatory receptor neurons (GRNs) from the labellum and maxillary palp terminate in the1246

gustatory sensory centers in the gnathal ganglia (GNG) and the prow (PRW)(Hartenstein et al.,1247

2018)(Ito et al., 2014)(Miyazaki and Ito, 2010). Both of them are mostly out of the imaging range of1248

the dataset and therefore no GRNs have been identified.1249

We have identified 60 types of descending neurons (out of a total of 98 types identified by the LM1250

study) that play a key role in behavior. These neurons were annotated based on the nomenclature1251

described in a previous study(Namiki et al., 2018), namely the classes of DNa, DNb, DNg and DNp.1252

Due to the lack of ventral region in the current dataset, we are not able to specify other cell types1253

that run in the neck connective.1254

Sample Preparation1255

We employed the Progressive Lowering of Temperature dehydration with Low temperature en bloc1256

Staining (PLT-LTS), a modified conventional chemical fixation and en bloc staining method. This1257

method, mentioned in our previous papers (Hayworth et al., 2015)(Xu et al., 2017)(Lu et al., 2019),1258

is here abbreviated as ‘C-PLT’. PLT-LTS is an optimization method to give tissue advanced high1259

contrast staining and minimize artifacts: extraction, size and shape variation etc, by treating tissue1260

under 0◦C to -25 ◦C in acetone or ethanol based uranyl acetate and OsO4 after routine fixation.1261

PLT-LTS samples show highly visible membranes with fewer deflated and collapsed profiles and1262

conspicuous synaptic densities in FIB-SEM images.1263

Five-day-old adult female Drosophila, of the genotype Canton S G1 x w1118, were used in this1264

experiment. Isolated whole brains were fixed in 2.5% formaldehyde and 2.5% glutaraldehyde in1265

0.1 M phosphate buffer at pH 7.4 for 2 hours at 22◦C. After washing, the tissues were post-fixed1266

in 0.5% osmium tetroxide in double distilled H2O for 30 min at 4
◦C. After washing and en bloc1267

staining with 0.5% aqueous uranyl acetate for 30 min and then further washing in water, for 20min1268

in 0.8% OsO4, a Progressive of Lowering Temperature (PLT) procedure started from 1
◦°C when1269

the tissues were transferred into 10% acetone. The temperature was progressively decreased to1270

-25◦C while the acetone concentration was gradually increased to 97%. The tissue was incubated in1271

1% osmium tetroxide and 0.2% uranyl acetate in acetone for 32 hours at -25◦C. After PLT and low1272

temperature incubation, the temperature was increased to 22◦C, and tissues were rinsed in pure1273

acetone following by propylene oxide, then infiltrated and embedded in Poly/Bed 812 epoxy (Luft1274

formulation).1275

41 of 57

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.07.030213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.030213
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Hot knife cutting1276

Ultrathick sectioning1277

The hemibrain is too large to image by FIB-SEM without artifacts so we used our ultrathick sectioning1278

‘hot knife’ procedure(Hayworth et al., 2015) to first slice the brain into 20 �m thick slabs which1279

were better suited to FIB-SEM imaging. The Epon-embedded Drosophila brain block’s face was1280

trimmed to present a width of just over 1 mm to the knife during sectioning (with the brain centered1281

in this width). The length of the blockface was trimmed to be > 3 mm so that each cut section1282

would have a large enough region of blank plastic surrounding the tissue to allow forceps to grasp1283

it during later processing steps. All sides of the block were trimmed to be perpendicular to the1284

face except the trailing edge which was trimmed to slope away at ≈ 45◦ (to prevent this trailing1285

edge from deforming during hot knife sectioning). Hot knife sectioning was performed on our1286

custom ultrathick sectioning testbed(Hayworth et al., 2015). The block was cut at a speed of 0.11287

mm/s into a total of 37 slices, each 20 �m thick, using an oil-lubricated (filtered thread cutting oil,1288

Master Plumber) diamond knife (Cryo 25◦ from Diatome). The knife temperature was adjusted1289

at the beginning of the run to ensure sections flowed smoothly across the knife surface without1290

curling (too cold) or buckling (too hot). The knife temperature was measured to be 61◦C at the1291

end of the run. The knife was forced to oscillate via a piezo at 39 kHz during sectioning. A laser1292

vibrometer (Polytec CLV-2534) was used to measure the amplitude of vibration at 0.5 �m peak-to-1293

peak. Each thick section was collected individually from the knife surface by pressing a vacuum1294

aspirator (extended fine tip plastic transfer pipette, Samco Scientific, attached to lab vacuum) onto1295

the surface of the section. Each section was transferred to an individual well in the top of a 96-well1296

microplate (Costar) into an awaiting oil drop. Once all sections were collected, they were transferred1297

via forceps under a dissection microscope to a glass slide. The slide was placed on a hot plate1298

(200◦C) long enough (≈ 10 s) to flatten any residual curl in the sections. Each section was then1299

imaged in a 20x light microscope to evaluate its quality.1300

Flat embedding1301

Each of the 20 �m thick Epon-embedded fly brain sections was re-embedded in Durcupan resin to1302

allow high quality FIB-SEM imaging. Durcupan re-embedding was required because FIB milling of1303

Epon-embedded tissue without a Durcupan front covering resulted in milling streaks which mar the1304

SEM images(Xu et al., 2017). Residual oil left over from the cutting process was first removed from1305

each thick sections by dipping the section in Durcupan resin. Four drops of Durcupan resin were1306

spaced out in sequence on a fresh glass slide. Each section was manually grasped with forceps1307

(under a dissecting microscope) and dipped and lightly agitated sequentially in each Durcupan1308

drops. Sections were gently wiped against the glass slide between each dipping to remove excess1309

Durcupan and oil. After the final dipping, each section was placed (blockface side up) onto the1310

heat-sealable side of a strip of 25 �m thick PET film (PP24I, Polymex Clear one side heat sealable/one1311

side untreated polyester film, Polyester Converter Ltd.). Flat embedding tissue sections against1312

this PET backing provided the strength needed for later mounting and handling. The PET film had1313

been previously affixed to a glass slide for support, separated from the slide by a thin Kapton film1314

designed to allow easy stripping of the PET. A gasket made from 50 �m thick adhesive-backed1315

Kapton was positioned so as to surround all of the sections making a well for Durcupan resin to be1316

poured into. This arrangement of sections was placed in a 65◦C oven for ≈ 1 hour to partially cure1317

the Durcupan so as to ‘tack’ the sections into position against the PET film. Then fresh Durcupan1318

was poured to fill the well to its brim, and several large area pieces of 20 �m thick Durcupan1319

(previously cut from a blank block) were placed above the tissue sections to act as spacers during1320

flat embedding to ensure that at least a 20 �m layer of Durcupan would exist in front of each tissue1321

section during FIB milling. A piece of 25 �m Kapton film was laid on top of the Durcupan along with1322

a glass slide and a weight was placed on top to press excess Durcupan out of the well. This flat1323

embedding stack up was cured at 65◦C for 2 days.1324
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Tab mounting, laser trimming, X-ray imaging1325

Each individual brain slab to be FIB-SEM imaged was cut out of this flat embedding using a scalpel,1326

and the resulting ‘tab’ was affixed with cyanoacrylate (Super Glue) to a metal stud. An ultraviolet1327

laser (LaserMill, New Wave Research) was used to trim away excess blank resin to minimize the1328

FIB-milling time required. An X-ray micro-CT scan (Versa 520, Zeiss) was then performed on each1329

tab prior to FIB-SEM imaging.1330

Imaging1331

For the hemibrain, thirteen such slices were imaged using two customized enhanced FIB-SEM1332

systems, in which an FEI Magnum FIB column was mounted at 90◦ onto a Zeiss Merlin SEM. Three1333

different imaging conditions were used for different sections with details listed in Table 6. In general,1334

SEM images were acquired at 8 nm XY pixel size with a 4-nA beam with 1.2 kV landing energy,1335

but other parameters were tuned for best imaging quality. Slices 24 to 27 were imaged with the1336

specimen biased at + 600 V to prevent secondary electrons from reaching the detector, so that1337

only backscattered electrons were collected. The electron beam energy was lowered to 600 V1338

accordingly to maintain the same 1.2 kV landing energy. The remaining slices were imaged with1339

specimen grounded at 0 V, and both secondary and backscattered electrons were collected to1340

improve signal-to-noise ratio. As a result, SEM scanning rates were set at 2 MHz for slabs with1341

specimen bias and 4 MHz for those without specimen bias. FIB milling was carried out by a 7-nA1342

30 kV Ga ion beam. Since optic lobes are typically more heavily stained than the central complex,1343

the FIB milling step size in sections 22 to 30 was set to 2 nm, while the step size on sections 31 to1344

34 was set at 4 nm, to compensate for staining nonuniformity while preserving throughput and1345

signal-to-noise ratio. The total FIB-SEM imaging time for the entire hemibrain was roughly four1346

FIB-SEM-years: two years of on and off operation with two machines.1347

Sample ID Electron

beam

energy (kV)

Sample

bias (kV)

Landing

energy (kV)

SEM cur-

rent (nA)

SEM scan

rate (MHz)

x-y pixel

(nm)

z-step

(nm)

Z0115-22_Sec22 1.2 0 1.2 4 4 8 2

Z0115-22_Sec23 1.2 0 1.2 4 4 8 2

Z0115-22_Sec24 0.6 0.6 1.2 4 2 8 2

Z0115-22_Sec25 0.6 0.6 1.2 4 2 8 2

Z0115-22_Sec26 0.6 0.6 1.2 4 2 8 2

Z0115-22_Sec27 0.6 0.6 1.2 4 2 8 2

Z0115-22_Sec28 1.2 0 1.2 4 4 8 2

Z0115-22_Sec29 1.2 0 1.2 4 4 8 2

Z0115-22_Sec30 1.2 0 1.2 4 4 8 2

Z0115-22_Sec31 1.2 0 1.2 4 4 8 4

Z0115-22_Sec32 1.2 0 1.2 4 4 8 4

Z0115-22_Sec33 1.2 0 1.2 4 4 8 4

Z0115-22_Sec34 1.2 0 1.2 4 4 8 4

Table 6. FIB-SEM imaging conditions

Slab Alignment1348

From each of the flattened sections, we generated a multi-scale pyramid of the section faces.1349

The highest resolution pyramid level sat exactly at the plane, had a thickness of 1px and showed1350

a significant amount of cutting artifacts. Lower levels of the pyramid were increasingly thicker,1351

projecting deeper into the volume and showed larger structures.1352

The alignment was initialized with a regularized affine alignment for the complete series of1353

face pairs using the feature based method by Saalfeld et al.(Saalfeld et al., 2010) The pyramid of1354

section face pairs was then used to robustly calculate pairwise deformations between adjacent1355

sections. The faces are of notable size (>30k2px) and expose many preparation artifacts such that1356

off the shelf registration packages failed to process them reliably. We therefore developed a custom1357

pipeline that was able to robustly align the complete series without manual corrections. Using1358
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the same feature based method as above, an increasingly fine grid of local affine transformations1359

was calculated and converted into a smooth and increasingly accurate interpolated deformation1360

field. The resulting deformation field was further refined using a custom hierarchical optic flow1361

method down to a resolution of 2px. Optic flow minimizing the normalized cross correlation (NCC)1362

was calculated for a pyramid of square block-sizes. For each pixel, the translation vector with the1363

highest number of votes from all block-sizes was selected, and the resulting flow-field was further1364

smoothed with an adaptive Gaussian filter that was weighted by the corresponding NCC.1365

The deformation fields were then applied to each section volume by smoothly interpolating1366

between the deformation field at the top face and the affine transformation at the bottom face.1367

The block-based N5 format (https://github.com/saalfeldlab/n5) was used to store volumes,1368

multi-scale face pyramids, deformation fields, meta-data, and to generate the final export. Apache1369

Spark was used to parallelize on a compute cluster. The pipeline is open source and available on1370

GitHub (https://github.com/saalfeldlab/hot-knife).1371

Segmentation1372

Image Adjustment with CycleGANs1373

To reduce photometric variation, we first normalized the contrast of the aligned EM images at full1374

resolution ([8 nm]3 / voxel) with CLAHE in planes parallel to the hot-knife cuts. In experiments1375

targeted to small subvolumes we observed that segmentation quality decreased in certain areas of1376

the hemibrain volume due to variations in the image content arising from, for example, fluctuations1377

in staining quality as well as reduced contrast near the boundaries of the physically distinct 131378

hot-knife “tabs” that partitioned the original tissue volume. To compensate for these irregularities,1379

we trained and applied CycleGAN(Zhu et al., 2017) models. This unsupervised machine learning1380

method was originally introduced to adjust the appearance of images from one set A (e.g. photos)1381

to be similar to those from another set B (e.g. paintings), without being given any explicit pairings1382

between elements of both sets. Here we extended this method to 3d volumes, and used model1383

architectures and training hyperparameters as previously described(Januszewski and Jain, 2019),1384

but without utilizing the flood-filling module.1385

We trained separate CycleGAN models to make data from every tab visually similar to that of1386

a reference area spanning tabs 26 and 27 at [32 nm]3 and [16 nm]3 voxel sizes (i.e. using 4x, and1387

2x downsampled images, respectively), yielding a total of 20 CycleGAN models (no model was1388

trained for tabs 26 and 27 at 32 nm and for tabs 23, 24, 26, and 27 at 16 nm). The reference area1389

was chosen based on similarity to the region in which training data for segmentation models was1390

located. The images in tabs 26 and 27 were sufficiently similar that no additional adjustment was1391

required. The bounding boxes within the hemibrain volume used for training the CycleGAN models1392

are specified in Supplementary Table 7.1393

During training, a snapshot of network weights (“checkpoint”) was saved every 30 min. CycleGAN1394

inference was performed over a tab- and resolution-specific region of interest (ROI; see Table 8)1395

with every saved checkpoint from the tab- and resolution-matched model. We then segmented1396

the resulting volumetric images with a resolution-matched flood-filling network (FFN) model, and1397

screened the segmentations for merge errors. Merge errors were identified by visually inspecting1398

the largest objects (by the number of voxels) in the segmentations using a 3d mesh viewer (Neu-1399

roglancer). For every CycleGAN model, we selected checkpoints resulting in the minimum number1400

of mergers, and then among these, selected the checkpoint corresponding to a segmentation with1401

the maximum number of labeled voxels in objects containing at least 10,000 voxels.1402

We then performed CycleGAN inference with the selected checkpoint for every tab-resolution1403

pair over the part of the aligned hemibrain volume corresponding to that tab. The stitched inference1404

results were used as input volumes for tissue classification and neuron segmentation. CycleGAN1405

normalization was not done at the native [8 nm]3/voxel resolution because there was insufficient1406

evidence that the 8 nm FFN model could generalize well to different tabs.1407
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tab start size

x y z x y z

reference 4633 3792 2000 1374 2000 2000

22 8089 4030 1744 518 2000 2000

23 7435 3925 2101 654 2000 2000

24 6713 2939 4094 722 2000 2000

25 6017 2895 3635 694 2000 2000

28 3980 4944 3495 638 2000 2000

29 3307 2414 4094 666 2000 2000

30 2649 2519 4094 657 2000 2000

31 1979 2750 4094 670 2000 2000

32 1312 3065 4094 667 2000 2000

33 668 3101 3520 663 2000 2000

34 1 3112 3520 660 2000 2000

Table 7. Bounding boxes within the hemibrain volume used for training CycleGAN models. Coordinates and
sizes are given for [32 nm]3 voxels. The same physical area of the hemibrain volume was used to train both 32

nm and 16 nm CycleGAN models.

Tissue Classification1408

We manually labeled voxels in 4 tabs of the hemibrain volume as belonging to one of 7 classes:1409

‘broken white tissue’, trachea, cell bodies, glia, large dendrites, neuropil, or ‘out of bounds’. We used1410

these labels to train a 3d convolutional network that receives as input a field of view of 65x65x651411

voxels at [16 nm]3/voxel resolution. The network uses ‘valid’ convolution padding and ‘max’ pooling1412

operations with a kernel and striding shape of 2x2x2, with convolution and pooling operations1413

interleaved in the following sequence: convolution with 64 features maps and a 3x3x3 kernel shape,1414

max-pooling, convolution with 64 feature maps, max-pooling, convolution with 64 feature maps,1415

max-pooling, convolution with 3x3x3 kernel size and 16 feature maps, convolution with 4x4x41416

kernel shape 512 feature maps (i.e., fully connected layer), and finally a logistic layer output with1417

8 units (the first unit was unused in the labeling scheme). The network was trained with data1418

augmentation in which the order of the three spatial axes was randomly and uniformly permuted1419

for each example during construction of the 16-example minibatch. For each example, the order1420

of voxels along each spatial axis was also inverted at random with 50% probability. Examples1421

from the 7 classes were sampled randomly with equal probability. The model was implemented in1422

TensorFlow and training was performed with asynchronous SGD on eight workers using NVIDIA1423

P100 GPUs.1424

The resulting classifier output was, on certain slices of the hemibrain, manually proofread using1425

a custom tool (“Armitage”). The inference and proofreading process was then iterated seven times1426

in order to expand and improve the set of ground truth voxels, resulting in a final ground truth1427

set with the following number of examples (voxels) in each class: 9.7M broken white tissue, 22.9M1428

trachea, 42.1M cell bodies, 5.6M glia, 17.7M large dendrites, 71.4M neuropil, and 208.1M out of1429

bounds.1430

Mitochondria Classification1431

We detected and classified mitochondria within the hemibrain volume using the same neural1432

network architecture and training setup as that used for tissue classification. Ground truth data1433

was collected through iterative annotation (2 rounds) in Armitage, in which voxels within hemibrain1434

were manually annotated as belonging to one of 4 classes: ‘background’ (33.7 Mvx), ‘regular’ (0.71435

Mvx), ‘special’ (0.5 Mvx), and ‘intermediate’ (0.5 Mvx).1436
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tab voxel res. [nm] start size

x y z x y z

22 32 8092 4392 5447 500 936 936

23 32 7435 2479 4979 500 936 936

24 32 6717 5414 4873 500 936 936

25 32 6010 3960 6235 500 936 936

28 32 3971 2591 2954 500 936 936

29 32 3471 4252 2224 500 936 936

30 32 2650 2995 4875 500 936 936

31 32 1982 3196 4875 500 936 936

32 32 1311 3141 4873 500 936 936

33 32 664 2850 4875 500 936 936

34 32 0 1900 4500 500 5000 2500

22 16 16080 8353 9871 1034 936 936

25 16 11900 12657 12636 1406 936 936

25 16 11900 5266 10578 1408 936 936

28 16 7900 9279 4613 1297 936 936

29 16 6550 8520 4613 1333 936 936

30 16 5250 7997 7510 1315 936 936

31 16 3860 7749 7510 1340 936 936

32 16 2550 9482 4225 1334 936 936

33 16 1280 7176 12265 1298 936 936

34 16 0 7587 12265 1328 936 936

Table 8. ROIs within the hemibrain volume used for CycleGAN checkpoint selection.

Automated Neuron Segmentation with FFNs1437

We trained three FFN models composed of the same architecture as detailed in previous work1438

(Januszewski et al., 2018) for FIB-SEM volumes, targeted specifically for 8 nm, 16 nm, and 32 nm1439

voxel resolution data. For the 8 nm model we used manually generated ground truth spread over 61440

subvolumes (5203 voxels each) located within the ellipsoid body, fan-shaped body and protocerebral1441

bridge. The 16 nm and 32 nmmodels were trained with a proofread segmentation contained within1442

a 8600 x 3020 x 9500-voxel region spanning tabs 26 and 27. For the 32 nmmodel, training examples1443

were sampled from objects comprising 5,000 or more labeled voxels at 32 nm/voxel resolution. In1444

total, 4.2 Gvx of labeled data were used for the 16 nm model and 423 Mvx for the 32 nm model.1445

We split the training examples into ‘probability classes’ similarly to (Januszewski et al., 2018).1446

Classes 13-17 were not sampled when training the 8 nm model in order to bias it towards small-1447

diameter neurites. For 16 nm and 32 nm models fewer classes were used and the first class1448

comprising all initial training examples with the fraction of voxels set to 0.95fa < 0.05. Other than the1449

changes regarding the probability classes, we followed the same procedures for training example1450

sampling, seed list generation, field-of-view movement, and distributed inference as detailed1451

previously(Januszewski et al., 2018).1452

FFN checkpoints were selected in a screening process. We generated tab 24 segmentations at 161453

and 32 nm voxel resolution for every available checkpoint. We then screened these segmentations1454

for merge errors, annotating every such error with two points, one in each distinct neurite. The1455

segmentation generated with an FFN checkpoint that avoided the most errors was selected. For1456

the 8 nm segmentation, we followed the same procedure but restricted to a 5003 subvolume within1457

tab 24, located at 23284, 1540, 12080.1458
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Pipeline for Segmentation of Hemibrain with Flood-filling Networks1459

Multi-resolution and oversegmentation consensus1460

We built the hemibrain segmentation with a coarse-to-fine variant of the FFN pipeline(Januszewski1461

et al., 2018) combining partial segmentations generated at different resolutions. First, we used the1462

16 nm and 32 nm FFN models to segment the dataset at the corresponding resolution, with voxels1463

identified by the tissue classifier as glia and out-of-bounds excluded from FFN FOV movement1464

(‘tissue masking’), and voxels classified as ‘broken white tissue’ excluded from seed generation.1465

Voxels located within 128 nm from every hot knife plane were removed from the image data, and1466

segmentation proceeded as if these regions did not exist. The resulting segmentation was extended1467

back to the original coordinate system by nearest neighbor interpolation to fill the unsegmented1468

spaces.1469

We then removed objects smaller than 10,000 voxels from the 32 nm segmentation (we will1470

refer to the resulting segmentation as S32), isotropically upsampled it 2x, and combined it with the1471

16 nm segmentation using oversegmentation consensus(Januszewski et al., 2018). The resulting1472

segmentation (S16) was used as the initial state for 8 nm FFN inference. In addition to tissue1473

masking which was applied in the same way as in the case of lower resolution segmentations, we1474

also masked areas within 32 voxels (at 8 nm/voxel resolution) from each hot-knife plane.1475

FlyEM proofreaders analyzed the roughly 200,000 largest objects in the segmentation, and1476

manually split supervoxels identified as causing merge errors. This was done in 3 iterations – two1477

targeting neuropil supervoxels, and one targeting cell bodies. The resulting corrected segmentation1478

(S8) was used as the base segmentation for further work.1479

Agglomeration1480

For agglomeration, we modified the scheme described in (Januszewski et al., 2018) for use with1481

resolution-specific FFN models. First, we established a class for every segment by performing a1482

majority vote of the tissue classification model predictions over the voxels covered by the segment.1483

For every S16 segment (A, B), we also identified the maximally overlapping segment in S32 (denoted1484

respectively Amax, Bmax below). For each of the S32, S16, and S8 segmentations we then computed1485

candidate object pairs and agglomeration scores, restricting object pairs to ones involving both1486

segments classified as either neuropil or ‘large dendrite’. For S8 the object pairs were additionally1487

restricted to those that included at least one object not present in S16.1488

For every evaluated segment pair (A, B) and the corresponding segments (A*, B*) generated1489

during agglomeration, we computed the scores originally defined in (Januszewski et al., 2018) that1490

is the recovered voxel fractions (fAA, fAB , fBA, and fBB , where fAB is the fraction of B found in A*,1491

and so on), the Jaccard index JAB between A* and B*, and the number of voxels contained in A* or1492

B* that had been ‘deleted’ (i.e., during inference their value in the predicted object mask fell from1493

> 0.8 to < 0.5) during one of the runs (dA, dB)).1494

We then used the following criteria to connect segments A and B. In S32, we connected segments1495

that were scored as (f∗∗ ≥ 0.6 ∧ JAB ≥ 0.4) ∨ (fA∗ ≥ 0.8) ∨ (fB∗ ≥ 0.8). In S16, we connected segments1496

that either a) were scored as d∗ ≤ 0.02 or were both classified as neuropil, and f∗∗ ≥ 0.6 ∧ JAB ≥ 0.4,1497

or b) were both classified as neuropil, Amax = 0 or Bmax = 0 and (fA∗ ≥ 0.9) ∨ (fB∗ ≥ 0.9). In S8, we1498

connected segments that were scored as (dA ≤ 0.02 ∨ dB ≤ 0.02) ∧ f∗∗ ≥ 0.6 ∧ JAB ≥ 0.8.1499

Given the application of oversegmentation consensus in the process of building S16, objects1500

created in S32 could have a different shape in S8. To compensate for this possibilty, when ag-1501

glomeration scores were being computed for S32 segments A and B, for each we computed up1502

to 8 maximally overlapping objects (A’, B’) in a downsampled version of S8 with matching voxel1503

resolution, subject to a minimum overlap size of 1,000 voxels and considered the agglomeration1504

decision to apply to all combinations of A’ and B’.1505
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Agglomeration constraints1506

From the procedure above, we used the agglomeration scores to organize segment connection1507

decisions into priority groups and assign them a single numerical priority score (see Table 9). The1508

decisions were then sorted in ascending order of the priority score, and sequentially processed,1509

removing any decisions that would cause two cell bodies (as defined by manual annotations), or1510

two segments previously separated manually in S8 proofreading to be connected was removed.1511

Additionally, once all decisions with score < 10 were processed, we also disallowed any remaining1512

decisions that connected together any objects larger than 100M vx.

Group Segmen-

tation

Criterion Score

1 S32 (dA ≤ 0.02 ∨ dB ≤ 0.02) ∧ (f∗∗ ≥ 0.6 ∧ JAB ≥
0.8)

1 − JAB

2 S16 (dA ≤ 0.02 ∨ dB ≤ 0.02) ∧ (f∗∗ ≥ 0.6 ∧ JAB ≥
0.8) ∧ (Amax = 0 ∨ Bmax = 0)∧ A and B are
classified as neuropil

2 − JAB

3 S16 (dA ≤ 0.02 ∨ dB ≤ 0.02) ∧ (f∗∗ ≥ 0.6 ∧ JAB ≥
0.8) ∧ (Amax = 0 ∨ Bmax = 0)

3 − JAB

4 S16 (dA ≤ 0.02 ∨ dB ≤ 0.02) ∧ (f∗∗ ≥ 0.6 ∧ JAB ≥
0.8)∧ A and B are classified as neuropil

4 − JAB

5 S16 (dA ≤ 0.02 ∨ dB ≤ 0.02) ∧ (f∗∗ ≥ 0.6 ∧ JAB ≥
0.8)

5 − JAB

6 S32 (f∗∗ ≥ 0.6 ∧ JAB ≥ 0.4) ∧ (Amax = 0 ∨ Bmax =
0)∧ A and B are classified as neuropil

6 − JAB

7 S16 (f∗∗ ≥ 0.6∧JAB ≥ 0.4)∧(Amax = 0∨Bmax = 0) 7 − JAB
8 S16 (f∗∗ ≥ 0.6 ∧ JAB ≥ 0.4)∧ A and B are classi-

fied as neuropil

8 − JAB

9 S16 (f∗∗ ≥ 0.6 ∧ JAB ≥ 0.4) 9 − JAB
10 S8 none 11 − JAB
11 S32 none 12 − max(

min(fAA, fAB),
min(fBA, fBB))

12 S16 none 13 − max(
min(fAA, fAB),
min(fBA, fBB))Table 9. Criteria for agglomerating priority groups. If an agglomeration decision fulfills the criteria for multiple

priority groups, it is assigned to the one with the lowest resulting score.

1513

Speculative agglomeration1514

Any body (or set of segments connected by the agglomeration graph) larger than 10M vx was consid-1515

ered to be an “anchor” body. We connected smaller bodies to these anchor bodies in a greedy pro-1516

cedure to further reduce the total number of bodies in the agglomerated segmentation. We formed1517

body pair scores using segment pair agglomeration scores as max(min(fAA, fAB), min(fBA, fBB)). We1518

then merged every body with its highest scoring candidate partner, as long as this would not1519

connect two anchor bodies, and the body pair score was > 0.1. This procedure was repeated 71520

times.1521
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Synapse Prediction1522

Ground Truth1523

For training and validation, we collected dense synapse annotations within small cubes, spread1524

through different brain regions. In total, we collected 122 such cubes, using 25 for classifier training,1525

and the remaining 97 for validation. At each cube location, proofreaders manually annotated all1526

T-bars within a 4003 window, and further annotated all PSDs attached to T-bars within a smaller1527

2563 sub-window. In total, 7.6k T-bars were annotated, split between 1.8k for training and 5.8k for1528

validation, and 11.7k PSDs were annotated, split between 3k for training and 8.7k for validation.1529

Method1530

Details of the T-bar and PSD detection algorithms we used can be found in (Huang et al., 2018).1531

For reference, the T-bar classifier is a 3D CNN using a U-Net architecture(Ronneberger et al., 2015),1532

with a receptive field size of 403 voxels and 770k parameters.1533

At inference, we leverage the tissue classification results mentioned above by discarding any1534

predictions that fell outside of tissue categories of large dendrites or neuropil.1535

As mentioned in the main text, after collecting ground-truth throughout additional brain regions,1536

we found that our initial T-bar classifier was giving lower than desired recall in certain areas.1537

Therefore, we trained a new classifier, and combined the results in a cascade fashion, which we1538

found gave better results than simply replacing the initial predictions. Specifically, we added any1539

predictions above a given confidence threshold made by the new classifier for synapses that were1540

not near an existing prediction, and removed any existing predictions that were far from predictions1541

made by the new classifier at a second lower/conservative threshold.1542

One difficulty in placing a single T-bar annotation at each presynaptic location is a certain1543

ambiguity awith respect to ‘multi T-bars’, cases in which two distinct T-bar pedestals lay in close1544

proximity, within the same neuron. Such a case can be difficult to distinguish from a single large1545

synapse, both for manual annotators as well as the automated prediction algorithm. To make1546

such a distinction reliably would require obtaining many training examples for both cases (multi1547

T-bar versus single large synapse), and would only have a slight effect on the final weights of the1548

connectome (but not the unweighted connectivity). Therefore, we make no attempt to predict1549

multi T-bars, and instead as a final post-processing step, collapse to a single annotation any T-bar1550

annotations that are in close proximity and in the same segmented body.1551

Finally, we observed that in certain brain regions, there are instances of T-bars in separate1552

bodies but in close proximity to one another. These often form a ‘convergent T-bars’ motif, in1553

which multiple T-bars closely situated in distinct bodies form a synapse onto the same PSD body.1554

The proximity of such T-bars is often less than the distance threshold used in the non-maxima1555

suppression (NMS) that is applied to generate the T-bar annotations from the pixel-wise U-Net1556

predictions. Given the NMS, a number of these types of T-bars would be missed by our predictor.1557

To address this issue, we modified the post-processing of pixel-wise predictions so as to use1558

a ‘segmentation-aware NMS’. Specifically, we constrain the NMS applied to each pixel-wise local1559

maxima to largely be limited to the specific segment in which the maxima occurs. Each segment is1560

dilated slightly to avoid additional predictions that only fall a very small number of voxels outside the1561

segment containing the maxima. (Note that unlike standard NMS, this procedure does require that1562

the automated segmentation be available prior to inference.) We apply the segmentation-aware1563

NMS only in brain regions where convergent T-bars were observed, as occurs in the mushroom1564

body and fan-shaped body.1565

Evaluation1566

Figure 27 gives the precision-recall plot for T-bar prediction, averaged over all the available ground-1567

truth validation cubes. As mentioned above, we do not attempt to predict multi T-bars; therefore,1568

for the purposes of evaluation, we also collapse any ground-truth T-bars within close proximity in1569

the same body to a single annotation. As can be seen from the figure, the cascade predictions are1570
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Figure 27. Precision-recall plot of T-bar prediction. The purple intercept indicates estimated manual agreement
rate of 0.9.

able to increase recall while maintaining precision. One of the primary error modes that leads to1571

a difference between automated accuracy and manual agreement rate is the case of convergent1572

T-bars, noted above. For instance, in Figure 6 of the main text, the brain region with lowest recall1573

is b’L in the mushroom body; closer analysis revealed many convergent T-bars in the annotated1574

ground-truth cubes for b’L.1575

Figure 28 below in the next subsection gives the corresponding precision-recall plot for end-1576

to-end synapse prediction, averaged over all the available ground-truth validation cubes. As with1577

both (Huang et al., 2018) and (Buhmann et al., 2019), we do not attempt to predict autapses, and1578

remove any predicted connections that lie within the same neuron. For evaluation, any occasional1579

ground-truth autapses are filtered out.1580

Additional Classifier1581

As an independent check on synapse quality, we also trained a separate classifier proposed by1582

Buhmann(Buhmann et al., 2019), using the ‘synful’ software package provided. We additionally1583

made several modifications to the code, including: adding an ‘ignore’ region around synapse blobs1584

where predictions were not penalized, using focal loss(Lin et al., 2017) to help with class imbalance,1585

using batch normalization(Ioffe and Szegedy, 2015) and residual layers(He et al., 2016), and adding1586

explicit T-bar prediction as an additional network output. We found this multi-task learning (adding1587

explicit T-bar prediction to PSD prediction and partner direction prediction) to be beneficial, similar1588

to the use of cleft prediction in (Buhmann et al., 2019), most likely due to the T-bar pedestals being1589

a more reliable and prominent signal in our hemibrain preparation/staining than the PSDs. We1590

refer to this network and its resulting synapse predictions as ‘synful+’.1591

Figure 28 shows the overall end-to-end precision-recall plots for each of the classifiers. As1592

mentioned in the main text, we combined the predictions from the cascade and synful+ classifiers1593

to yield a ‘hybrid’ classifier that achieved both better recall and precision than the two individual1594

classifiers. Specifically, we modified the cascade predictions by 1) adding any PSDs that were1595

predicted with strong confidence by synful+ and attached to existing T-bars, and 2) removing any1596
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Figure 28. Precision-recall plot of end-to-end synapse prediction. The purple intercept indicates estimated
manual agreement rate of 0.8.

PSDs that were predicted with weak confidence by the cascade classifier and not predicted by1597

synful+ even at a very low confidence threshold.1598

Pathway Analysis1599

Given two independent sets of synapse predictions (cascade and synful+), we further conduct1600

an analysis of their respective connectivity graphs. We construct connectomes from each set of1601

synapse predictions, limited to the 21,000+ traced bodies. At the level of individual synapses, the1602

two sets of predictions have an agreement rate of about 80%.1603

However, we can look at connections of a given strength in one set of predictions, and see1604

whether the other set of predictions gives a corresponding connection of any strength. For instance,1605

among bodies that are connected with at least 5 synapses in the cascade predictions, less than1606

1% have no connection in the synful+ predictions, and similarly, among bodies that are connected1607

with at least 5 synapses in the synful+ predictions, less than 2% have no connection in the cascade1608

predictions. This suggests some level of stability in edges with a stronger connection, so that using1609

a different classifier would be still likely to maintain that edge.1610

We also further manually assessed the small percentage of outlier edges. We sampled 1001611

synapses from the strongest of the edges in the cascade predictions that are not present in the1612

synful+ predictions, and similarly 100 synapses from the synful+ predictions. For the cascade1613

predictions, we find an overall accuracy of 64%, lower than the general accuracy of the cascade1614

predictor, but we did not observe a pathway in which all sampled synapses were false positives.1615

For the synful+ predictions, we found that all sampled synapses were false positives, resulting from1616

improper placement of the T-bar annotation, thereby assinging the T-bar to an incorrect body. This1617

suggests another use for such pathway analysis, in potentially discovering particular error modes1618

of a classifier and allowing for re-training/refining to address such errors.1619

As a related measure of connectome stability, we also looked at how often the magnitude of the1620

pathway connections were comparable. For instance, we can examine connections consisting of at1621

least 10 synapses in one prediction set, and see how often those connections are within a factor of1622
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2 in the other prediction set. We find that this holds for 93% of the connections of strength greater1623

than 10. Figure 29 shows a plot comparing pathway connection strength between the two sets of1624

predictions.

Figure 29. Comparison of synful+ connection strength versus cascade connection strength (truncated at a
connection strength of 500 for clarity, omitting 40 edges from each prediction set).

1625

Logistics and Management1626

The hemibrain reconstruction required a large-scale effort involving several research labs, Janelia1627

shared services, about ten staff scientists, and about 60 proofreaders. The overall initiative planning,1628

including the choice of biological regions to image and reconstruct, timeline, and budget, was1629

orchestrated by the FlyEM project team at the Janelia Research Campus with a guiding steering1630

committee composed of several experts within the institute. The Connectomics Group at Google1631

Research collaborated extensively with FlyEM developing key technology to segment the hemibrain1632

volume.1633

Extensive orchestration by project staff and Janelia shared services was required to manage1634

the team of proofreaders and the reconstruction effort. Our proofreading team consisted of1635

full-time technicians hired specifically for proofreading. To satisfy the ambitious reconstruction1636

goals of the hemibrain effort, we hired close to 30 people in a few months to augment the existing1637

proofreading resources, requiring a streamlined system of recruitment and training. We found that1638

the average proofreader required around 2 months of training to become reasonably proficient in1639

EM tracing, which entailed working on carefully designed training modules and iterative feedback1640

with more experienced proofreaders or managers. Ongoing training was necessary for both new1641

and experienced proofreaders to meet the needs of different reconstruction tasks. The team1642

of proofreaders had frequent meetings, and a Slack channel, with the software staff to improve1643

proofreading software. We found that for a project of this size, several additional software personnel1644

were required for data management, monitoring, orchestrating, and streamlining proofreading1645

assignments.1646

The hemibrain reconstruction involved several different reconstruction steps or workflows,1647

many discussed in the paper. The primary workflows were cleaving, false split review, focused1648
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proofreading, and orphan linking. Cleaving is the task of splitting a falsely merged segment. False1649

split review entails examining a neuron, using 3D morphology, for potential false splits. Focused1650

proofreading is a “merge” or “don’t merge” protocol based on automated suggestions from the1651

segmentation algorithm. Orphan linking is fixing small detached segments that should either be1652

annotated as exiting the hemibrain dataset, or be merged to a larger, already proofread body.1653

Overall we estimate that we undertook ≈ 50-100 proofreading years of reconstruction effort.1654
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