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Abstract
Horizontal gene transfer mediated by integrative and conjugative elements (ICE) is considered an important evolutionary
mechanism of bacteria. It allows organisms to quickly evolve new phenotypic properties including antimicrobial
resistance (AMR) and virulence. The rate of ICE-mediated cargo gene exchange has not yet been comprehensively
studied within and between bacterial taxa. In this paper we report a big data analysis of ICE and associated cargo genes
across over 200,000 bacterial genomes representing 1,345 genera. Our results reveal that half of bacterial genomes
contain one or more known ICE features ("ICE genomes"), and that the associated genetic cargo may play an important
role in the spread of AMR genes within and between bacterial genera. We identify 43 AMR genes that appear only in ICE
genomes and never in non-ICE genomes. A further set of 95 AMR genes are found >5x more often in ICE versus non-ICE
genomes. In contrast, only 29 AMR genes are observed more frequently (at least 5:1) in non-ICE genomes compared to
ICE genomes. Analysis of NCBI antibiotic susceptibility assay data reveals that ICE genomes are also over-represented
amongst phenotypically resistant isolates, suggesting that ICE processes are critical for both genotypic and phenotypic
AMR. These results, as well as the underlying big data resource, are important foundational tools for understanding
bacterial evolution, particularly in relation to important bacterial phenotypes such as AMR.
Key words: Integrative and Conjugative Elements; Horizontal Gene Transfer; Antimicrobial Resistance; Multi-drug Resis-
tance

Introduction

Several mechanisms of horizontal gene transfer (HGT) allow
bacteria to exchange genetic code. One of these mechanisms,
termed conjugation, occurs when bacterial cells form direct
physical contacts that allow for passage of genetic material
from one bacterium to another. The machinery required to
form these contacts and initiate genetic exchange is often
contained within integrative and conjugative elements (ICE)
[1, 2, 3, 4, 5, 6, 7]. ICE are modular mobile genetic elements

that integrate into host genomes; are propagated via cellular
replication; and can be induced to excise from the host genome
in order to initiate the process of conjugation. The conditions
that induce excision and conjugation are not fully elucidated,
but DNA damage and subsequent SOS response seem to be an
important trigger [8, 9].

Genes exchanged between bacteria during ICE-mediated
transfer include functional domains associated with ICE ma-
chinery (e.g. excisionases, integrases, conjugative transport
proteins, etc...) as well as intervening ’accessory’ sequences
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Key Points

• ICE genes are found in roughly 50% of bacterial genomes.
• The distribution of ICE features across genomes is variable, depending on the ICE feature.
• Most AMR genes are over-represented within genomes that also contain ICE features, compared to genomes that do not

contain ICE features.
• Phenotypic resistance to antimicrobial drugs is much more common for isolates that contain ICE within their genomes,

compared to isolates that do not.

that encode a variety of cargo genes [6]. By pairing ICE ma-
chinery with an array of diverse cargo genes, bacterial com-
munities can significantly expand their genetic repertoire, in-
cluding between bacteria of diverse taxonomy [6, 10, 11, 12].
Functions commonly associated with ICE cargo include antimi-
crobial resistance (AMR) and virulence [3, 5, 6, 10], both of
which represent risks to human and animal health if trans-
ferred into pathogens. Therefore, understanding the micro-
bial ecology of ICE and cargo genes (i.e., their distribution
and behavior across bacterial taxa) is important in assessing
the human health risk posed by various bacterial communities.
For example, how often do different bacterial taxa carry ICE
and AMR genes; what resistance phenotypes are commonly
associated with ICE machinery; how often do different com-
mensal bacterial taxa use ICE to exchange various cargo genes
with pathogens; and what conditions foster ICE-mediated ex-
change of specific cargo genes between pathogens and non-
pathogens? These questions are fundamental to understand-
ing how bacterial communities respond to external stimuli, and
how these responses increase the overall risk posed by micro-
bial communities of varying composition [13, 14]. Understand-
ing these dynamics, in turn, allows us to better understand
how human practices may increase "risky" microbial behav-
iors (such as ICE-mediated exchange), and thus predispose to
higher-risk microbial communities. For example, we can start
to predict how antimicrobial use practices impact the likelihood
of pathogens obtaining AMR genes from the commensal micro-
biome via ICE transfer.

These microbial ecological questions are becoming increas-
ingly tractable as more and more whole genome sequence
(WGS) data are generated. As an example, the analysis of
HGT-associated genes from just 336 genomes across 16 phyla
was sufficient to significantly improve bacterial phylogenies as
compared to those obtained from conserved marker genes [15].
An analysis of 1,000 genomes demonstrated that ICE machinery
is ubiquitous across diverse prokaryotes, and likely one of the
most common mechanisms of bacterial evolution [11]. Today,
public datasets contain orders of magnitude more WGS data.
However, despite the importance of HGT in bacterial evolution
and pathogenicity, there has not yet been a comprehensive,
systematic survey of the frequency of ICE and cargo protein
sequences within or between bacterial genera. The objective
of this work was to describe intra- and inter-genus ICE-cargo
dynamics using the comprehensive set of WGS data and ICE
sequences currently available.

Using both sequence- and annotation-based queries of a
relational database developed from the National Center for
Biotechnology Information (NCBI), we report a large-scale
computational analysis of ICE and associated cargo proteins
across 186,887 non-redundant bacterial genomes represent-
ing over 1,300 genera. Using 36 ICE features (Table 1) repre-
senting different families of ICE (i.e., specific proteins or pro-
tein families from UniProtKB and the ICE literature), we iden-
tify 95,781 genomes that contain at least one ICE feature. We
term these "ICE genomes", and note that they represent 631

of the 1,345 analyzed genera (47%). In a detailed analysis of
potential ICE-mediated exchange within and between genera
based on exact-match sequence similarity, we find that the ICE
genomes contain 28,042 distinct ICE proteins and 11,276,651
corresponding cargo proteins (out of 51,362,178 total unique
protein sequences in the source database). The full set of cargo
genes map to 20,550 distinct gene names (excluding ’putative
protein’ or ’hypothetical protein’), with a wide range of ICE-
mediated transfer frequencies within and between genera.

To gain insight into ICE cargo genes, we perform a statis-
tical comparison of all genes annotated with names associated
with AMR. By comparing the frequency with which these genes
appear in ICE genomes versus non-ICE genomes, we find that
out of 286 AMR gene names, 220 are found more often in ICE
genomes and 63 are found more often in non-ICE genomes
(and 3 with equal probability). Furthermore, we find that rare
or less frequently observed AMR genes are more likely to be as-
sociated with ICE genomes, while common or abundant genes
are less likely to be associated with ICE genomes. In an in-
dependent analysis of phenotypic antibiotic susceptibility data
contained in NCBI BioSample data, we evaluate all public as-
say data for ICE and non-ICE genomes. Considering all an-
tibiotic drug compounds with more than 60 phenotypic resis-
tant measurements, the data show that resistance occurs in
ICE genomes with probability >80% regardless of compound. By
comparison, in a random process, the probability would be
expected to be closer to 50% based on the prevalence of ICE
genomes.

These results advance our understanding of the complex
microbial ecological dynamics arising from ICE-mediated ex-
change, and represent a significant "big data" resource for
scientists working on microbiome research and pan-microbial
evolution. As such, our results have wide-reaching impact,
spanning from theoretical underpinnings of microbial behav-
ior to infectious disease and food safety.

Data Description

NCBI Sequence Data

NCBI maintains a large, public domain repository of raw WGS
data [16]. As described in Genome Curation and Selection, we
retained 186,887 (non-redundant) public genomes, which in-
cluded raw Illumina paired-end bacterial sequence data from
the Sequence Read Archive (SRA) [16], and high quality assem-
bled genomes maintained in the RefSeq Complete genome col-
lection [17], genbank, and NCBI’s pathogen tracker. A detailed
description of the genome curation, assembly, and annotation
pipelines may be found in methods, the online supplement, and
in a recent paper by Seabolt et al. [18]. This selection provided
us with genomes representing 1,345 genera of bacteria. Acces-
sion identifiers for all of these data sets are available in the
supplement. In order to obtain evidence for candidate cargo
proteins (i.e., proteins that had potentially been transferred
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between bacteria via ICE-mediated HGT), it was necessary to
first identify genomes containing known ICE proteins. We fur-
ther restricted this set by considering only sets of genomes
that shared particular ICE proteins with identical amino acid
sequence (hereafter referred to as ICE genomes). For those spe-
cific genomes sharing identical ICE proteins we then searched
for other proteins (with sequence identity). These are then la-
beled possible cargo.

This calculation is of order O(N2), but is straightforward to
compute on any large cluster or cloud infrastructure. However,
due to the high compute cost, we chose to first put the re-
quired intermediate artifacts into a relational database we call
OMXWare [18]. With an appropriate schema, the database links
each genome to all of its relevant unique proteins, domains,
and functional annotations, as described in Genome Assembly
and Annotation. Analysis of ICE genomes and candidate cargo
proteins then simply becomes a set of database queries. This
process not only reduces final storage requirements (since the
unique gene and protein tables are non-redundant), but also
makes the large-scale computation and database reusable for
future biological studies.

NCBI Antibiotic Susceptibility Testing BioSample Data

To analyze associations between phenotypic AMR and ICE, we
retrieved metadata for each NCBI accession that contained an-
timicrobial susceptibility testing (AST) data. Retrieved meta-
data included genomic accession number for each isolate, as
well as the antibiotic compound against which it was tested,
the test type and the phenotypic outcome (resistant, suscepti-
ble, or intermediate). We considered only those isolates with
a "resistant" phenotypic outcome to be resistant. By linking
the BioSample accession with the SRA accessions in OMXWare,
we were able to identify genomes for which corresponding AST
data are available. These genomes were used in our analysis of
phenotyic AMR and ICE.

Analysis

Determination of ICE genomes, ICE proteins, and those pro-
teins with the greatest supporting evidence as possible cargo
proteins is described in detail in Methods. To test the identi-
fication of ICE and cargo proteins we use the annotated locus
to ensure that the ICE protein features occur within regions
of putative cargo (and not surrounded by other chromosomal
genes). Figure 1 shows that the vast majority of putative cargo
proteins are adjacent within contigs, and that the contigs con-
taining the ICE features themselves are more likely to be prox-
imate to putative cargo proteins (black regions) vs non-cargo
proteins (grey regions). We note that each genome in the figure
is actually a linear representation of the contigs assembled by
SPAdes, in the order in which they were annotated by Prokka.
Due to inherent genome characteristics and the nature of short-
read sequence data, SPAdes (and other de novo genomic assem-
blers) can not always establish the assembly order for all con-
tigs. Therefore, when contigs containing no cargo proteins are
interspersed with cargo-containing contigs, we can not defini-
tively determine whether this is due to fragmented assemblies
or biology. Such interspersion shows up as noise within the
(black) regions of likely cargo proteins; this is best observed
by viewing the heatmap in full screen. We emphasize that the
noise is not evidence for or against chromosomal rearrange-
ment after ICE exchange, but rather could be artifact of the
contig-centric annotation process.

Figure 1 is intended to test if the observed ICE features (Ta-
ble 1) co-occur proximate to regions of cargo proteins (shown
in black). The figure shows the relative position of cargo and
ICE proteins within assembled contigs. Each row in the figure
represents a genome, with ICE proteins shown in color based
on Table 1, cargo proteins in black, and other sections of the
genome in grey. Each genome’s data are rotated (bit shifted)
left so as to center the first ICE protein, which appears as a col-
ored, vertically-aligned pixel. For genomes containing more
than one ICE protein, additional ICE proteins appear as indi-
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Table 1. Table of ICE features included in this study. The first column indicates the pixel color representing ICE features observed in Figure1. The genome count represents the number of genomes that contain the corresponding ICE feature.
pixel genome
color code count Brief Description with Citation

ICE6013 93267 Includes IS30-like DDE transposase. more closely related to ICEBs1 than Tn5801[19]
Tn916 59718 TetM and other resistance genes[20]
IPR025955 49841 Type-IV secretion system protein TraC/Conjugative transfer ATPase[21]
ICEEc2 49543 set of three genes encoding DNA mobility enzymes and type IV pilus[22]
IPR005094 42760 Endonuclease relaxase, MobA, VirD2[21]
ICEhin1056 42252 Antibiotic resistance island[23]
IPR011119 28752 Unchar. domain, putative helicase, relaxase[21]
IPR014862 26295 TrwC relaxase[21]
IPR014059 23368 Conjugative relaxase, N-terminal[21]
PAPI-1 22855 Pathogenicity island PAPI-1 of strain PA14. 115 gene cluster includes virulence phenotypes[24]
pKLC102 22460 Hybrid of plasmid and phage origin includes replication, partitioning, conjugation, pili, & inte-

grase genes[25]
IPR021300 22284 Integrating conjugative element protein, PFL4695 [21]
IPR022391 21465 Integrating conjugative element relaxase, PFGI-1 class [21]
IPR022303 19664 Conjugative transfer ATPase[21]
ICEPdaSpa1 19424 An SXT-related ICE derived; causative agent of fish pasteurellosis[26]
IPR014129 18029 Conjugative transfer relaxase protein TraI[21]
SXT 17525 Family of conjugative-transposon-like mobile elements encoding multiple AR genes[27, 28]
ICEEc1 10170 High-pathogenicity island (HPI); evidence for Combinatorial Transfers[29]
R391 9916 Archetype of IncJ; carries AR, DNA repair, & mercury resistance genes[30]
ICEKp1 9117 Resembles functional ICEEc1[29]
ICESde3396 9088 Carries genes predicted to be involved in virulence and resistance to various metals[31]
ICEBs1 8504 Plasmid mobilization and putative coupling protein[32]
RD2 8370 Encodes seven putative secreted extracellular proteins[33]
IPR011952 2640 Conserved hypothetical protein CHP02256[21]
IPR014136 2050 Ti-type conjugative transfer relaxase TraA[21]
TnGBS2 1630 See ICE6013[34]
CTnBST 1520 Tyrosine recombinase family[35]
ICEclc 1465 Cargo for ortho-cleavage of chlorocatechols & aminophenol metabolism (amr genes)[36]
GI3 1340 Degradation of aromatic compounds and detoxification of heavy metals[37]
Tn1549 648 VanB-type resistance to glycopeptides with regions[38]
CTn341 389 Encodes tetracycline resistance and its transfer is induced by tetracycline[39]
IPR020369 119 Mobilisation protein B[21]

(i) excision-integration process;[38]
Tn4555 79 Includes cfxA gene encoding broad-spectrum beta-lactamase[40]
ICESt1 26 Integrative and putative transfer functions[41, 42]
ICEMISymR7A 16 Rhizobial symbiosis genes [43]
ICESt3 14 Integrative and putative transfer functions[42]

(ii) vanB2 operon replaces tet(M)[38]
(iii) Conjugative transfer[38]

Tn4371 0 Biphenyl and 4-chlorobiphenyl degradation[44]

vidual scattered colored pixels to the right of the central line.
In the supplement we provide a similar figure for each ICE pro-
tein class listed in table 1.

From Figure 1, it is also evident that individual genomes
may contain more than one ICE protein, and that these pro-
teins may in turn represent more than one ICE feature (Table
1). Figure 2 plots the number of ICE features per genome (a),
and the number of ICE proteins per genome (b) as a function of
the number of genomes on a logarithmic scale. Note that the
genome order in (a) and (b) is different and selected to sort the
feature counts from greatest to least in each case.

A priori, one might reasonably expect the number of ob-
served ICE genomes to scale with the number of genomes
available for each genus. However, genus representation in
NCBI is not uniform across genera, leading to bias in available
genomes per genus. To correct for this imbalance, we com-
puted the ICE genome frequency by normalizing the number
of observed ICE genomes to the number of genomes per genus.
Table 2 lists all genera with over 100 representative genomes
in OMXWare, ordered by the proportion of ICE genomes in the
genus. The genera with the largest fraction of ICE genomes

are not the genera with the most genomes in NCBI. For exam-
ple, although Salmonella has by far the greatest number of high
quality genomes (N=39,574), it ranks fifth in terms of the pro-
portion of genomes that contain an ICE protein. The top 30 gen-
era listed in Table 2 all have an ICE genome frequency greater
than 20%, with genomes from the genus Legionella containing
ICE proteins over 99% of the time. This high percentage may
be due to sampling bias in the available NCBI WGS datasets (for
example, the Legionella pneumophila WGS accessions appear to
have been collected from a single site), or it may represent the
propensity for ICE-mediated processes to occur within individ-
ual genera.
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Table 2. Frequency of ICE genomes, by genus. The table lists all genera with over 100 representative genomes ordered by the frequency ofICE genomes in the genus. The green line separates ICE frequency above or below 50%.
Genus ICE Total ICE Genome Genus ICE Total ICE Genome

Genomes Genomes Frequency Genomes Genomes Frequency
Legionella 1672 1686 0.99 Bifidobacterium 137 403 0.34
Shigella 5423 5541 0.98 Moraxella 65 192 0.34
Klebsiella 4682 5304 0.88 Bacillus 471 1471 0.32
Elizabethkingia 102 119 0.86 Campylobacter 5340 19501 0.27
Escherichia 8140 9957 0.82 Aeromonas 80 312 0.26
Stenotrophomonas 441 563 0.78 Brucella 230 970 0.24
Enterobacter 894 1210 0.74 Mesorhizobium 89 385 0.23
Vibrio 2902 4017 0.72 Helicobacter 118 529 0.22
Acinetobacter 2621 3770 0.70 Streptomyces 74 333 0.22
Pseudomonas 3222 4750 0.68 Corynebacterium 133 639 0.21
Enterococcus 1003 1516 0.66 Neisseria 153 781 0.20
Citrobacter 131 203 0.65 Burkholderia 341 2053 0.17
Salmonella 24123 38808 0.62 Haemophilus 65 403 0.16
Clostridioides 1329 2183 0.61 Lactobacillus 144 962 0.15
Streptococcus 8244 13766 0.60 Listeria 848 7716 0.11
Xanthomonas 201 357 0.56 Clostridium 40 454 0.09
Staphylococcus 18034 32661 0.55 Mycobacterium 1120 13129 0.09
Rhizobium 110 202 0.54 Cutibacterium 10 118 0.08

Bordetella 60 733 0.08
Yersinia 215 437 0.49 Chlamydia 33 496 0.07
Lactococcus 57 117 0.49 Bartonella 3 124 0.02
Serratia 230 619 0.37 Mycoplasma 2 251 0.01
Sinorhizobium 44 121 0.36 Francisella 0 120 0.00

Figure 1. Heat map showing the relative position of ICE features and putative
cargo proteins within contigs for the 2,000 genomes with the greatest number
of cargo proteins. ICE features are represented as color pixels based on the
colors shown in Table 1. Cargo proteins are shown in black and other chromo-
somal DNA in grey. Each genome is bit shifted to the left until the first ICE
feature is centered in the figure. Most genomes contained more than one ICE
protein (see text).
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Figure 2. Individual genomes typically contain more than one ICE feature (Ta-
ble 1, and often contain more than one protein per feature. Figure 2 (a) shows
the number of ICE features per genome, and Figure 2 (b) shows the number of
ICE proteins per genome for all 106,433 genomes containing at least one ICE
feature. For both panels, the genome order is sorted by number of features
(largest to smallest).
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Figure 3. Force-directed graph showing the frequency of ICE and cargo proteins shared within and between genera. See: large format animation in supplement
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In order to minimize false positive identification of ICE and
potential cargo proteins, we applied a strict rule that ICE pro-
teins must be seen with identical amino acid sequence in two
or more genomes, and that cargo proteins must be seen in two
or more ICE genomes with exact amino acid sequence identity.
The strict sequence identity rule likely decreases the sensitivity
to detect ICE-mediated transfer events, as genomes continue
to evolve after HGT events, including possible chromosomal re-
arrangement [45]. However, if ICE-mediated HGT occurs fre-
quently enough, and if our reference database is large enough
that we can rely on the "law of large numbers" [46], then the
set of all genomes should contain some pairs of genomes that
have not yet evolved so far as to obscure the cargo proteins.
Figure 1 is a test of this hypothesis, and provides evidence that
cargo proteins identified by the strict selection process exist in
genomic proximity to each other and to the ICE proteins that
likely transferred them. This rule is also required to visualize
the transfer of ICE and cargo proteins within and between gen-
era, as in Figure 3. In this force-directed graph visualization,
each node is a genus and edges represent inter-genus trans-
fer. Edges can be filtered based on various criteria, including
type of ICE involved in the transfer; number of ICE proteins;
distinct cargo proteins (by sequence); and the number of AMR
cargo proteins by sequence. By definition, edges in Figure 3 re-
quire sequence identity at each node, i.e., genus. Edge weights
represent either (1) the number of ICE proteins shared between
the genera, (2) the number of distinct proteins shared between
the genera, or (3) the number of AMR proteins shared between
the genera – depending on filtering criteria used. The size of
nodes in Figure 3 represents the fraction of genomes within
that genus identified as ICE genomes. Full data are available
in tabular form and the visualization is available in the supple-
ment.

Figure 4. 2-d Histogram showing the probability that AMR proteins (by name)
are found in ICE Genomes (x-axis) and the fraction of AMR protein sequences
(by name) observed on plasmids (y-axis). Independent of ICE probability, 5-
10% of AMR sequences have been observed on plasmids. The majority of AMR
proteins are found on ICE genomes.

A subset of the observed cargo protein names are associated
with a set of confirmed antimicrobial resistance (AMR) protein
names. We identified this subset by selecting only those names
that Prokka assigned to sequences mapping to a name defined

in MEGARes v1.0 [47]. The entity relations in our database
ensure a 1::1 mapping between gene and protein names and
their respective sequences. Of the 3,824 distinct sequences con-
tained in MEGARes, Prokka identified 3,674 of them as valid se-
quences coding for protein. These 3,674 distinct proteins were
assigned 286 distinct names, excluding ’putative protein’ and
’hypothetical protein’. While this highly curated set is certainly
not a comprehensive list of all proteins contributing to AMR, it
is a useful initial set to estimate the fraction of AMR proteins
within the larger set of ICE and cargo proteins.

We analyzed this set of AMR proteins in an attempt to es-
timate or bound the number of possible false classifications
of cargo proteins that are specifically related to ICE-mediated
HGT. This was necessary because some genomic features are
shared between ICE and plasmids, an indeed some of the Inter-
ProScan codes that define ICE features may also contain ma-
chinery required for the formation or integration of plasmids.
Accordingly, Figure 4 shows a 2-d histogram of AMR protein
sequences (by AMR name). Along the x-axis, the histogram
represents the frequency with which AMR protein sequences
are found on ICE vs non-ICE genomes. Along the y-axis, the
histogram represents the fraction of the protein sequences (by
AMR name) that have been observed on plasmids. Note the
full scale on the y-axis. The maximal frequency of sequence
observation on a plasmid is ~10%, and this provides an upper
bound to possible false positive identification as ICE-related
cargo. In fact, observation of a sequence required for plasmid
formation on a plasmid does not rule out observation of the
same sequence on ICE, and vice versa.

To analyze the distribution of AMR proteins across genomes,
we calculated the probability that each AMR gene name was
identified in ICE versus non-ICE genomes, (Table 3. From
the complete list of 286 AMR protein names (see supplement),
220 are found more often in ICE genomes, 3 are found in
ICE and non-ICE genomes with equal probability, and 63 are
found more often in non-ICE genomes. Given that the ratio
of ICE:non-ICE genomes in our database is 51%, this suggests
that AMR genes are disproportionately represented within ICE
genomes.

The analysis above does not distinguish between different
ICE features, and treats AMR proteins as independent features.
However, the data in Figure 1 demonstrate that many of the
ICE features defined in Table 1 often co-occur in the same
genome, as do some of the AMR proteins. To gain insight
into these correlations, and to identify groups of AMR proteins
associated with different ICE families, we show in Figure 5 a
co-occurrence matrix across all ICE features for the 43 AMR
proteins with an ICE:non-ICE genome frequency of >5x. This
figure demonstrates that some ICE features co-occur within
genomes frequently with both other ICE features as well as
multiple AMR protein names. For example, IPR005094 appears
to co-occur with the widest diversity of AMR protein names.
Many co-occurrence patterns in Figure 5 reflect known biolog-
ical associations. For example, the Tn916 ICE feature co-occurs
most frequently with tetracycline ribosomal protection protein
TetM, a genomic association discovered over three decades ago
[48]. While TetM seems to co-occur with a few select ICE
features (such as Tn916), other AMR protein names seem to
co-occur with many ICE features. For example, many of the
AMR names associated with extended-spectrum beta-lactam
and carbapenem resistance co-occur with the majority of eval-
uated ICE features (e.g., beta-lactamases Toho-1, OXA-1, OXa-
2, OXA-10, SHV-2, and KPC), which may provide partial ex-
planation for the observed rapid expansion of these important
AMR proteins within Enterobacteriaceae [49]. Similarly, the re-
cently widely-publicized mcr-1 protein seems to co-occur with
multiple ICE features, which both strengthens and expands
upon recent findings that this AMR gene has been mobilized
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Table 3. Probability of observing AMR names in ICE vs non-ICE genomes. Only those AMR names that appear in more than 100 genomesare considered. The table shows those AMR names that occur with ICE genome probability ≥ 0.98 (above line) and ≤ 0.15 (below line). Thefull data is available in the online supplement.

.

AMR Total ICE non-ICE ICE
Protein Genome Genome Genome Genome
Name Count Count Count Prob
Rob DNA-binding transcriptional activator 4559 4559 0 1.00
Transposon Tn10 TetD protein 4559 4559 0 1.00
Tetracycline resistance ribosomal protection protein Tet(M) 304 304 0 1.00
Outer membrane protein YedS 288 288 0 1.00
Regulator of RpoS 288 288 0 1.00
Tetracycline resistance protein TetM 137 137 0 1.00
Beta-lactamase Toho-1 319 318 1 1.00
AcrAD-TolC multidrug efflux transport system - permease subunit 1584 1576 8 0.99
Multidrug efflux pump subunit AcrB 1584 1576 8 0.99
DNA topoisomerase subunit A 1091 1085 6 0.99
MATE family multidrug efflux pump protein 1607 1596 11 0.99
Carbapenem-hydrolyzing beta-lactamase KPC 1914 1899 15 0.99
Beta-lactamase OXA-1 1188 1175 13 0.99
Inner membrane protein HsrA 350 346 4 0.99
Putative transport protein YdhC 342 338 4 0.99
Aclacinomycin methylesterase RdmC 419 414 5 0.99
Beta-lactamase OXA-2 199 196 3 0.98
Chloramphenicol efflux MFS transporter CmlA1 795 783 12 0.98
Beta-lactamase OXA-10 521 513 8 0.98
16S rRNA (guanine(1405)-N(7))-methyltransferase 994 978 16 0.98
Ribosomal RNA large subunit methyltransferase H 4087 3989 98 0.98
Multidrug resistance operon repressor 486 67 419 0.14
Outer membrane protein OprM 478 65 413 0.14
Methicillin-resistance regulatory protein MecR1 8344 1007 7337 0.12
Phosphoethanolamine–lipid A transferase MCR-1.1 8344 1007 7337 0.12
HTH-type transcriptional repressor BepR 467 55 412 0.12
Bifunctional polymyxin resistance protein ArnA 507 53 454 0.10
Methicillin resistance regulatory protein MecI 6583 395 6188 0.06
Metallothiol transferase FosB 6584 395 6189 0.06
Multidrug efflux transporter MdtL 419 9 410 0.02
Multidrug efflux pump subunit AcrA 420 7 413 0.02
HTH-type transcriptional regulator SyrM 1 414 3 411 0.01
Multidrug efflux RND transporter permease subunit OqxB3 358 2 356 0.01
Aminoglycoside 2’-N-acetyltransferase 9723 5 9718 0.00
DNA-binding response regulator MtrA 9854 2 9852 0.00
Putative acetyltransferase 5232 1 5231 0.00
Quinolone resistance protein NorB 213 0 213 0.00

on numerous plasmid types [50]. Co-occurrence data such as
those provided in Figure 5 may represent a new and sustainable
(i.e., easily updated) source of information regarding the po-
tential for new and emerging AMR genes to expand within and
across bacterial populations. This information, in turn, could
help to prioritize and focus public health and human clinical
decision-making regarding AMR.

Conversely, in Figure 6 we display a co-occurrence matrix
for all 29 AMR proteins observed in non-ICE genomes with a
frequency greater than 5x the frequency of observation in ICE
genomes. Of note is the observation that no beta-lactam AMR
protein names occur in this list of 29 AMR names; this con-
trasts starkly to the preponderance of beta-lactam-associated
AMR names in Figure 5, again suggesting that beta-lactam
resistance is tightly coupled with ICE machinery, and that
ICE-mediated exchange is the primary evolutionary driver of
beta-lactam resistance. By comparison, several mechanisms
of multi-drug resistance (MDR) are contained within the list of
29 AMR proteins observed more frequently in non-ICE versus
ICE genomes, i.e., AcrB, AcrE, OqxB7, mdtA, mdtE, mdtH, and
MexB. These mechanisms of MDR tend to be multi-purpose,
i.e., the proteins confer multiple functional benefits to bacte-
ria, in addition to AMR. Together, the results of Figures 5 and 6
suggest that proteins with more specific AMR functions tend to
be disproportionately represented amongst ICE genomes, while

more generalist proteins tend to be disproportionately repre-
sented within non-ICE genomes. One hypothesis for this ob-
servation is that the fitness cost-benefit dynamics differ for
generalist versus specialist genes, such that specialized genes
are more likely to transiently yet rapidly spread within bacte-
rial populations via the so-called ’accessory genome’ (which
includes ICE-mediated exchange), whereas generalist genes
are more likely to be maintained permanently within bacte-
rial genomes, and thus are less likely to be identified as ICE-
associated cargo.

Given our hypothesis that ICE-mediated spread of special-
ized AMR genes may be promoted by more specific evolution-
ary pressure such as antimicrobial drug exposures, we hy-
pothesized that this signature of selective pressure may also
manifest in the phenotypic properties of ICE versus non-ICE
genomes. To evaluate this, we queried the NCBI BioSample as-
say metadata in our relational database (described in Methods),
to identify isolates that had been tested for phenotypic antibi-
otic susceptibility (AST) to known antibiotic compounds. For
the 186,887 highest quality genomes, the NCBI assay metadata
contained 15,286 phenotypically-confirmed resistant genome-
compound tests, representing 13,076 tests for ICE genomes and
2,210 tests for non-ICE genomes. Altogether, 1,242 genomes
were used in these tests, of which 1,023 were ICE genomes
and 219 were non-ICE genomes. For each antibiotic compound
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Figure 5. Co-occurrence of AMR proteins (by name) with ICE features, for the 138 AMR proteins that are observed in ICE genomes with a frequency greater than
5x the frequency of observation in non-ICE genomes. Of these proteins, 43 are only observed in ICE genomes.

listed, we computed the number of phenotypically resistant iso-
lates with ICE- vs non-ICE-containing genomes.

In Table 4 we list the probability of observing phenotypic re-
sistance from ICE genomes, for all antibiotic compounds with
more than 100 assays in the NCBI BioSample data. The full list
is available in the supplement. The data reveal that phenotypic
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Figure 6. Co-occurrence of AMR proteins (by name) with ICE features for the 29 AMR proteins observed in non-ICE genomes with a frequency at least 5x the
frequency of observation in ICE genomes

resistance occurs in ICE genomes with probability >80%, re-
gardless of compound. As with the disproportionate represen-
tation of AMR genes within ICE genomes, the phenotypic AMR
data again suggest that microbial AMR dynamics are driven
largely by ICE-mediated processes. However, it is also impor-
tant to note that NCBI phenotypic assay data is likely biased
due to the motivations for clinicians and researchers to submit
isolates for phenotypic testing. Therefore, to test for SRA sam-
pling bias with respect to these compounds, we also measured
the phenotypically-resistant fraction expected for randomly se-
lected genomes, based on the number of genomes tested per
compound in table 4 and the actual number of ICE and non-ICE
genomes across the entire database. This null hypothesis was
tested by running 100 bootstrapped trials for each compound.
The results are listed in table 4. The average ICE probability
for all compounds listed in table 4, weighted by total genomes
tested per compound, is 0.85 ± .05 independent of antibiotic com-
pound. In a random process, the probability would be expected
to be near 51% given the fraction of all genomes with ICE fea-
tures.

The specific proteins transferred between chromosomes are
known to vary by ICE feature. This is demonstrated in part by
the AMR proteins analyzed in Figures 5 and 6. It is possible
to classify these features in a general way considering all ICE
features used in this study. Figure Genome-IPR Co-occurrence
Map shows the co-occurrence of ICE proteins by genome, for
the 6000 genomes with the highest cargo protein fraction. To
this set, 500 genomes containing the largest number of rare ICE
features were added to ensure representation of those families
defined by a smaller collection of well-characterized proteins
from the literature (see Table 1. Figure 7 thus represents the co-
occurrence of ICE features within the selected set of genomes.
From the co-occurrence matrix, one can calculate a distance be-
tween all pairs of genomes using the Euclidean distance between
their representation as normalized ICE feature vectors. The
resulting genome-genome distance map, shown in Figure 8,
provides a hierarchical clustering of genomes based on the co-
occurrence of ICE features. In principle, one can use the same
vectorization procedure on genomic properties other than ICE
features, defining a different set of genomes of interest within
the mobilome, to (re)classify organisms not by name, but by
distance in a space of mobilization features. Note that only 1 in

75 genome labels (by genera) are shown along the y-axis given
the relatively large number of genomes included.

Discussion

The public availability of large scale genomic data makes it pos-
sible to apply cloud computing technology and big data tech-
niques to the study of important phenomena in molecular and
microbiology. Furthermore, putting all of this data in a re-
lational database with biologically structured entity relations
(i.e., linking genomes, genes, proteins, domains, and meta-
data) provides a powerful new way to ask biological questions
about the data. We leveraged this approach in the current study
of ICE and associated cargo proteins. Exchange of proteins by
conjugative processes, including ICE, is now understood to be
an essential mechanism by which bacteria acquire new pheno-
types, transmit molecular functions, and adapt to stress. Fur-
thermore, these events are critical for understanding bacterial
evolution and phylogeny [15, 11, 12]. Our work not only sheds
light on ICE-cargo protein transfers between and within gen-
era, but also demonstrates the power of a "big data" approach
for improving our understanding of bacterial evolutionary dy-
namics, particularly surrounding important phenotypes such
as AMR.

In our analysis we identified sets of proteins with the
strongest evidence as ICE and ICE cargo proteins. This was ac-
complished by selecting only those proteins that exhibited both
100% sequence identity and co-occurrence in pairs of genomes
containing identical ICE sequences. With this strict selection
process, the putative cargo proteins exhibited a high degree
of spatial correlation within assembled contigs (i.e., they were
highly adjacent to each other, as well as to the ICE protein itself).
Other proteins in these genomes may also have been trans-
ferred (or are transferable) by ICE, but they did not meet our
strict selection criteria. Considering only these candidate cargo
proteins, we were able to profile the frequency of ICE-mediated
protein exchange within and between genera.

Our results suggest that ICE-mediated exchange is not un-
common [12, 11]. ICE proteins are observable in 51% of bacte-
rial genomes and in 626 of 1,345 genera ( 47%). Rates of intra-
and inter-genus ICE-mediated exchange varied significantly
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Figure 7. The co-occurrence of ICE features by genome, for the 6000 genomes with the highest cargo protein fraction and 500 genomes containing rare ICE
features (see text). Co-occurrence of particular ICE features does vary with taxonomic group.

depending on the taxa involved, suggesting that taxonomy is
a significant "risk factor" for genetic exchange of, e.g., AMR
or pathogenicity proteins [51]. By quantifying this risk across
a large database of high-quality WGS data, we measured the
"exchange likelihood" between different taxa, and visualized
these frequencies as a force-directed graph (Figure 3). Our
analysis revealed distinct clusters of genera with high rates of
cross-genus ICE-mediated exchange. This suggests that the
likelihood of protein transfer varies substantially by genus pair,
and that the bacterial composition within a given environment
is an important consideration when attempting to evaluate mo-
bilization potential within a microbial community. In practical
terms, this means that analysis of the risk posed by the com-
mensal microbiome (i.e., as a potential reservoir of AMR) must
take into account the specific composition of differing micro-
biomes, including the presence of bacterial taxa that are more
likely to engage in genus-genus exchange with pathogens of
interest. In other words, there is no "one-size-fits-all" mobi-
lization metric [14]. While we have conducted this analysis for
ICE features, the analytic approach can be applied to any mo-
bile genetic element(s) and cargo protein(s) of interest. In this
way, our overall approach represents a method for obtaining a
long-range evolutionary view of transfer likelihood between di-

verse bacterial taxa, including pathogens and commensal bac-
teria [11]. These "baseline" exchange likelihoods are critical
parameters for risk analysis at the microbial community level
[13, 52].

Bacterial taxon is not the only significant driver of exchange
likelihood; we have also observed that putatively successful
transfer events are more likely to involve cargo proteins that
infer fitness advantage to the involved bacterial populations,
such as AMR. While any gene can, in principle, be transmit-
ted as a cargo gene in conjugative exchange, only a subset of
transferred proteins will increase the fitness of the receiving
organism. The likelihood of observing successful transfer de-
pends on a large number of factors including the environment,
the existing proteins in the recipient chromosome, the cargo
proteins themselves, and the survival probability of the organ-
ism [53].

ICE protein transfer that improves fitness may increase sur-
vival probability. Therefore, chromosomal arrangements that
group fitness-conferring cargo proteins near the ICE machinery
will be observed more frequently than those arrangements that
involve neutral or disadvantageous proteins. Conversely, very
common proteins that aid in stress response may be less likely
to be transferred as cargo, since the relative fitness advantage
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Figure 8. Genome-Genome distance based on Euclidean distance between vectors of ICE features for the 6500 genomes used in 7. One in 75 labels are rendered
on esch axis. The figure shows how different sets of genomes cluster based on different co-occurring ICE features (see text).

is diminished for proteins that are already likely to be present
within a bacterium. The particular stressor – as well as the
specific advantageous stress response proteins of interest – de-
pend on phenotype of interest. This view is exemplified by the
data in Table 3 which shows that rare AMR proteins are more
likely to be found as cargo in ICE versus non-ICE genomes.
Conversely, common AMR proteins are less likely to be found
in ICE genomes. One might hypothesize that, with chromoso-
mal rearrangement, nature effects a real world "Monte Carlo"
experiment to dynamically optimize cargo protein collections

- thereby spreading rare (but useful) proteins and gene combi-
nations over time.

The particular proteins transferred between chromosomes
is known to vary with the different features of ICE, as demon-
strated by the AMR proteins analyzed in Figures 5 and 6. Con-
sidering all ICE features used in this study, Figure 7 shows
the co-occurrence of ICE proteins by genome for the 6000
genomes with the highest cargo protein fraction. To this set,
500 genomes containing the largest number of rare ICE fea-
tures were added to ensure representation of those families de-
fined by a smaller collection of well characterized proteins from
the literature (see Table 1. Each row of this matrix corresponds
to one genome, labeled not by accession but by genus. These
results suggest that ICE dynamics are important in structur-

ing genomic content, and thus driving phylogenetic evolution.
Based on Figure 7, it seems that sometimes these evolution-
ary ICE dynamics overpower other taxonomic drivers, such that
genus-level genomes do not cluster together. To demonstrate
this ICE-driven phylogeny, we used the data in Figure 7 to gen-
erate Figure 8, which represents the distance between all pairs
of genomes based on Euclidean distance between their repre-
sentations as normalized ICE feature vectors. The resulting
hierarchical clustering shows that the dominant ICE features
include genomes across different genera and, conversely, that
individual genera include genomes representative of different
ICE features. This abrogation of genus-level taxonomy due to
ICE-related genomic content is an inevitable consequence of
the cross-genus transfers visualized in Figure 3 and the corre-
sponding Force-Directed graph of ICE transfer. Given the real-
ity of conjugative exchange, there is no reason to expect that
taxonomic classification by organism name will always predict
the composition of ICE cargo. However, by selecting genomes
based on a particular phenotype of interest, it is possible to
classify organisms and genome-genome distances based on a
feature space defined by ICE (or other mobilization) proteins.
Given the ubiquity and diversity of ICE and other types of con-
jugative exchange [11], these types of genome clustering tech-
niques may provide crucial information about bacterial evolu-
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Table 4. The role of ICE in phenotypic resistance for specific an-tibiotic compounds. The table lists the probability of observing re-sistance in ICE genomes. Only compounds with 100 or more non-redundant resistant genome measurements are listed. The tableshows that phenotypic AMR occurs in ICE genomes with probabil-ity >80% regardless of compound. The table also shows the numberof expected resistant ICE genomes based on a bootstrapped randomselection process with 100 trials (null hypothesis), using the num-ber of assays and the actual fraction of genomes with ICE features(~51%).
Total ICE Random ICE

Antibiotic Resistant Resistant Process Prob
Compound Genomes Genomes
doripenem 215 207 86 ± 7 0.96
cefepime 272 259 108 ± 8 0.95
ampicillin-
sulbactam 433 402 173 ± 10 0.93
imipenem 429 396 171 ± 11 0.92
piperacillin-
tazobactam 280 258 112 ± 9 0.92
meropenem 402 367 161 ± 11 0.91
trimethoprim-
sulfamethoxazole 868 775 348 ± 14 0.89
ertapenem 222 197 89 ± 8 0.89
levofloxacin 741 644 297 ± 14 0.87
gentamicin 813 706 325 ± 13 0.87
ciprofloxacin 915 794 367 ± 14 0.87
amoxicillin-
clavulanic acid 277 240 111 ± 8 0.87
ceftriaxone 984 849 394 ± 16 0.86
tetracycline 700 603 281 ± 12 0.86
ceftazidime 852 731 342 ± 14 0.86
cefotaxime 889 758 355 ± 15 0.85
tobramycin 674 574 270 ± 12 0.85
ampicillin 1042 852 418 ± 16 0.82
amikacin 383 313 154 ± 10 0.82
aztreonam 989 805 397 ± 15 0.81
cefazolin 1002 813 402 ± 16 0.81
cefoxitin 757 608 304 ± 15 0.8
nitrofurantoin 713 559 287 ± 12 0.78
cefotetan 124 95 49 ± 6 0.77

tion that is not contained within traditional phylogenies.
This approach may also be useful in exploring the role of

HGT in bacterial evolution as it related to AMR mechanisms
in particular. The environments in which bacteria live, the
stresses they encounter, and their genetic composition are all
dynamic. If the proteins required for successful response to a
commonly encountered environmental stress are themselves
common, then the fitness advantage gained by maintaining
those proteins as ICE cargo is diminished. If the environmental
stress is relatively new (e.g., a new antibiotic compound), and
the protein(s) required for survival against this antibiotic are
rare, then the right combination of proteins may significantly
increase the organism’s survival probability and, therefore, the
likelihood of transmitting (and of observing) those proteins as
ICE-associated cargo is also increased. Under this hypothesis,
the ICE process is an important mechanism for spreading new
or less common stress responses and resistance mechanisms;
but is relatively unimportant for maintaining the genetic mate-
rial required for stress response in common or oft-encountered
environments. Given that the widespread use of most antibi-
otic compounds is a relatively new phenomenon (at least in
evolutionary terms), this may explain why AMR genes that
are specific to antibiotic drug compounds are over-represented
within ICE genomes, while more generalist AMR mechanisms
are over-represented within non-ICE genomes. Furthermore,
this may explain why the resistance phenotype for all analyzed
antibiotic drugs was much more likely to be associated with iso-
lates containing ICE feature(s), compared to isolates not con-

taining ICE features.

Potential Implications

By using a big data approach on both genotypic and pheno-
typic NCBI data, we generate important insights into bacterial
population-level genetic exchange and evolution, and demon-
strate the importance of microbial composition in the likeli-
hood of ICE-mediated transfer events. Because our analysis is
based on over 166,000 curated and high-quality WGS datasets
from NCBI, it can serve as the basis for understanding differ-
ences in the ICE transfer likelihood of specific cargo genes be-
tween specific bacterial genera. These "baseline likelihoods"
are crucial to quantifying the likelihood of pathogens obtaining
genetic material (e.g., AMR genes) from commensal microbes
residing in the same environment. Furthermore, we demon-
strate that the importance of ICE-mediated exchange may dif-
fer based on the relative rarity of the cargo gene, suggesting
that ICE-containing genomes may be an important target for
surveillance of emerging phenotypes. Given the human and
public health importance of AMR, virulence and pathogenicity,
our results therefore provide an important foundation for im-
proved quantitative assessment of the microbial risk posed by
various microbiomes.

Methods

Genome Assembly and Annotation

All of the bioinformatic tools used are open source. To assem-
ble Whole Genome Sequence from the SRA, Trimmomatic 0.36
[54] is used to remove poor-quality base calls, poor-quality
reads and adapters from the sequence files. For removal of
PhiX control reads, Bowtie 2 2.3.4.2 [55] is used to align the
sequences to references derived from PhiX174 (Enterobacte-
ria phage phiX174 sensu lato complete genome). FLASh 1.2.11
[56] is used to merge paired-end reads from the sequences to
improve quality of the resulting assembly. Once these pre-
assembly steps are complete, the files are passed through
SPAdes 3.12.0 [57] and QUAST 5.0.0 [58] in an iterative assem-
bly/quality evaluation process. After assembly, genes and pro-
teins are annotated using Prokka 1.12 . [59] Following gene and
protein annotation, protein domains are determined using In-
terProScan 5.28-67.0 [60]. All 16 available analyses provided
by InterProScan are run over all input sequences. Results are
output in JSON format. For each of the 16 resulting JSON doc-
uments produced by InterProScan, we parse the annotated do-
main information into a set of delimited files which are then
loaded into the appropriate structured tables in a DB2 database.

Due to the large scale of sequence data in this study, we
implemented a cloud-based architecture to effectively orches-
trate the complex use of the bioinformatic tools described above
across multiple servers. These tools and the detailed architec-
ture are described in the supplement. The bioinformatic tools
were provisioned and deployed on the IBM Cloud utilizing a
combination of bare metal and virtual machines totaling over
1468 CPUs, 6TB RAM, and 160TB of hard drive space. IBM
Spectrum Scale version 5 was used for cluster filesystem access.
Apache Mesos version 1.6.1 provided cluster resource manage-
ment and scheduling. Marathon version 1.6.352 was used for
container orchestration and health checking with all deployed
processes running as Docker containers. The system utilizes
a message-oriented methodology for executing pipelines us-
ing RabbitMQ 3.7.2 as a broker. System events emitted from
all pipelines are captured in the timeseries database InfluxDB
1.2.0, and annotated information was stored in DB2 v11.1.3.3. A
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core component in our architecture is the OMXWare Distributed
Pipeline Framework (ODPF). This component coordinates in-
coming messages from the broker, executes individual stages
of a pipeline, records events as each stage of a pipeline pro-
gresses, and routes messages to additional queues when re-
quested. The supplement provides additional details about the
architecture including pipeline execution mechanics and anno-
tation processing. This annotation process identified a total of
66,945,714 unique gene sequences and 51,362,178 unique pro-
tein sequences, yielding 138,327,556 unique protein domains
along with related functional annotations (e.g., IPR codes).

Genome Curation and Selection

OMXWare systematically curates WGS files from NCBI because
the accuracy of metadata and quality of WGS files maintained
by NCBI varies dramatically. Some files, for example, may have
been derived from contaminated samples and are therefore not
technically WGS files, while others may be labeled improperly
with the incorrect microbial genus ID.

Bacterial SRA datasets that were at least 100 MB of size
were downloaded and converted to FASTQ format using SRA-
tools [16]. Genome assemblies containing greater than 150
contigs (of size > 500 bp) and an N50 of less than 100k bp
were discarded with the exception of genomes from the genus
Shigella, where assemblies containing greater than 500 contigs
(of size > 500 bp) and an N50 of less than 15,000 bp were dis-
carded. From the original assemblies (at the time of this study),
186,888 genomes passed the quality criteria described above. A
detailed description of the entire assembly, annotation, and In-
terPorScan process is reported elsewhere [18].

ICE and Cargo Protein Selection

ICE proteins are still being discovered. Large families of such
proteins are known in the literature [61, 3, 4] and those used
in this study are enumerated in Table 1. In addition to these
features, InterProScan implements a coding system for classi-
fication of proteins [60]. The complete set of Interpro codes
used in this study is listed in Table 1. These codes describe
conserved domains or larger families of proteins that provide
essential function in the ICE transfer process including con-
jugative relaxases, nickase, helicase, and other mobilisation
proteins.[62, 63, 64, 65] Relaxases are DNA strand transferases
that bind to the origin of transfer (oriT) in the ICE transfer pro-
cess and melt the double helix.[66, 64] Helicase is required to
separate double-stranded DNA into separate strands for dupli-
cation. Nickases introduce single-strand breaks in DNA. To-
gether, these proteins define a relaxation complex or relaxosome.
In some cases, several different domains on the same protein
will each contribute distinct function required for ICE. These
InterPro (IPR) codes assigned to ICE related proteins are also
listed in Table 1. [67, 61, 60]. These groups of integrative con-
jugative element proteins exhibit significant sequence diver-
sity [1, 2, 5, 6, 7], but represent conserved domains involved
in the machinery required for ICE. Of the 186,888 bacterial
genomes processed, 95,781 genomes (~51%) were found to con-
tain a protein belonging to one or more of the ICE families
listed in Table 1. The genomes with one or more ICE feature
contained 405,065,204 total proteins, representing 26,491,056
unique protein sequences.

There are a total of twelve Interpro codes associated with
ICE listed in Table 1. The IPR005094 family (exemplified
by MobA/VirD2) describes relaxases and mobilisation proteins.
[62, 63, 60] The code IPR011119 represents a domain found
in a family of proteins in proteobacteria annotated as heli-
case, conjugative relaxase or nickase.[68, 60] IPR014059 codes

for a domain in the N-terminal region of a relaxase-helicase
(TrwC) that acts in plasmid R388 conjugation. It has been
associated with both DNA cleavage and strand transfer activ-
ities. Members of this family are frequently are "near other
proteins characteristic of conjugative plasmids and appear to iden-
tify integrated plasmids when found in bacterial chromosomes".[64,
60] The IPR014129 family represents proteins in the relaxo-
some complex (exemplified by TraI). TraI mediates the single-
strand nicking and ATP-dependent unwinding of the plasmid
molecule. The two activities are driven by separate domains
in the protein. [66, 60] IPR014862 represent a conserved do-
main found in proteins in the relaxosome complex (exempli-
fied by TrwC). [64, 60] The IPR021300 family represents a con-
served domain observed in ICE elements in the protein family
PFL_4695 (originally identified in Pseudomonas fluorescens
Pf-5). [61, 60] IPR022303 describes a family of conjugative
transfer ATPase representing predicted ATP-binding proteins
associated with DNA conjugal transfer. They are found both
in plasmids and in bacterial chromosomal regions that ap-
pear to derive from integrative elements such as conjugative
transposons (so they may not be unique to ICE). IPR025955
describes a family of TraC-related proteins observed in Pro-
teobacteria. TraC is a cytoplasmic, membrane protein encoded
by the F transfer region of the conjugative plasmid. It is also
required for the assembly of the F pilus structure. The fam-
ily includes predicted ATPases associated with DNA conjugal
transfer. [65, 60] IPR022391 represents a conjugative relax-
ase domain in the PFGI-1 class. Proteins with this domain
include TraI putative relaxases required for ICE and found in
Pseudomonas fluorescens Pf-5. They are similar in function to
TraI relaxases of the F plasmid, but have no sequence homology.
This Interpro entry represents a N-terminal domain of proteins
in this class.[60] IPR025955 represents a family of conserved
Type-IV secretion system proteins, TraC/Conjugative transfer
ATPase, in Proteobacteria. TraC is a encoded by the F transfer
region of the conjugative plasmid and is required for construc-
tion of the F pilus structure. The filamentous F pili are serve
to create and maintain physical contact between conjugating
donor and recipient cells. The family also includes predicted
ATPases associated with DNA conjugal transfer. They are found
in ICE elements. [65, 60]

Taking advantage of the relational database, which contains
tables that associate protein UIDs with INTERPRO ACCESSIONs,
we used SQL queries first to obtain a full list of UIDs for all the
proteins which matched one or more of the features described
above and listed in table 1. This exhaustive list produced a list
of 28,042 candidate ICE proteins, from which we then removed
all those that appear in only 1 genome (by sequence identity).
As part of this culling step, performed using SQL and which re-
sulted in 15,398 ICE proteins associated to the selected IPR codes
or features, and appear in at least two genomes (see Table 5),
we persisted the containing 95,781 genomes, which we call ICE
genomes. To determine the percentage of ICE proteins in these
ICE genomes, we also obtained counts of all distinct proteins
that these genomes contain, 21,207,794.

Upon identification of the ICE proteins and corresponding
containing genomes, further SQL queries were used to identify
proteins most likely to be cargo proteins based on evidence of
ICE transfer. To make this selection we queried for proteins
that are not only present in the same genome pair as ICE pro-
teins, but with the added restriction that they not be present
in any non-ICE genome. For this purpose we first queried the
database for all proteins in the 95,781 ICE genomes, which re-
turned 387,682,038 distinct <ICE genome accession number,
protein UID> tuples. In many cases a unique sequence is ob-
served in more than one genome; in total there were 21,207,794
distinct protein sequences in the set of ICE genomes. This
group was then filtered to identify the subset of distinct pro-
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teins appearing in two or more (ICE) genomes. If a protein
sequence is seen only once, then by definition there is no sup-
porting evidence of it being "transferred". To further reduce
false positive identification of transfer by ICE (vs being verti-
cally transferred), we discard any protein that appears in any
of the 99,052 non-ICE genomes, thus effectively establishing a
rigid approach whereby proteins of interest must exclusively
appear in ICE genomes. With this strict selection process, we
identified 11,276,651 distinct sequences that are associated with
ICE, have evidence of transfer, and lack evidence of transfer
in a non-ICE genome. We refer to this set as cargo proteins,
i.e. proteins with the greatest evidence of transfer in an ICE
process. Furthermore, tabulating the number of <cargo pro-
tein, ICE genome A, ICE genome B> triples where ICE genome
A and ICE genome B contain at least one identical ICE protein
sequence, yields a total of 4,938,737,476 transfers. The data is
summarized in Table 5

Table 5. ICE-Related Statistical Counts
Description Unique Sequences
Total genomes examined 186,887 genomes
Genomes containing an 95,781 genomes
ICE protein
Candidate ICE proteins 28,042 amino acid
All proteins in ICE genomes 21,207,794 amino acid
ICE proteins found in 2 15,398 amino acid
or more genomes
Distinct cargo proteins in 2 11,276,651 amino acid
or more ICE genomes
Cargo transfer count within 4,938,737,476 amino acid
ICE genomes

Estimating False Positives: Classification of Plasmid
Proteins

Some of the features used to identify families of proteins in-
dicative of ICE correspond to proteins that mediate required
for Integrative Conjugative Exchange. However, some may also
be required for the formation (or integration) of plasmids. In
order to measure or bound the possible rate of false ICE classifi-
cation, all bacterial plasmids were downloaded from NCBI, and
the annotated proteins placed in a database table of plasmid
proteins. The MD5 Hash was used as the primary key for en-
tries in this table. The MD5 hash is used as the primary key for
every sequence entity in the database. Determining if a protein
has been observed on a plasmid in the NCBI reference is then
accomplished by querying if the primary key of the protein in
question exists in the table of plasmid proteins. This data was
used in the analyses shown in Figure 4.

Characterizing Cargo Proteins

Once all candidate ICE and cargo proteins were identified, the
database was then queried to obtain annotated protein names,
along with the genomes and genera in which they were ob-
served. This data was saved to a delimited file, which was
then used as input to python scripts to obtain a list and count
of intra- and inter-genera cargo protein transfers, per pro-
tein name. This O(n2) algorithm required an exhaustive pair-
wise comparison of genomes, detecting initially the intersec-
tion of ICE proteins between each genome pair and, if non-
empty, the pair’s common cargo proteins. This process ini-
tially identified a total of 5956 ICE-related genus-genus trans-
fers (i.e. triples of the form (genus1, genus2, protein-name),

carrying a total of 23,353,196,048 exchanged protein sequences.
The resulting count is non-distinct by protein name as, for in-
stance, Tyrosine recombinase XerD is transferred both between
Salmonella-Salmonella genomes, as well as between Oligella-
Proteus genomes and other genera pairs. Of these triples, 1680
transfers are observed to occur between genome pairs belong-
ing to the same genus, carrying a total of 23,242,566,032 se-
quences. Additionally, counts of per protein transfers are sim-
ilarly maintained, by genus. Note that this approach does not
allow us to determine transfer direction, therefore no determi-
nation was made regarding source and target.

Intra and Inter-genus protein transport

Inter-genus protein transport was represented as a graph in
which each genus is a node, and an edge between a pair of
nodes represent a value of co-occurrence of <ICE protein, cargo
protein> pairs, as a Force Directed Graph shown in Figure 3,
discussed in Analysis. The Force Directed Graph is also available
as a simple Web Application that allows users to select which
ICE families and or types of Cargo genes to display.

ICE and Cargo Proximity

To test the loci proximity of ICE and cargo genes in the dis-
covered genome pairs, we utilized our compiled list of genera,
genomes, ice and cargo proteins, and leveraged Prokka’s ac-
cession index (a positional indicator of a gene or protein’s se-
quence in a particular genome). While this approach is lim-
ited by the fact that assembly-based contigs are unordered,
and therefore introduce gaps in the genome sequences in our
database, data from the accession gene or protein index indi-
cates sequential placement of ICE and cargo proteins (Figure
1).

Characterizing AMR Genes

Once all candidate ICE and cargo proteins were identified, the
database was then queried to obtain annotated protein names,
along with the genomes and genera in which they were ob-
served. To gain insight into putative cargo that co-occurs with
ICE proteins but not yet annotated as ICE, we looked in par-
ticular at the cargo proteins with AMR names. To accomplish
this we used the MEGARes database, which contains AMR gene
sequences with associated unique identifiers, as well as a hier-
archical ontology to classify each AMR gene [47]. All unique
sequences in MEGARes were run through the same pipeline
used to annotated the set of all proteins in OMXWare. This pro-
vides a self consistent annotation. We then obtained all puta-
tive cargo proteins with names that matched any AMR protein
name. This data was used to compute, for every AMR name, the
frequency of observation as possible cargo in an ICE genome
and the frequency of observation in genomes not associated
with ICE.

Tabulation of Data

To perform key analysis reported here, data was first tabulated
in database tables or views (and exported to delimited files for
the supplement). ICE genomes (defined above) were tabulated
by Genus as shown in Table 2. Observed ICE features from
Table 1 were tabulated by Genome for the analysis shown in
Figures 2 and 7. Similarly, proteins assigned names associated
with antimicrobial resistance were tabulated by number of ICE
and non-ICE genomes, and the fraction of unique sequences
observed in plasmids were tabulated as well (See Figure 3).
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Hierarchical Clustering and Co-occurrence

The proteins studied here, and the ICE families themselves,
are not in-dependant features. Hierarchical clustering was
used to characterize the correlations an co-occurrence of pro-
teins or genomes by ICE family (see Figures 7, 5, and 6. This
was accomplished by forming a co-occurrence matrix and us-
ing the Seaborne clustermap algorithm which does single link-
age clustering to form heatmap and dendrogram relating the
co-occurring features [69]. The vector is ICE features for an
entity (protein or genome) are then be used as a Euclidean
metric (dimensionality reduction) to compute an effective dis-
tance between the entities. This approach was used to cluster
and visualize the genome-genome distance shown in Figure 8.
Seaborne clustermap was used for this step as well.
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Supplemental Information

In this supplement, we describe in detail the OMXWare Dis-
tributed Pipeline Framework (ODPF). This pipeline architecture
was used to orchestrate the execution of the open source com-
ponents for genome assembly and annotation of the 166,000
bacterial genomes that formed the foundation for our study.

Pipeline Execution Mechanics

A job or pipeline to be executed using ODPF is defined by a
simple JSON document. The primary top-level components
of this document are a Universally Unique Identifier (UUID),
user, name, description, timestamp, and a list of stages or
invocations. Either the UUID or user fields of the document
can be used to track the progress of a running job from the
event database. An invocation provides the necessary details
for executing a phase of the pipeline including name, descrip-
tion, command, Docker image, route, environment variables
and mounted volumes. Only the name, Docker image, and
command are required. All docker images used throughout our
pipelines were stored in a private docker registry.

An instance of ODPF is encapsulated as a Docker container
and deployed into a cluster through Marathon’s management
console or API. Only a minimal initial configuration is required
for this deployment including access to the Docker socket file,
the name of the InfluxDB database to store events, and message
broker host and input queue name. The Docker socket file is re-
quired as ODPF coordinates the execution of sibling containers
based on the contents of the job received from the message bro-
ker. By allowing the job descriptor to describe queue routing
behavior, we can fine tune how a job is processed. For example,
some bioinformatic processes tend to take longer to reach com-
pletion than others. Letting stages or invocations define their
target process queue provides the flexibility for a said queue to
be serviced by ODPF instances allocated with additional clus-
ter resources. This allows jobs to be highly distributed without
stalling the pipeline due to a slow stage.

A pipeline job can be started by creating a JSON document
with the desired stages to execute and submitting to the target
queue. As a job is processed, the ODPF will emit events for the
start, completion, and failure of stages. An event contains a
number of fields including the context of the stage executed,
environment settings from Mesos and Marathon, the host at

which the process is executing, and many others. If an error
is encountered during processing, ODPF will create a failure
queue using the name of the current queue with “-failed” ap-
pended. The failed portion of the job is sent to this queue for
later inspection. Additionally, a failure event is also recorded
in InfluxDB which will contain all the necessary information
for an administrator to locate where in the cluster the failure
occurred and why.

Genome Assembly

Using curated genomes from our selection process, we begin
the pipeline process of assembly. Figure 10 represents the indi-
vidual stages executed for the assembly pipeline process, where
initially several pre-assembly steps are performed. First, Trim-
momatic 0.36 [54] is used to remove poor-quality base calls,
poor-quality reads and adapters from the sequence files. For
removal of PhiX control reads, Bowtie 2 2.3.4.2 [55] is used to
align the sequences to references derived from PhiX174 (Enter-
obacteria phage phiX174 sensu lato complete genome). Next
FLASh 1.2.11 [56] is used to merge paired-end reads from the
sequences to improve quality of the resulting assembly. Once
these pre-assembly steps are complete, the files are passed
through SPAdes 3.12.0 [57] and QUAST 5.0.0 [58] in an itera-
tive assembly/quality evaluation phase until the level of quality
described in Genome Curation and Selection is achieved.

Gene and Protein Annotation

After assembly, genes and proteins are annotated using Prokka
1.12 [59] as shown in the second pipeline of Figure 10. First,
genes and proteins are discovered from the assembly using
Prokka. Next, the generated “.fna” and “.faa” files are parsed
resulting in the collation of the genome, gene, and protein data
information assets into CSV files. Finally, the CSV files are
loaded into the appropriate tables within the database using
DB2’s IMPORT and INGEST bulk load commands.

Domain Annotation

After gene and protein annotation, protein domains are deter-
mined using InterProScan 5.28-67.0 [60]. The third pipeline
in Figure 10 illustrates this phase. First, annotated protein se-

Figure 9. OMXWare Distributed Pipeline Framework Architecture
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Figure 10. Curation and annotation pipelines

quences are scanned against the database to determine if they
were previously identified or not. The output of this scan pro-
duces a possible reduced set of protein sequences. This pre-
filtering step greatly reduces the amount of time required to
analyze the protein sequences by InterProScan. Next, Inter-
ProScan is run on the reduced protein sequence set. All 16
available analyses provided by InterProScan are run over all in-
put sequences. Results are output in JSON format. To reduce
the amount of time spent in analysis, we distribute each to its
own process via GNU parallel within the executing stage. The
number of analyses to run concurrently is configured by an en-
vironment variable that can be set within the descriptor for this
stage. We also leverage InterProScan’s ability to utilize a local
network lookup service which we have placed in a cluster and
load balanced as presented in Figure 9. Next, for each of the 16
resulting JSON documents produced by InterProScan, we parse
the annotated domain information into a set of CSV files. As in
the gene and protein annotation step, these CSV files are loaded
into the appropriate tables in DB2.
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