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Abstract: Major theories of consciousness disagree on the key neural substrates. In 
Global Neuronal Workspace Theory and Higher-order Theories, consciousness depends 
on frontal cortex, whereas Integrated Information Theory and Recurrent Processing 
Theory highlight posterior contributions. Most theories omit subcortical influences. To test 
these theories, we performed simultaneous frontal, parietal, striatal and thalamic 
recordings from awake, sleeping and anesthetized macaques, further manipulating 
consciousness with deep-brain thalamic stimulation. Information theoretic measures and 
machine learning approaches suggested parietal cortex, striatum and thalamus 
contribute more to consciousness level than frontal cortex. While these findings provide 
greater support for Integrated Information Theory than the others, the theory does not 
incorporate subcortical structures such as the striatum. We therefore propose that 
thalamo-striatal circuits have a cause-effect structure to generate integrated information.  
One Sentence Summary: Parietal, but not frontal, circuits incorporating striatum and 
thalamus predict consciousness.  
Main Text: Consciousness is the capacity to experience one’s environment and internal 

state. Major theories disagree about the neural correlates of consciousness (NCC), 

notably the causal contributions of frontal relative to more posterior cortex, thus framing 

debates as “front versus back”. Both Global Neuronal Workspace Theory (GNW; Fig. 

S1B) and Higher-order theories (HOT; Fig. S1C) emphasize the role of frontal cortex. In 
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GNW, consciousness depends on an “ignition” process in which information becomes 

globally available through top-down signals from frontal cortex (1, 2). In HOT, 

consciousness depends on frontal cortex supporting a higher-order thought about a 

sensory experience (3, 4). In contrast, Integrated Information Theory (IIT; Fig. S1D) and 

Recurrent Processing Theory (RPT; Fig S1E) emphasize the role of posterior cortex. For 

IIT, consciousness depends on cause-effect structures generating integrated information 

(5); proponents have claimed a posterior hot zone, including parietal cortex, to be the 

most critical (6). For RPT, consciousness depends on recurrent activity between earlier 

and later stages in sensory pathways (7). Some functional MRI and electrophysiology 

studies (8, 9) have suggested contributions of frontal cortex to conscious awareness of 

sensory stimuli, though critics claim these frontal responses may reflect report or 

executive functions (10, 11). Lesion studies have suggested consciousness persists 

despite large-scale frontal damage (10), though critics claim the lesions are incomplete 

(12). These concerns highlight the need for evidence based on no-report paradigms in 

healthy subjects (11). 

Although important, these debates are unnecessarily cortico-centric. The higher-

order thalamus, which robustly interconnects with the entire cortex, supports information 

transmission and recurrent activity between cortical neurons (13-15). Though the 

thalamus is under inhibitory control from the basal ganglia, some have used the striatum 

as an example brain area that does not directly contribute to consciousness, because of 

the common view of unidirectional information flow from striatum to thalamus (10, 16). 

However, as direct projections from intralaminar and other thalamic nuclei to the striatum 
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allow bidirectional flow (17, 18), and the striatum widely samples the cortex, others have 

proposed a striatal role in consciousness (19).  

To probe contributions of thalamus, striatum, frontal (F) and parietal (P) cortex to 

consciousness, we used linear electrode arrays to simultaneously measure local field 

potentials (LFPs) in superficial, middle and deep layers of the right frontal eye field (Fs, 

Fm and Fd, respectively), lateral intraparietal area (Ps, Pm and Pd), central lateral thalamus 

(T) and caudate nucleus (C) of macaques (constituting 8 parts of our cortico-striatal-

thalamic system; Fig. S1A). Recordings occurred in three states – general anesthesia 

(propofol, isoflurane), light non-rapid eye movement (NREM) sleep, and resting (no 

report) wakefulness in a dark, quiet room – and two stimulation conditions – effective, in 

which we stimulated T to rouse monkeys from stable anesthesia, and control, which did 

not change consciousness. We used spectral power and three information theoretic 

measures – entropy (H), mutual information (I), and integrated information (F*; Fig. S2) 

– to decode the state of consciousness (20). We measured the differential weights across 

classifier features to probe their contributions to consciousness.  

All measures showed state-dependent variation. LFP power varied by state, area 

and frequency: there was greater delta (1-4 Hz) power for anesthesia (all areas, t(263) ≥ 

4.54, p ≤ 8.62x10-6) and light NREM sleep (frontal cortex, t(789) = 2.69, p = .029) relative 

to wakefulness (Fig. 1A). F* (Fig. 1B; see Fig. S3 for controls), I, and - (Fig S4, A and D) 

were higher in wakefulness relative to sleep and anesthesia (t(354) ≥ 2.54, p ≤ .011). To 

test how well each measure related to consciousness, we built classifiers to decode 

conscious state (wake, sleep, anesthesia) from LFP power (48 features: 8 system parts 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.07.030429doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.030429


 

4 
 

x 6 frequencies), F*, I or H (9 features: 8 n-1 subsystems plus 1 full system of n=8 parts). 

All classifiers decoded better than chance (33%; Fig. 1C; t(20) ≥ 5.42, p ≤ 3.14x10-5). Of 

these classifiers, F* (92.8%) was significantly more accurate (t(80) ≥ 4.73, p ≤ 2.06x10-

5), followed by the LFP power classifier (t(80) ≥ 5.75, p ≤ 5.37x10-7). The F* classifier 

performed better for wake (F-ScoreW = 0.95), sleep (F-ScoreS = 0.93) and anesthesia (F-

ScoreA = 0.97) than the LFP classifier (Fig. 1, D and E; F-ScoreW = 0.79, F-ScoreS = 0.78, 

F-ScoreA = 0.87). F* yielded greater accuracy for decoding conscious state, despite the 

classifier having fewer features. 

Because there was limited dependence between dissimilar features (Fig. S5, A 

and B; (21)), we computed the mean decrease in accuracy (MDA) after removing certain 

features as a measure of their importance. For the LFP power classifier, removing Pd, T 

and C features caused larger MDAs than other areas (Pm, Ps, Fd, Fm, Fs; t(160) ≥ 12.11, 

p ≤ 4.8x10-15; Fig. 1F; Table S1). In the frequency domain, removing delta and low-

gamma (30-60 Hz) features caused larger MDAs than other bands (θ = 4-8 Hz, α = 8-15 

Hz, β = 15-30 Hz, γH = 60-90 Hz; t(240) ≥ 5.99, p ≤ 2.36x10-8; Fig. 1G; Table S1). We 

performed similar analyses for the F* classifier (Fig. 1H), and MDAs were significantly 

greater after removing subsystems with Pd, T or C over other parts (Pm, Ps, Fd, Fm, Fs; 

|t(80)| ≥ 9.12, p ≤ 1.76x10-12; Table S1). These results show the importance of parietal 

and subcortical areas over frontal cortex. 

We previously reported that 50 Hz thalamic stimulation could increase the 

consciousness level (measured via 10-point scale; (21)) of monkeys under stable 

anesthesia relative to control (ineffective) stimulation (22). To assess decodability of 
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stimulation conditions, we calculated LFP power, I, H and F* prior to, during and after 

effective (consciousness level M = 4.37, SD = 1.52, n = 35) and control (M = 0.66, SD = 

0.99, n = 128) stimulations. For all areas, LFP delta power tended to increase (Fig. 2, A 

and B) during thalamic stimulation (t(332) ≥ 3.58, p ≤ 4.01x10-4), and did not interact with 

effectiveness (|t(332)| ≤ .96, p ≥ .34). Results were similar for other frequency bands. 

However, F* showed clear increases selective to effective stimulations (Fig. 2, C and D); 

the interaction was significant (t(326) = 4.03, p = 2.06x10-4). There was no significant 

interaction (|t(326)| ≤ .80, p ≥ .35) for H (Fig. S4, B and C) or I (Fig. S4, E and F). 

To test how each measure related to consciousness driven by thalamic stimulation, 

we built classifiers to decode induced conscious state (effective, control) from LFP power 

(42 features: 7 system parts x 6 frequencies), F*, I and H (8 features: 7 n-1 subsystems 

plus 1 full system of n=7 parts); thalamus not recorded during stimulation. All classifiers 

decoded better than chance (50%; Fig. 2E; t(20) ≥ 5.32, p ≤ 3.95x10-5). Of these 

classifiers, F* (84.3%) was significantly more accurate (t(40) ≥ 5.71, p ≤ 8.16x10-7), with 

LFP power, I and H classifiers performing similarly to each other (|t(40)| ≤ 1.80, p ≥ .227). 

The F* classifier was better at identifying both effective (F-ScoreE = 0.79) and control (F-

ScoreC = 0.82) stimulations than the LFP power classifier (Fig. 2, F and G; F-ScoreE = 

.63, F-ScoreC = .68). 

Next, we determined how decoding accuracy for LFP power and F* classifiers 

depended on their features. For the LFP power classifier, removing Pd or C caused 

greater MDAs (Fig. 2H) than other areas (Pm, Ps, Fd, Fm, Fs, t(280) ≥ 18.35, p ≤ 3.40x10-

15; Table S1). Removing delta and low/high-gamma frequencies caused significantly 
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greater MDAs (Fig. 2I) than other bands (θ, α, β; t(240) ≥ 4.36, p ≤ 1.39x10-4; Table S1). 

For the F* classifier, removing subsystems containing Pd or C caused significantly greater 

MDAs (Fig. 2J) than other areas (Pm, Ps, Fd, Fm, Fs, t(140) ≥ 5.96, p ≤ 2.59x10-7, Table 

S1). These results suggest parietal and subcortical contributions to stimulation-induced 

consciousness. 

We next tested how well each measure tracked finer-scale changes in 

consciousness level induced by thalamic stimulation. We computed correlations between 

changes in consciousness level and normalized changes (during – pre) in either LFP 

power (42 features: 7 areas x 6 frequencies), F*, I or H (for full 7-part system). For LFP 

power (Fig. 3, A-H), I and H (Fig. S6), correlations were not significant. In contrast, 

normalized changes in F* (Fig. 3I) correlated with consciousness level (r = 0.62, t(160) = 

10.33, p < .0001). Linear regression analysis confirmed these results (Fig. 3, B-I; Fig S6; 

Table S2). 

F* consistently outperformed other measures and had a reliable relationship to 

even small changes in consciousness, supporting IIT. Within the IIT framework, system 

parts contributing most to integrated information contribute most to consciousness (Fig. 

S1D). We compared average F* across all subsystems during wakefulness, sleep and 

anesthesia, as well as prior to, during and after effective/control stimulations, as a function 

of the composition of each subsystem and consciousness (Fig. 4, A-D). For the state data 

(Fig. 4A), subsystems containing Pd, T and C had higher F* than systems with other areas 

(t(378) ≥ 5.90, p ≤ 9.82x10-8; Table S3). Effect size estimates showed Pd, T and C 

combined (ΔR2 = .49), and consciousness level (ΔR2 = .39), explained most of the 
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variance in F*, whereas frontal cortex only accounted for 4%. Similarly for the stimulation 

data (Fig. 4C), subsystems with Pd and C had higher F* (t(372) ≥ 5.55, p ≤ 5.39x10-7; 

Table S3). Pd and C (ΔR2 = .43), and consciousness level (ΔR2 = .29), explained a large 

portion of variance in F*; much more than frontal cortex (ΔR2 = .10; Fig. 4D). 

Calculating F* requires determination of the minimum information partition (MIP) 

for a system, the “cut” that leads to the least amount of information loss (Fig. S2C). 

Analyzing MIPs thus provides insights about integrated structures across conscious 

states. We compared kernel density-estimated distributions of the MIP probability mass 

functions for each state. Sleep (Kolmogorov-Smirnov, KS(42) = .36, p = .0067) and 

anesthesia (KS(42) = .38, p = .0031) were different from wakefulness (Fig. S7A), but 

similar to each other (KS(42) = .17, p = .56). The same approach for thalamic stimulations 

(Fig. S7B) showed effective stimulations (KS(30) = .63, p = 4.64x10-6), but not controls 

(KS(30) = .23, p = .34), had a  different MIP distribution from pre-stimulation (similar 

distributions pre- and post-stimulation, KS(30) = .10, p = .99).  

Because MIP distributions differed according to consciousness, we tested which 

brain areas constituted integrated structures across state and stimulation conditions. We 

computed the pairwise probability of system parts being on the same side of the MIP (Fig. 

4, E-K; Fig S7 F-K). Wakefulness (Fig. 4E) showed increased association of T and P 

(excluding F), whereas anesthesia (Fig. 4F) and sleep (Fig. 4G) showed increased 

association of T and F (excluding P; Fig. S7C). Effective thalamic stimulations (Fig. 4I) 

showed increased association of C and P (excluding F), unlike pre-stimulation and 

controls (Fig. S7, D and E). Pre- (Fig. 4H) and post- (Fig. 4K) stimulation both showed 
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increased association of C and F (excluding P); while control stimulations (Fig. 4J) had 

random associations between all areas. Overall, subcortical areas shifted their affiliation 

from frontal to parietal cortex with increased consciousness. Together, all analyses 

suggest parietal-striatal-thalamic systems (T, C, Pd, Pm, Ps) are the strongest NCC (Fig. 

4L). Further “cuts” of this particular subsystem confirmed MIPs in conscious states favor 

association of T, C and Pd (Fig. S7, F-N). This suggests integration of subcortical areas 

and parietal deep layers is a hallmark of consciousness (Fig. 4L).  

We have shown that parietal deep layers and subcortical areas contributed most 

to decoding conscious states; whereas frontal cortex, and superficial cortical layers 

broadly, contributed little, irrespective of metric. These results do not support GNW and 

HOT, which emphasize frontal cortex (and/or superficial layers), nor RPT, which 

emphasizes localized cortical processing. Rather, our results are most consistent with IIT, 

which features parietal contributions and integration. Parietal cortex contains a number 

of topographic spatial maps in eye, body and world-centered reference frames (23). Such 

spatial representations are vital for perception and awareness, as parietal lesions give 

rise to spatial neglect (24). Based on IIT, grid-like structures, as in parietal cortex, may be 

especially suitable for supporting our environmental experiences (25).  

While H, I and F* all measure complexity, only F*, through the partitioning step, 

measures integration across system parts. As F* outperformed other metrics in predicting 

changes in consciousness, integration – between parietal deep layers and subcortical 

areas – seems to be vital. However, IIT, with its cortical focus (10, 16, 25), has not 

incorporated subcortical areas like the striatum. Deep layers of parietal cortex project to 
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the striatum and reciprocally connect with thalamus. Further, the striatum and thalamus 

are famously interconnected by multi-synaptic striato-thalamic pathways, and the often 

overlooked direct excitatory thalamo-striatal pathway (17, 18). These cortico-striatal-

thalamic architectures (with multiple feedback loops between C and T, and between T 

and P) could serve as cause-effect structures proposed by IIT and thus key NCC. 
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Fig. 1. Parietal deep layers and subcortical areas contribute most to state decoding. 
(A) Normalized average delta power (Z score ± SE) for thalamus (T), caudate (C), and 
superficial (s), middle (m) and deep (d) layers of frontal (F) and parietal (P) cortex during 
wakefulness, sleep and anesthesia (Anes). (B) Population mean Φ* (± SE) during 
different states for the full system (All) or subsystems with one area removed. (C) 
Decoding accuracy (± SE) for classifiers using LFP power, Φ*, mutual information (I) or 
entropy (H). Dashed line shows chance. (D) Confusion matrix of LFP power classifier for 
wakefulness (W), sleep (S) and anesthesia (A); color scales with classification likelihood. 
(E) Confusion matrix of Φ* classifier. (F-H) Mean decrease in accuracy (MDA ± SE) for 
LFP power classifier after removing features for (F) brain areas or (G) frequency bands, 
or (H) Φ* classifier after removing subsystems containing specified brain area. 
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Fig. 2. Parietal deep layers and subcortical areas contribute most to decoding 
stimulation-induced consciousness. (A and B) Normalized average delta power (Z 
score ± SE) for caudate (C) and superficial (s), middle (m) and deep (d) layers of frontal 
(F) and parietal (P) cortex prior to, during and after (A) effective or (B) control thalamic 
stimulations. (C and D) Population mean Φ* (± SE) for the full system (All) or subsystems 
with one area removed surrounding (C) effective or (D) control stimulations. (E) Decoding 
accuracy (± SE) for classifiers using LFP power, Φ*, mutual information (I) or entropy (H). 
Dashed line shows chance. (F) Confusion matrix of LFP power classifier for effective 
(Effect) or control stimulations; color scales with classification likelihood. (G) Confusion 
matrix of Φ* classifier. (H-J) Mean decrease in accuracy (MDA ± SE) for LFP power 
classifier after removing features for (H) brain areas or (I) frequency bands, or (J) Φ* 
classifier after removing subsystems containing specified brain area. 
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Fig. 3. Only Φ* correlates with fine, stimulation-induced changes in consciousness 
level. (A) Correlations (r) of normalized changes in power (Z score, during stim – pre) 
and changes in consciousness level (during stim – pre) for each brain area at each 
frequency band. (B-H) Regression estimates of delta power correlations in (A) for (B) 
caudate nucleus, (C) deep, (D) middle and (E) superficial parietal layers, as well as (F) 
deep, (G) middle and (H) superficial frontal layers. Circles show values for each 
stimulation event. Line shows regression fit (± SE) with reported slope (β) and correlation 
(shaded background, r, on same scale as (A)). (I) Regression estimate for stimulation-
induced consciousness level changes (during stim – pre) on Φ*. * on β slope indicates p 
= 9.0x10-15. 
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Fig. 4. Integration between parietal deep layers and subcortical areas contribute 
most to increases in Φ* and changes in conscious state. (A) Average contribution of 
each brain area to Φ* (± SE) controlling for changes in conscious state. (B) Estimated 
effect size (ΔR2) of each brain area in (A) and consciousness (yellow, wake vs 
sleep/anesthesia). (C) Average contribution of each brain area to Φ* (± SE) controlling for 
stimulation-induced changes in consciousness. (D) Estimated effect size (ΔR2) of each 
brain area in (C) and consciousness (yellow, effective vs pre/post/control stimulations). 
(E-K) Pairwise probability (gray-scale lines) of brain areas associating on the same side 
of the minimum information partition (MIP) for (E) wakefulness, (F) anesthesia, (G) sleep, 
(H) pre-stimulation, (I) effective stimulation, (J) control stimulation and (K) post-
stimulation. Monosynaptic (Mono, thick lines) anatomical paths (in at least one direction) 
and multisynaptic (Multi, thin lines) shown. Dashed red lines shows predominant MIP 
when applicable. (L) Schematic showing pathways and brain areas contributing most to 
integration and classification of consciousness. 
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Supplementary Materials 

Materials and Methods 

The University of Wisconsin-Madison Institutional Animal Care and Use Committee 

approved all procedures, which conformed to the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals. Data relating to the caudate nucleus (C) have 

not previously been published, but an analysis of much of the frontal eye field (F), lateral 

intraparietal area (P) and central lateral thalamus (T) can be found in (22). Here, however, 

we focus on new analyses and previously unpublished findings. We acquired data from 

two male monkeys (Macaca mulatta, 4.3-5.5 years old, 7.63-10.30 kg body weight) 

housed at the Wisconsin National Primate Research Center (WNPRC). Experimenters 

and WNPRC husbandry staff provided daily animal care, and WNPRC veterinarians 

monitored animal health. 

 

Surgery 

We performed a head implant and craniotomy surgery and using aseptic techniques on 

anesthetized monkeys. We induced anesthesia with ketamine (up to 20 mg/kg body 

weight, i.m.) and maintained general anesthesia with isoflurane (1-2%). We used 12 

ceramic skull screws and dental acrylic to affix a customized plastic recording chamber 

and head post to the skull. This implant included four hollow slots, two on the left and two 

on the right sides of the acrylic implant, into which custom designed rods fitted, allowing 

head immobilization during electrophysiological recordings. We drilled 2.5 mm 

craniotomies in the frontal and parietal bones within the recording chamber, providing 

access to F, P, T and C in the right hemisphere. We derived craniotomy coordinates from 

the high-resolution T1-weighted structural images acquired prior to the surgery, in 

consultation with a brain atlas (26). We fitted each craniotomy with a conical plastic guide 

tube filled with bone wax, through which linear micro-electrode arrays traversed. We 

prefabricated these guide tubes using a model of the skull based on the T1-weighted 

structural image (13, 22, 27). We also inserted two titanium skull screws within the 

recording chamber, one from which to record the EEG and one to serve as a reference.  
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Neuroimaging 

We used the GE MR750 3T scanner to perform structural imaging on anesthetized 

monkeys. At the start of each imaging session, we pre-medicated the monkey with 

ketamine (up to 20 mg/kg body weight) and atropine sulfate (0.03-0.06 mg/kg). We then 

intubated the monkey and administered isoflurane (1-2% on ~1 L/min O2 flow), with a 

semi-open breathing circuit and spontaneous respiration, to maintain general anesthesia 

for the session duration. We monitored the monkey’s expired carbon dioxide, respiration 

rate, oxygen saturation, pulse rate and temperature, using an MR-compatible pulse 

oximeter and rectal thermometer. Prior to the implant and craniotomy surgery, we 

acquired a high-resolution structural brain image, to delineate the regions of interest 

(ROIs), F, P, T and C. For these three dimensional T1-weighted structural images, we 

used an inversion-recovery prepared gradient echo sequence with the following 

parameters: FOV=128 mm2; matrix=256 x 256; no. of slices=166; 0.5 mm isotropic; 

TR=9.68 ms; TE=4.192 ms; flip angle=12°; inversion time (TI)=450 ms. To generate the 

high-quality structural image for each monkey, we used NEX = 6-10 T1-weighted 

structural images, and performed the averaging using the FMRIB Software Library (FSL) 

(28). After surgery, we acquired additional scans of electrodes in situ to confirm electrode 

positioning, using the same set of parameters. To localize implanted electrodes, we used 

NEX = 2.  

 

Electrophysiological recordings 

We simultaneously recorded local field potentials (LFPs) from F, P, T and C, using linear 

micro-electrode arrays (in early C recordings, we used a sharp tip platinum-iridium 

electrode). There were 16 or 24 electrode contacts positioned in F and P, 24 contacts 

positioned in T, and 16 (or 1) contacts positioned in C. These platinum/iridium electrode 

contacts had a diameter of 12.5 μm, 200 μm spacing between contacts, and typical 

impedance of 0.8-1 MΩ. We measured EEG using titanium skull screws located above 

dorsal fronto-parietal cortex and, in anesthetized experiments, the EMG using a 

hypodermic needle (30G) in the forearm. We recorded electrode signals (filtered 0.1-
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7,500 Hz, amplified and sampled at 40 kHz) using a preamplifier with a high input 

impedance headstage and OmniPlex data acquisition system controlled by PlexControl 

software. We recorded wake and sleep data in the same recording sessions, and 

anesthesia data (with and without thalamic stimulation) in different sessions.  

Electrode array localization 

We targeted electrodes to ROIs based on the T1-weighted structural images of electrodes 

in situ held by the customized guide tubes. Although the electrode itself is not visible in 

the images, there is a susceptibility “shadow” artifact of approximately one voxel (0.5 

mm3) width on each side of the electrode shaft. We re-positioned electrodes as 

necessary, based on volumes acquired online and in reference to a stereotaxic brain atlas 

(26), and re-acquired T1-weighted scans until electrodes were in their desired locations 

in F, P, T and C. Offline, we used FSL (FLIRT) to register (6 degrees of freedom) the 

images with electrodes in situ to the high-resolution structural image acquired prior to 

surgery (29). We reconstructed recording and stimulation sites along electrode tracks, 

using measurements of electrode depth during recording sessions calibrated to the 

electrode depth measurements during imaging sessions and the image of electrodes in 

situ. In one monkey, we also performed post-mortem histology to further verify electrode 

track reconstructions. We fixed the brain in 10% neutral buffered formalin, and afterwards 

cut the right hemisphere into approximately 5 mm thick coronal sections. After embedding 

these sections in paraffin, we thinly sectioned tissue into 8 μm slices. Around ROIs, we 

stained slices with Hematoxylin and Eosin, and visualized slices under a microscope to 

confirm electrode tracks through our ROIs. 

 

We further verified recording sites in our ROIs using functional criteria. In the F ROI, we 

elicited eye movements using local electrical stimulation with low currents, i.e., <100 μA 

(30). In the P ROI during awake experiments, many neurons showed the classical 

response characteristic of peri-saccadic activity. In the T ROI, we found a subset of 

neurons with high firing rates (around 40-50 Hz) in the awake state, consistent with a T 

locus (31). To position electrode arrays across cortical layers in F and P, we used depth 
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measurements derived from structural images to initially position arrays in F and P. The 

16 and 24 contact arrays respectively covered 3 mm and 4.6 mm (200 μm spacing 

between electrode contacts), which generally allows for positioning of contacts spanning 

all cortical layers, for tracks near perpendicular to the cortical surface or with moderate 

angles from perpendicular. We further adjusted electrode position to maximize the 

number of contacts showing single-unit or multi-unit spiking activity, and we visualized 

evoked LFP responses to auditory tones, with middle layers showing earliest response. 

Offline, we used current source density (CSD) analysis to designate contact positions to 

superficial, middle and deep cortical layers.  

 

Passive auditory oddball 

We used a passive auditory oddball paradigm for stimulus-aligned CSD analyses. This 

allowed identification of superficial (s), middle (m) and deep (d) layers of F and P. The 

passive auditory oddball paradigm does not require a behavioral response, nor does it 

require open eyes. Moreover, auditory stimuli have been shown to activate neurons in F 

(32-34) and P (35-38). In the oddball paradigm (written in Neurobehavioral Systems 

Presentation software), we presented a sequence of auditory tones (200 ms duration; 

800 ± 100 ms jitter between tones) comprised of 80% standard tones (0.9 kHz) and 20% 

deviant/oddball tones (1 kHz). At least the first four tones of a sequence were standard 

tones, and two sequential tones could not be deviants. Otherwise, there was a 

pseudorandom tone order within the constraint of the overall 80/20 standard-to-deviant 

ratio. The sequence duration was 3 min for anesthesia experiments, and 6 min for awake 

experiments. We presented tones through two transducers placed 35 cm from each ear 

in anesthesia experiments, and 80 cm from each ear during awake experiments. The 

sound level at each ear was about 75 dB SPL for both anesthesia and awake 

experiments.  

 

CSD  

We applied inverse CSD analyses to localize electrode contacts to superficial, middle or 

deep cortical layers (39). We used the CSDplotter toolbox for MATLAB 
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(https://github.com/espenhgn/CSDplotter; dt = 1 ms, cortical conductivity value = 0.4 S/m, 

diameter = 0.5 mm) to calculate the inverse CSD in response to auditory tones in the 

passive oddball paradigm. Linear micro-electrode arrays measure the LFP, 𝑣, at N 

different cortical depths/electrode contacts along the 𝑧-axis with spacing ℎ. The standard 

CSD, 𝑐!", is estimated from the LFPs using the second spatial derivative, i.e., 

𝑐!"(𝑧) = (𝑣(𝑧 + ℎ) − 2𝑣(𝑧) + 𝑣(𝑧 − ℎ))/ℎ#. 

LFPs can also be estimated from given CSDs, represented in matrix form as 𝑉 = 𝑭𝐶/, 

where 𝑉 is the vector containing the 𝑁 measurements of 𝑣, 𝐶/ is the vector containing the 

estimated CSDs, and 𝑭 is an 𝑁 × 𝑁 matrix derived from the electrostatic forward 

calculation of LFPs from known current sources. The inverse CSD method uses the 

inverse of 𝑭 to estimate the CSD, i.e., 𝐶/ = 𝑭$𝟏𝑽	. For the step inverse CSD method used 

here (39), it is assumed that the CSD is step-wise constant between electrode contacts, 

so the sources are extended cylindrical boxes with radius 𝑅 and height ℎ. In this case, 𝑭 

is given by:  

𝐹&' =	∫
(
#)

*!+
"
#

*!$
"
#

789𝑧& − 𝑧,:
# + 𝑅# − ;𝑧& − 𝑧,;< 𝑑𝑧,, 

where 𝜎 is the electrical conductivity tensor, and 𝑣9𝑧&: = ∑ 𝐹&'𝐶'-
'.(  is the potential 

measured at position 𝑧& at the cylinder center axis due to a cylindrical current box with 

CSD, 𝐶', around the electrode position 𝑧'. The inverse CSD method offers advantages 

over the standard CSD. The inverse CSD method estimates the CSD around all 𝑁 

electrode contacts, whereas the standard CSD method yields estimates around 𝑁 − 2 

contacts. Further, the standard CSD requires equidistant contacts, whereas the inverse 

CSD method does not, which is advantageous when data from a noisy contact may need 

to be excluded.  

 

We designated the electrode contact at the bottom of the early current sink in response 

to auditory stimulation (around the boundary between layers 4 and 5) and the two more 

superficial contacts as the middle cortical layers. We then designated electrode contacts 

superficial to the middle layers as the superficial layers, and contacts deeper than the 
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middle layers as the deep layers. We cross-referenced layer assignments to the 

reconstructions of the recording sites along the electrode track, as well as to single-unit 

and multi-unit spiking activity, which helped delineate the border between gray and white 

matter. We excluded contacts located outside the ROI from data analyses. Previous 

studies generated CSD data in F (40) and P (41) using visual stimulation. Consistent with 

these studies, our auditory-aligned CSD data also showed sensory stimulation eliciting 

early sinks in middle layers. In addition, we performed CSD analyses using LFP signals 

aligned to the trough of delta-band oscillations recorded from the electrode contact with 

the highest delta power, i.e., this contact served as the phase index (42-44). These delta 

phase-realigned CSDs showed differences across cortical layers, which helped verify that 

electrode positions remained stable across resting state recording blocks (in which there 

is no auditory stimulation). 

 

Behavior 

To match behavioral and sensory conditions across different levels of consciousness, we 

acquired electrophysiological data from monkeys in a dark, quiet room during wakeful 

resting state (no task requirements/no report condition), light non-REM sleep, general 

anesthesia, and stimulation-induced arousal from general anesthesia. To additionally 

control for eye movements in awake monkeys, we also acquired electrophysiology data 

during a fixation task (written in Neurobehavioral systems Presentation software), in 

which the monkey needed to fixate a central dim gray circle of diameter 0.42º visual angle 

on a black monitor screen located 57 cm away. The monkey received 0.18-0.22 mL of 

juice every 2.2-3.5 s while maintaining fixation within a window of 3ºx3º visual angle, 

centered on the dim gray circle. When the monkey’s gaze left the fixation window, he 

typically re-established central fixation quickly. We doubled the juice volume when fixation 

persisted beyond 10 s, which encouraged long fixations. For awake experiments, we 

monitored the monkey’s eye position using a video-based eye tracker with 500 Hz 

sampling rate. For anesthesia experiments, we monitored eyes using a digital video 

camera capturing 30 frames per second. We measured luminance contrast in a window 

tightly bounding the eye image using custom-written software in Matlab. This contrast 
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measure differentiated closed eyes, i.e., relatively homogenous high luminance eyelid 

shade, from stimulation-induced eye openings, i.e., dark pupil and iris contrasting against 

sclera. Visual inspection of the eye video verified the timing of eye openings/closings 

derived from the contrast measure. 

 

Awake experiments 

There were 40 awake experimental sessions (18 for monkey R; 22 for monkey W), each 

usually 2-4 hours in duration. Monkeys sat upright in a primate chair with their head 

immobilized using the head post and/or four rods that slid into the hollow slots of the 

acrylic implant. Awake experiments were split into two types, similar to the two phases of 

anesthesia experiments. The first type involved simultaneous recordings from F, P, T and 

C; and the second type involved T stimulation while recording from F, P and C. For both 

types of experiments, we performed recordings across multiple blocks of resting state, 

the fixation task and passive auditory oddball paradigm, interleaving blocks involving 

reward (fixation task) with those not involving rewards (resting state and passive oddball). 

We randomly varied the specific order across different experimental sessions. Our ROIs 

have been implicated in awareness, but they also contribute to selective attention and 

oculomotor function. Thus, we controlled for effects related to attentional or saccadic 

processes. For awake experiments, we compared recordings during resting state to the 

fixation task. We only analyzed electrophysiological data during stable eye epochs, i.e., 

when eye position remained fixed for at least 1 s. This applied to all wake-state data in 

the resting state and fixation task. Because the wakeful resting state and fixation task 

data were similar, they were combined for the wake dataset. 

 

Sleep 

In awake experiments, monkeys at times would fall asleep, particularly during resting 

state. Online, we identified non-rapid eye movement (NREM) sleep using the following 

criteria: (i) high EEG delta (1-4 Hz) activity; (ii) extended eye closure (we recorded times 

when eyes closed and re-opened); (iii) preceding period of drowsiness indicated by 

drooping/closing of eyelids; (iv) disengagement from fixation task (if applicable); and (v) 
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musculoskeletal stillness. Offline, we identified NREM sleep periods using EEG and eye 

tracker data. We bandpass filtered EEG data (1-4 Hz; Butterworth, order 6) and applied 

the Hilbert transform, to calculate the instantaneous delta-band amplitude. From the 

resulting time series, we detected times of relatively high delta amplitude using thresholds 

titrated for each experimental session, because the mean delta amplitude and standard 

deviation could vary depending on the session and total sleep time. For each session, we 

selected the threshold as the number of standard deviations from the mean delta 

amplitude that produced a total sleep time estimate that closely resembled the expected 

sleep time based on online NREM sleep identification, as well as the offline calculation of 

the total time when the monkey’s eyes were closed, using the recorded eye tracker time 

series data. Offline NREM sleep identification and time stamping then involved automated 

detection of extended epochs across the session when both the monkey’s eyes were 

closed, and delta amplitude was above threshold. These offline NREM sleep detections 

were consistent with online detections and proved reliable across sessions and monkeys. 

The identified NREM sleep epochs corresponded to N1 or N2 phases, i.e., light sleep. 

Thus, monkeys were at a different depth of unconsciousness during sleep compared to 

general anesthesia in our study. The LFP data during sleep allowed us to compare the 

influence of conscious and less-conscious states on the same subset of LFPs recorded 

in both wakefulness and sleep. This further substantiated our comparison between the 

awake and anesthetized states, in which we used two different subsets of LFPs from the 

same ROIs, because maintenance of stable anesthesia up to 12 hours required 

recordings to occur in a surgical suite, whereas awake experiments took place in the 

behavioral lab. 

 

Anesthesia experiments 

We used two different anesthetic agents, either propofol (9 sessions: 4 for Monkey R, 5 

for Monkey W) or isoflurane (9 sessions: 5 for Monkey R, 4 for Monkey W), to ensure that 

results reflected general mechanisms of anesthesia/consciousness, and not drug-specific 

effects. Each anesthesia experimental session was 10-12 hours in duration. After 

inducing anesthesia with ketamine (up to 20 mg/kg body weight, i.m.), we intubated the 
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monkey and inserted an intravenous catheter(s) for fluid and drug administration. We 

maintained general anesthesia in spontaneously respiring monkeys with propofol (0.17-

0.33 mg/kg/min i.v.) or isoflurane (0.8-1.5% on 1 L/min O2 flow), and a clinical 

anesthesiologist (A.R.) oversaw stable conditions throughout. We stabilized the head of 

the monkey (in prone position) using four rods that fit into the hollow slots of the acrylic 

implant. The rods were attached to a modified stereotaxic apparatus atop a surgical table. 

We maintained the monkey’s temperature using a forced-air warming system and 

monitored end tidal carbon dioxide, respiration rate, oxygen saturation, heart rate, blood 

pressure and rectal temperature. 

 

In the first phase of each experimental session, we simultaneously recorded from F, P, T 

and C. We independently positioned the linear micro-electrode arrays in each ROI, using 

microdrives coupled to an adapter system allowing flexibility in approach angles across 

arrays. These recordings started at least two hours after anesthetic induction, and 30 

minutes after positioning arrays to allow for settling of tissue. We used a number of 

different anesthetic levels, adapting the dose to reflect a range of clinically relevant 

anesthetic depths, e.g., 0.2, 0.225, 0.25 and/or 0.3 mg/kg/min propofol, or 1%, 1.1%, 

1.25% and/or 1.5% isoflurane, allowing dosing changes to stabilize before starting the 

next block of recordings (typically at least 30 minutes). In the second phase of each 

session, we electrically stimulated T while recording from F, P and C, without changing 

the anesthetic regimen. For stimulations, we used the linear electrode array existing in T 

or replaced it with another array inserted along the same trajectory to the same depth. If 

the first stimulation site did not induce a change in the level of consciousness, then we 

moved the stimulating electrode to a new depth in the thalamus, in steps of 0.5-1 mm 

dorsal or ventral along the electrode track, until stimulation induced a change in 

consciousness level. In early experiments, we tested T stimulations at different anesthetic 

doses between 0.17-0.3 mg/kg/min for propofol and between 0.8-1.3% for isoflurane. We 

observed stimulation-induced changes in the level of consciousness for all but the highest 

doses, i.e., 0.3 mg/kg/min propofol and 1.3% isoflurane. In subsequent experiments, we 

used propofol doses between 0.17-0.28 mg/kg/min (M = 0.23, SD = 0.03), and isoflurane 
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doses between 0.8-1.25% (M = 1.04, SD = 0.11) during T stimulation. As previously 

reported (22), consciousness level changes did not depend on the anesthetic used, nor 

the dose. For both experimental phases (recordings with or without stimulation), we 

interleaved resting state epochs and the passive auditory oddball paradigm. 

 

Electrical stimulations 

We electrically stimulated T using 24-contact electrode arrays, which had previously been 

used several times as recording electrodes and thus had lower impedance. We 

simultaneously stimulated via 16 electrode contacts, with 400 μs bi-phasic pulses of 200 

μA, at 50Hz frequency, for a total of 60 s stimulation duration for each stimulation event 

(experiments included multiple stimulation events). This stimulation protocol has been 

shown to reliably increase the consciousness level in (the same) anesthetized monkeys; 

see (22) for further validation of electrical stimulation methods and behavioral effects. We 

typically performed three stimulation events within a stimulation block for reproducibility, 

with a recovery time of at least the stimulation event duration between repetitions, i.e., 

stimulations from 1-2 minutes, 3-4 minutes, and 5-6 minutes of a seven minute block.  

 

Scoring the level of consciousness 

We quantified the level of consciousness induced by thalamic stimulation, using a 

customized index incorporating five indicators, each scored 0, 1 or 2. The sum of the 

scores of the five indicators yielded a consciousness level index, ranging from 0-10. The 

five indicators are: 

1) limb/face movements (0 = nothing; 1 = small movement or increased EMG with no 

clear movement; 2 = full reach or withdrawal) 

2) oral signs (0 = nothing; 1 = small mouth/jaw/tongue movements; 2 = full jaw 

openings/closures, with multiple repetitions) 

3) body movements (0 = nothing; 1 = small torso movement or swallowing; 2 = large 

full torso movement) 

4) eye movements/openings (0 = nothing; 1 = eyelid flutters/small blinks or increased 

eye movements; 2 = full eye opening with occasional blinks) 
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5) vital signs (0 = no change, i.e., difference of <10% respiration rate (RR), <5% heart 

rate (HR); 1 = difference of >10% RR, >5% HR; 2 = at least 20% change in either 

RR or HR, or at least 10% change in both RR and HR; compared to baseline 30 s 

prior to stimulation).  

A WNPRC veterinarian, a clinical anesthesiologist, and five other primate 

electrophysiologists observed the electrical stimulation effects during anesthesia 

experiments. We scored the consciousness level before, during and after all stimulation 

events, using observations recorded during experiments, as well as offline review of 

videos and EMG data (filtered 30-450 Hz, full-wave rectified, then filtered 5-100 Hz to 

extract the envelope). A typical stimulation block consisted of three stimulation event 

repetitions (one minute each) within a seven minute period at a given site, using the same 

stimulation frequency, current, polarity, duration, anesthetic and dose. We defined 

stimulation event epochs from the onset to offset of stimulation pulses, i.e., from 1-2 

minutes, 3-4 minutes, and 5-6 minutes of a seven minute block. The time between two 

stimulation epochs was split equally into post- and pre-stimulation epochs. The pre-, 

during and post-stimulation index of consciousness level for a block reflected the 

maximum possible score across the repetitions (repetitions largely produced the same 

score within each epoch type). Prior to electrical stimulations, the consciousness level 

index was 0 or 1. This could be differentiated from stimulation events inducing an index 

of 3 or more by all observers. Thus, we defined effective stimulation events as those 

inducing an index ≥3 (typically stimulation centered on T), whereas control (ineffective) 

stimulation events had an index of 0-2 (typically stimulation not centered on T). 

 

Preprocessing 

We divided electrophysiological data time series into epochs of 1 s duration for analysis. 

In the anesthetized and non-REM sleep states, we divided LFPs into non-overlapping 1 

s epochs. In the awake state, we first identified time periods when the eyes were stable, 

i.e., periods starting 200 ms after a saccade and ending 200 ms before the next saccade. 

Next, we divided stable eye periods into non-overlapping 1 s epochs. This matched 
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oculomotor state (stable eye position) in data epochs from conscious and unconscious 

states. 

 

We lowpass filtered data below 250 Hz for LFPs (Butterworth, order 6, zero-phase filter) 

and down-sampled to 1 kHz. Next, we linearly detrended LFPs, and extracted artifacts 

(power line noise) by removing significant sine waves using the Chronux 

(http://chronux.org/) function rmlinesc. We then calculated bipolar derivations of LFPs, 

i.e., the difference between two adjacent electrode contacts (excluding contacts that had 

been removed due to noise), to minimize any possible effects of a common reference and 

volume conduction (43-45). 

 

During electrical stimulations, there was a brief artifact caused by the applied current. To 

remove this artifact, we first excised a 1 ms window around the artifact, then linearly 

interpolated across this window. Next, we used the Chronux function rmlinesc to remove 

any significant sine waves at the stimulation frequency (we also performed artifact 

removal using the SARGE toolbox (46), which yielded qualitatively similar results). 

 

We excluded any data epochs in which bipolar-derived LFPs from F, P, T or C had 

amplitude greater than 3.5 standard deviations from the mean, for both information 

theoretic and LFP power calculations. Prior to entropy (H), mutual information (I) and Φ∗ 

calculations, we normalized each LFP based on its mean across all epochs for that 

recording session. Finally, each LFP was binarized with respect to its median amplitude 

over the 1 s epoch, removing potential biases related to amplitude differences across 

channels or conditions.  

 

Calculating Φ∗ 

Due to the complexity of the system from which we recorded and its states at each time 

point, calculating integrated information (F) directly is intractable (47). However, with 

certain assumptions about the organization of included brain areas, integrated information 

can be estimated from the measure Φ∗ (20, 47, 48) (Fig. S2, A-C). To compute Φ*, we 
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construct the state of a subsystem 𝑋(𝑡) at time 𝑡 (1 ms time bins considering 1 kHz 

sampling frequency) as: 

𝑋(𝑡) = [𝑋01(𝑡) 𝑋11(𝑡) 𝑋21(𝑡) 𝑋31(𝑡)]						 

where its elements are the bipolar-derived LFP signals, ranging from 1 to 23 signals 

(derived from 24 electrode contacts) for each area, C, T, F and P. That is, the component 

of 𝑋(𝑡) for each brain area is 𝑁45 × 𝑇	-sized, where 𝑁45 specifies the number of bipolar-

derived channels for each one of four areas and 𝑇 = 1000 (1 s epochs, sampled at 1 

kHz). Next, we calculate the uncertainty about the states assuming a multivariate 

Gaussian distribution of the states across time as: 

𝑝(𝑋) =
1

((2𝜋)-|Σ(𝑋)|))(/# exp 7−
1
2
(𝑋 − 𝜇(𝑋))1Σ(𝑋)$((𝑋 − 𝜇(𝑋))<										(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1) 

where Σ(𝑋) (𝑡 is removed for brevity) is the covariance matrix of 𝑋 estimated over a 1 s 

data epoch, 𝜎'& is the covariance between channels 𝑖 and 𝑗 of the state vector 𝑋 over the 

epoch, |Σ(𝑋)| is the determinant of the covariance matrix that can be considered as a 

measure of uncertainty about the state 𝑋 at any time point within the epoch, and 𝑁 is the 

total number of channels across areas. We computed the relationship between the 

ordered Mahalanobis distances of the data from the mean matrix and their corresponding 

𝜒# quantiles, to ensure the states have a Gaussian distribution. The entropy for the states 

𝑋(𝑡), given its probability density function (pdf) as 𝑝(𝑋), is defined as: 

𝐻(𝑋) ∶= −X 𝑝(𝑋)log9𝑝(𝑋):	𝑑-𝑥										(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2)
ℝ$

 

The entropy will be maximized if 𝑝(𝑋) is a multivariate Gaussian, and can be calculated 

in closed form as: 

𝐻(𝑋) =
1
2 log(

|Σ(𝑋)|) +
1
2𝑁log

(2𝜋𝑒)									(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	3) 

which can be described as the uncertainty about the state 𝑋(𝑡) at time 𝑡 (Fig. S2C). The 

reduction of uncertainty about the state 𝑋(𝑡) at time 𝑡, given its past at time 𝑡 − 𝜏, also 

known as the mutual information, can be calculated as: 
𝐼(𝑋"; 𝑋"$8) = 𝐻(𝑋") − 𝐻(𝑋"|𝑋"$8)						(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	4) 

where 𝐻(𝑋"|𝑋"$8) is the conditional entropy of state 𝑋(𝑡) given its past state 𝑋(𝑡 − 𝜏), and 

can be derived in canonical form with a Gaussian distribution assumption of states as: 
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𝐻(𝑋"|𝑋"$8) =
1
2 log(

|Σ(𝑋"|𝑋"$8)|) +
1
2𝑛log(2𝜋𝑒)						(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	5) 

where Σ(𝑋"|𝑋"$8) is the covariance matrix of the conditional distribution 𝑝(𝑋"|𝑋"$8) 

(conditional covariance) that can be expressed analytically as: 
Σ(𝑋"|𝑋"$8) = Σ(𝑋") − Σ(𝑋" , 𝑋"$8)Σ(𝑋"$8)$(Σ(𝑋" , 𝑋"$8)1 						(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	6) 

Mutual information, I, can be considered a measure of the information the current state 

has about its past, and it is used to calculate Φ∗, a measure of integrated information (Fig. 

S2D). Φ∗	of the subsystem 𝑋(𝑡) is information that cannot be partitioned into independent 

parts of 𝑋 and can be defined as:  
𝛷∗ = 𝐼 − 𝐼∗							(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	7) 

where 𝐼∗	(disconnected 𝐼) is called mismatched information (Fig. S2C). 𝐼∗ was calculated 

for every bipartition of system 𝑋. For most conditions 8 system parts were defined: (C, T, 

Fs, Fm, Fd, Ps, Pm, Pd; where s, m and d subscripts correspond to superficial, middle and 

deep layers respectively). From this, 247 subsystems can be tested (28 two-channel 

subsystems, 56 three-channel subsystems, etc). Within each cortical layer (Fs, Fm, etc) 

there were multiple bipolar-derived channels; these were never partitioned, and so each 

layer was effectively a single subsystem part consisting of multiple parallel channels. 

 

The partition 𝑃 that minimizes the normalized 𝛷∗ is the minimum information partition 

(MIP), as defined in (49): 

𝑁3 = (𝑚 − 1) × min
9
{𝐻(𝑀9)}						(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	8) 

𝑀𝐼𝑃 = argmin
3

r
𝛷3∗

𝑁3
s 														(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	9) 

Here 𝑚 is the number of partitions and 𝑀9 is the 𝑘"5	part of subsystem 𝑋. 
𝑁3	counterbalances inevitable asymmetries introduced by computing 𝛷∗ across a variable 

number of partitions of unequal sizes. The 𝑀𝐼𝑃	reveals the weakest link between the parts 

of 𝑋, where the information loss by the partition into subsystems is minimal. We calculated 

the covariance and cross covariance matrices for each 1 s epoch using the shrinkage 

method for a more stable result, and averaged them across all epochs for each recording 

session to calculate 𝑀𝐼𝑃 and its corresponding 𝛷∗ (Φ:;3
∗ ), using gradient ascent and L-
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BFGS optimization method. We incorporated 2 NVIDIA GTX 1080ti GPUs to speed-up 

the process of searching for MIP to calculate Φ:;3
∗ . 

 

We initially calculated I and Φ∗ for 8 discrete lag times (𝜏 ∈

{5, 10, 15, 20, 30, 40, 50, 100	ms}) to find the optimum value for our analyses. We selected 

𝜏 = 15	𝑚𝑠 for all further analyses, because it yielded the highest Φ∗ for all conditions. Of 

note, this 𝜏 is in the gamma frequency range, which, in parallel analyses, proved 

consistently important for decoding conscious state based on spectral power. We 

calculated Φ∗ for all non-trivial and unique subsystems. For the state data (wake, sleep, 

anesthetized), there were 8 system parts (C, T, Fs, Fm, Fd, Ps, Pm,, Pd), giving rise to 247 

non-trivial subsystems. For the thalamic stimulation data in anesthetized monkeys (pre, 

during, post-stimulation), thalamic recordings were not possible, thus there were 7 system 

parts (C, Fs, Fm, Fd, Ps, Pm, Pd), giving rise to 120 subsystems for which we calculated 

Φ∗. For instance, considering the state data without stimulation, there was one system 

with 8 parts (𝑠 ∶= {𝐶|T|𝐹!|𝐹<|𝐹=|𝑃!|𝑃<|𝑃=}), 8 subsystems with 7 parts, which are derived 

by removing one of the parts at each permutation (e.g., removing C yields the subsystem 

𝑠 ∶= {T|𝐹!|𝐹<|𝐹=|𝑃!|𝑃<|𝑃=}), and so on. We calculated H and I for the same composition of 

subsystems (Fig. 1B and Fig. 2, C and D for Φ∗; Fig. S3, A-F, for I and H). 

 

Decoding the state of consciousness based on LFP power 

To decode the state of consciousness, we calculated the power spectral density (PSD) 

of bipolar-derived LFPs for each 1 s epoch using the multi-taper method (5 Slepian 

tapers). Averaging across frequencies of interest and power values within brain areas 

yielded the mean power for each frequency band (delta 1-4 Hz; theta, 4-8 Hz; alpha, 8-

15 Hz; beta, 15-30 Hz; low gamma, 30-60 Hz; high gamma, 60-90 Hz) in each system 

part (C, T, Fs, Fm, Fd, Ps, Pm, Pd). This generated 48 input features (8 system parts x 6 

frequency bands) for the conscious state classification model. 

 

We trained a Support Vector Machine (SVM) model (50) to classify the LFP power data 

into three states: wake (W), sleep (S), and anesthesia (A). We specify 𝑦'(𝑡) ∈ {0,1,2} as 
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the identifier of the state of each epoch, where 0, 1, and 2 denote W, S and A respectively. 

The SVM classifier was implemented by a nonlinear projection of the training data 𝐱 

feature space 𝒳 into a high dimensional feature space ℱ using a kernel function 𝜙. With 

𝜙:𝒳 ⟶ ℱ being the mapping kernel, the weight vector 𝐰 can be expressed as a linear 

combination of the training inputs (60% of the whole shuffled and stratified input in our 

model), and the kernel trick used to express the discriminant function as: 

𝑦(𝐱; ζ) = a1ϕ𝐱 + 𝑏 = �𝑎?𝜑(𝐱?, 𝐱)
-

?.(

+ 𝑏										(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	10) 

where ζ = {a, 𝑏} is the new parameter with a and 𝑏 as weights and biases of the mapped 

feature space ℱ respectively. We used the radial basis function (RBF) kernel that allows 

nonlinear decision boundary implementation in the input space. The RBF kernel holds the 

elements: 
𝜑(𝐱?, 𝐱) = exp(−h ∗ ‖𝐱? − 𝐱‖#)										(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	11) 

where h is a tunable parameter at each cross-validation fold. Model hypermeters 

consisting of regularization penalty (𝐶) and h were selected by grid search through 20-

fold cross-validation, during which the model accuracy was calculated. To account for the 

class imbalance in the training and test set, at each cross-validation fold the shuffled 

stratified dataset was selected as the input to the model. 

 

We used two measures to compare classifiers: accuracy and F-score. Accuracy is the 

proportion of correctly classified inputs and is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 										(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	12) 

F-score balances classifiers’ precision and recall and is calculated as: 

𝐹𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 										(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	13) 

where 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 										(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	14) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 										(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	15) 

To determine the importance of each input feature, we calculated the mean decrease in 

accuracy (MDA) after removing the aforementioned input feature from the feature set, 

then training and performing 20-fold cross-validation of the model again. For instance, to 

measure the MDA for the T part of the system, the T power for all 6 frequency bands were 

excluded from the input feature set to the classifier; and to measure the MDA for the delta-

band, the delta-band power for all 8 system parts were excluded from the input features. 

 

Before interpreting feature importance, we examined non-independence across features 

in our classifier by comparing inter-feature correlations (Fig. S5A). Features in the LFP 

classifier could relate by either brain area or frequency. As expected, correlations were 

much higher for related features (diagonal) with similar brain areas, than less related 

features (different areas). To quantify this, we created pools of correlations between 

features that shared the same brain area or frequency and those that did not, and 

computed unpaired t-tests. Tests were significant both for brain area (t(924) ≥ 8.20, n1 = 

21, n2 = 903, p ≤ 2.30x10-4) and frequency (t(856) ≥ 11.70, n1 = 36, n2 = 820, p ≤ 8.10x10-

7). This confirmed that dissimilar features (bound by different areas or frequencies) were 

not clearly dependent on each other, for each area and frequency band. Because 

dependence is low and we are cross validating the classifier 20 times to minimize random 

variance, the MDA approach is a valid measure of feature importance and can be 

interpreted as the contribution of each system part or frequency band to conscious state 

decoding. 

Decoding the effectiveness of thalamic stimulation based on LFP power 

We used a similar SVM classifier to decode the effectiveness of thalamic stimulation. LFP 

power features were extracted for 7 areas and 6 frequency bands, using the same 

process described in the previous section. We specify 𝑦'(𝑡) ∈ {0,1} as the identifier of the 

effectiveness of thalamic stimulation for that particular epoch, where 0 and 1 denote 

effective and control stimulations respectively (epochs with stimulation-induced 
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consciousness level index equal to or greater than 3 considered effective; control 

(ineffective) otherwise). We used the same model and kernel as for the conscious state 

decoder, except for the hyperparameters which were tuned during model training and 20-

fold cross-validation.  

Decoding the state of consciousness based on Φ∗/𝐼/𝐻 

As stated above, we computed our complexity measures from a system of 8 possible 

brain areas/system parts, giving rise to 247 non-trivial possible subsystems, each of 

which could serve as a feature for classification. To limit the amount of potentially 

redundant features, ensure similar conditions (“leave-one-out” for MDA analyses), and 

better match the number of features for the Φ∗ and LFP power classifiers, we used 

Φ∗/𝐼/𝐻 for subsystems with 7 or greater number of system parts to classify the state of 

consciousness. This generated 9 input features for each of Φ∗, 𝐼 and 𝐻 – one feature 

reflects the entire system of 8 parts (C, T, Fs, Fm, Fd, Ps, Pm,, Pd) and the other features 

reflect all possible combinations of 7 parts. We used the same model, parameters and 

methods as those used for the LFP power classifier. We trained a model for each feature 

set separately (Φ∗, 𝐼 or 𝐻) and measured the accuracy for each cross-validation fold.  

 

To further calculate each area’s contribution to classifying the state of consciousness 

based on Φ∗, we trained another model using Φ∗ values of the subsystems with 6 or 

greater number of system parts – generating 37 input features – as well as a model using 

Φ∗ values of the subsystems without the part of interest – generating 8 features. We then 

calculated the MDA for the model with the reduced feature set.  

 

Before interpreting feature importance, we examined dependence across features in our 

classifier by comparing inter-feature correlations (Fig. S5B). Features in the Φ∗classifier 

overlap by subsystem composition. As expected, correlations were much higher for 

related features (diagonal) all missing the same brain area, than less related features 

(missing different areas). To quantify this, we used the same method as that used for the 

LFP power classifier (comparing pools of correlations between features that shared the 
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same brain area and those that did not), and found the correlations to be significantly 

different (t(471) ≥ 3.45, n1 =36, n2 = 435, p ≤ .038). Once again, this justified our use of 

the MDA approach to measure feature importance. 

 

Decoding the effectiveness of thalamic stimulation based on Φ∗/I/H 

We used Φ∗/I/H for subsystems with 6 or greater system parts to classify the effectiveness 

of thalamic stimulation. This generated 8 input features for each one of Φ∗, I and H – one 

feature reflects the entire system of 7 parts (C, Fs, Fm, Fd, Ps, Pm,, Pd) and the other 

features reflect all possible combinations of 6 parts. We used the same model, 

parameters and methods as that used for the LFP power classifier for stimulation 

effectiveness. We trained a model for each feature set separately (Φ∗, I or H) and 

calculated the accuracy for each one of 20 cross-validation folds. We used the same 

approach as in the previous section to find each area’s contribution to the decoding of 

stimulation effectiveness. 

 

MIP distribution 

The MIP for each recording session can be considered the natural partitioning of a system 

such that its information is above and beyond its constituent subsystems, as well as the 

weakest link of the system. Thus, system parts in one partition have a stronger connection 

among themselves compared to the rest of the system. We used this concept, as well as 

the frequency of all the bipartition sets for Φ∗, to compare how the structure of the system 

changes across conscious states and thalamic stimulations. We generated histograms of 

the MIP distribution normalized for each state or stimulation separately, resulting in a 

probability mass function (PMF) for that condition (Fig. S7, A and B). To estimate 

distributions of MIPs, we used a gaussian kernel to fit a distribution to each histogram, 

assuming that the MIP samples are independently and identically distributed as well as 

drawn from a categorical distribution. We also computed the pairwise probability of each 

brain area occurring on the same side of the MIP, derived from the frequency of 

appearance for each MIP type in the PMF. We interpreted these probabilities as 

connection weights for ease of presentation (Fig. 4, E-K and Fig. 7, F-K). 
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Statistical analyses 

Statistical analyses were performed using correlations and linear mixed effect models in 

R and the Pymc3 (51) package in Python. All p-values were controlled using the Holm-

Bonferroni method. Where appropriate, models were analyzed using linear models (LM 

in R), reporting Beta slopes, t statistics, corrected p-values, and ΔR2 effect sizes. When 

necessary to control for other sources of non-independence, we used linear mixed effect 

models (LMER in R), reporting Beta slopes, F statistics, and corrected p-values. Because 

it is not a straightforward process to compute ΔR2 effect sizes for LMER models, we 

estimated effect sizes by computing similar LM models without the random effects 

structure. Given that these models yielded highly similar Beta parameters, their effect 

sizes serve as reasonable estimates for the more appropriate LMER models. 

 

State and Stimulation changes in LFP power, I, H and Φ* 

To compare the effects of state on LFP power, we regressed normalized power for each 

brain area in the delta band on state (wake, sleep, anesthesia) as a dummy coded 

variable. P-values were corrected for all LFP power tests as a family. So as not to 

overinflate the sample size, for I, H and Φ*, we averaged values across all possible 

subsystems for each state sample and then computed the same regression. Tests were 

corrected for all complexity measures as a family. 

 

To compare the specificity of stimulation effects on LFP power, we regressed normalized 

delta power for each brain area on stimulation state (during stim = .5, pre/post = -.5), 

effectiveness (effective = .5, control = -.5), and the interaction. Effects were visually 

similar at other frequency bands, and so tests were not repeated. Again, to not inflate 

sample size, for I, H and Φ* we averaged values across all possible subsystems for each 

stimulation event before computing the interaction.  

 

Inter-feature correlation differences 
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We created pools of similar features (sharing the same brain area or system structure) 

and different features, then computed unpaired t-tests. 

 

Decoding effects 

Classifier performances were compared for cross validated repetitions and tested against 

chance (.33% for state classifiers, .50% for stimulation classifiers). We tested 

performance between classifiers in a pairwise manner using linear regression and dummy 

coding with corrected p-values. Mean decreases in accuracy (MDA) were similarly 

analyzed using dummy coding separately for the LFP power classifier, for brain areas 

and frequency bands, and for brain areas in the Φ* classifier (see Table S1 for detailed 

statistics); p-values were corrected within each model feature type. 

 

Correlations with stimulation-induced changes in level of consciousness 

LFP power for all areas in all frequency bands (δ, θ, α, β, γL, γH), I, H and Φ* were 

normalized within animal and anesthetic. Correlations were computed between changes 

in each normalized metric (during stim – pre) and the corresponding changes in level of 

consciousness (during stim – pre). Correlations were computed using the “cor” function 

yielding r values and T-statistics. Regression estimates were further computed using 

linear models yielding β slopes and regression lines (Fig. 3, B-I; Fig S6, A and B; see 

Table S2 for detailed statistics). Covariates for animal and anesthetic were included. No 

effects were significant for the LFP power data even without controlling for multiple 

comparisons. Complexity measures (I, H and Φ*) were controlled for multiple comparisons 

as a family.  

 

Φ* analyses 

To test the contribution of each brain area to Φ*, we regressed average Φ* for each 

possible system (contained at least 2 brain areas) on consciousness and on variables 

representing the binary membership (0 = not member, 1 = member) of each brain area in 

the system. For example, a system containing TPdPmFdFs would be represented as (A1:T 

= 1, A2:C = 0, A3:Pd = 1, A4:Pm = 1, A5:Ps = 0, A6:Fd = 1, A7:Fm = 0, A8:Fs = 1). Membership 
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effects were computed within systems of the same size (number of total parts in the 

system, e.g., the system above has a size of 5). For the state data, consciousness was 

coded as a state-based contrast (wake = .5, sleep/anesthesia = -.5).  

Φ∗~𝛽@ +�(𝛽' × 𝐴')
A

'.(

+ 𝛽B × conscious + 𝛾C'*D × (1 +�𝐴')											(𝑚𝑜𝑑𝑒𝑙	1𝑎)
A

'.(

 

For the stimulation data, we used a similar model that did not contain the thalamus. For 

this model, consciousness was coded as a contrast of stimulation condition and 

effectiveness (effective stim = .5, control stim/pre/post = -.5).  

Φ∗~𝛽@ +�(𝛽' × 𝐴')
A

'.#

+ 𝛽B × conscious + 𝛾C'*D × (1 +�𝐴')											(𝑚𝑜𝑑𝑒𝑙	2𝑎)
A

'.#

 

To estimate the effect size of each brain area and consciousness, the same model was 

computed without the random effect structure. Because the significance and β values 

were similar, we computed ΔR2 for each effect in the model and report this as an estimate 

of the effect size for each component (Fig. 4, B and D). 

Φ∗~𝛽@ +�(𝛽' × 𝐴')
A

'.(

+ 𝛽B × conscious							(𝑚𝑜𝑑𝑒𝑙	1𝑏) 

Φ∗~𝛽@ +�(𝛽' × 𝐴')
A

'.#

+ 𝛽B × conscious							(𝑚𝑜𝑑𝑒𝑙	2𝑏) 

To compare the effects of each area, we computed T-tests between Φ* estimates for 

systems containing brain area A but not B, and systems that contain area B but not A, for 

every possible brain area pair and controlled for multiple comparisons (see Table S3). 

 

Comparing the probability mass function of MIPs  

We applied a two-sample Kolmogorov-Smirnov test using the Pymc3 package in Python, 

to compare probability mass functions relating to the MIPs across conscious states and 

stimulations.   
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Fig. S1. Theories of consciousness are cortico-centric and differentially emphasize 
contributions of frontal and more posterior brain areas. (A) Schematic of anatomical 
pathways between frontal cortical (F), posterior cortical (parietal, P, or sensory), central 
lateral thalamic (T) and striatal (caudate nucleus, C) regions of interest in our study. Low, 
moderate and high color saturation in cortical areas indicates superficial, middle and deep 
cortical layers, respectively. (B-E) Proposed neural correlates of consciousness as 
postulated by prominent theories, with key brain areas (enlarged) and anatomical 
pathways (in bold) emphasized: (B) Global Neuronal Workspace (GNW); (C) Higher-
Order Theories (HOT); (D) Integrated Information Theory (IIT), with inset showing 
example mechanism with integrated causes and effects (red circle) generating integrated 
information; and (E) Recurrent Processing Theory (RPT). 
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Fig. S2. Using mutual information to calculate Φ*. (A) Schematic showing calculation 
of mutual information (I) for the full system containing superficial (s), middle (m) and deep 
(d) layers of frontal and parietal cortex, thalamus (Thal) and caudate nucleus. (B) 
Schematic showing calculation of I for a theoretical minimum information partition (I*) 
represented as a “cut” in the full system (dashed black line). (C) Integrated information 
(Φ*) calculated from I and I* for the partitioned system in B. Note that integrated information 
(Φ) is the metric proposed by Integrated Information Theory to measure consciousness, 
and Φ* is a computable estimate of that value. 
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Fig. S3. Φ* calculations are neither influenced by noise, nor differences in the 
number of electrode contacts in each brain area. We tested the (A) impact of noise 
on Φ* by removing the caudate nucleus (C) from the system and adding noise, and (B) 
the impact of the number of electrode contacts on Φ* by comparing single versus multiple 
contacts in C. (A) Φ* (± SE) calculated for different subsystems absent thalamus (T), 
superficial (s), middle (m) or deep (d) layers of parietal (P) or frontal (F) cortex. Solid bars 
indicate subsystems with C removed. Striped bars indicate Φ* for subsystems where C 
data are replaced with gaussian noise. (B) Φ* (± SE) calculated for system containing 
multiple electrode contacts in C (striped) or only a single contact in C (solid) during 
wakefulness, sleep and anesthesia (Anes). 
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Fig. S4. Entropy and mutual information vary with conscious state, but less so with 
thalamic stimulations that change consciousness level. (A) Average mutual 
information (± SE) for different subsystems absent thalamus (T), caudate nucleus (C), 
superficial (s), middle (m) or deep (d) layers of parietal (P) or frontal (F) cortex, or for the 
full system of 8 parts (All; CTPdPmPsFdFmFs), during wakefulness (orange), sleep (teal) 
and anesthesia (blue). (B and C) Average mutual information (± SE) prior to (burgundy), 
during (yellow) or after (gray) effective (B) or control (C) thalamic stimulation. (D) Average 
entropy (± SE) for different subsystems and full system, during wakefulness (orange), 
sleep (teal) and anesthesia (blue). (E and F) Average entropy (± SE) prior to (burgundy), 
during (yellow) or after (gray) effective (E) or control (F) thalamic stimulation. 
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Fig. S5. Limited inter-feature correlation for both the LFP power and Φ* classifiers 
justifies MDA analyses of feature importance. (A, top left) Inter-feature correlation for 
the LFP power classifier. Features are LFP power at delta (d = 0-4 Hz), theta (q = 4-8 Hz), 
alpha (a = 8-15 Hz), beta (b = 15-30 Hz), low gamma (gL = 30-60 Hz) and high gamma 
(gH = 60-90 Hz) within thalamus (T), caudate (C), superficial (s), middle (m) or deep (d) 
layers of parietal (P) or frontal (F) cortex. (B, bottom right) Inter-feature correlation for the 
Φ* classifier. Features are subsystems absent thalamus (T), caudate (C), superficial (s), 
middle (m) or deep (d) layers of parietal (P) or frontal (F) cortex. 
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Fig. S6. Normalized entropy (H) and mutual information (I) do not correlate well with 
stimulation-induced changes in level of consciousness. (A) Regression estimate for 
the effect of stimulation-induced changes in level of consciousness (during stim – pre) on 
normalized I (Z score, during stim – pre). (B) Regression estimate for the effect of 
stimulation-induced changes in level of consciousness (during stim – pre) on normalized 
H (Z score, during stim – pre). Points show values for each stimulation event. Lines show 
regression fit (± SE) with reported slope (β). Color behind β indicates r value. 
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Fig. S7. Minimum information partitions (MIPs) show that consciousness coincides 
with increased affiliation of parietal deep layers and subcortical areas. (A) 
Probability mass functions (PMF) of MIP types for each state, normalized by state, and 
aligned to the anesthesia condition, with accompanying kernel density estimates (B) PMF 
of MIP types for each stimulation condition, normalized by condition, aligned to pre-
stimulation, with the accompanying kernel density estimates. Identified MIPs represent 
the peak of the distribution. Red dashed lines indicate the “cut” separating partitioned 
areas (thalamus = T, caudate = C, superficial, middle, deep parietal = (Ps, Pm, Pd), and 
frontal = (Fs, Fm, Fd),). (C-E) Differences in pairwise probability of brain areas associating 
on the same side of the MIP (from Fig. 4, F-K) for state and stimulation comparisons 
relevant for consciousness: (C) wake – sleep compared to wake – anesthesia; (D) 
effective stimulation – pre-stimulation compared to control stimulation – pre-stimulation; 
and (E) compared to effective stimulation – control stimulation. Color scale shows change 
in probable affiliation of brain areas in same MIP side. (F-K) Pairwise probability (gray 
scale lines) of brain areas associating on the same side of the MIP for the 5-part system 
(TCPsPmPd) during (F) wakefulness, (G) anesthesia and (H) sleep, and for the 4-part 
system (TCPsPmPd) (I) prior to, (J) during effective, and (K) during control stimulation. 
Gray scales with probability of association. Thick lines show monosynaptic (Mono) 
anatomical paths (in at least one direction); thin lines show multisynaptic (Multi) paths. 
Dashed red lines show dominant MIP when applicable. (L-N) Differences in pairwise 
probability of brain areas associating on the same side of the MIP (from F-K) for state and 
stimulation comparisons relevant for consciousness: (L) Wake – sleep compared to Wake 
– anesthesia; (M) effective stimulation – pre-stimulation compared to control stimulation 
– pre-stimulation; and (N) compared to effective stimulation – control stimulation. Color 
scale shows change in probable affiliation of brain areas in same MIP side.  
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LFP Power State Classifier:  Area MDA 
n = 160 Fm Fd Ps Pm Pd C T Area 

T  -7.24 -4.48 -5.49 9.41 33.09 21.52 25.49 Fs 
C 5.59  2.76 1.75 16.65 40.33 28.76 32.73 Fm 
Pd 5.24 -0.35  -1.01 13.89 37.57 26.00 29.97 Fd 
Pm 21.95 16.36 16.71  14.90 38.58 27.01 30.98 Ps 
Ps 14.37 8.78 9.13 -7.58  23.68 12.11 16.08 Pm 
Fd 19.03 13.44 13.79 -2.92 4.66  -11.57 -7.60 Pd 
Fm 23.90 18.32 18.66 1.96 9.53 4.88  3.98 C 
Fs 19.05 13.46 13.81 -2.90 4.68 0.02 -4.85  T 

Area T C Pd Pm Ps Fd Fm n = 80 
Φ* State Classifier:  Area MDA 

LFP Power Stimulation Classifier:  Area MDA  
n = 280 Fm Fd Ps Pm Pd C Area  

C  -5.99 -9.90 -1.85 10.92 29.26 29.35 Fs  
Pd 3.44  -3.92 4.14 16.91 35.25 35.33 Fm  
Pm 11.75 8.31  8.05 20.82 39.17 39.25 Fd  
Ps 9.62 6.18 -2.13  12.77 31.11 31.20 Ps  
Fd 9.39 5.96 -2.36 -0.23  18.35 18.43 Pm  
Fm 14.34 10.90 2.59 4.72 4.94  0.08 Pd  
Fs 13.12 9.69 1.37 3.50 3.73 -1.22  C  

Area C Pd Pm Ps Fd Fm n = 140  
Φ* Stimulation Classifier:  Area MDA  

LFP Power Stimulation Classifier:  Frequency MDA   
n = 240 γL β α θ δ Band   
δ  3.24 -4.36 -6.43 -4.78 2.57 γH   
θ 24.20  -7.60 -9.67 -8.03 -0.67 γL   
α 27.41 3.21  -2.07 -0.43 6.93 β   
β 18.10 -6.10 -9.31  1.64 9.00 α   
γL 9.75 -14.45 -17.66 -8.35  7.35 θ   
γH 15.74 -8.46 -11.67 -2.36 5.99  δ   

Band δ θ α β γL n = 240   
LFP Power State Classifier: Frequency MDA   

Table S1. Statistical results for all mean decrease in accuracy (MDA) analyses (related 
to Fig. 1, F-H and Fig. 2, H-J). Values are t statistics for pairwise comparisons of MDA 
related to features within all classifiers. Positive values reflect the column feature higher 
than the row feature on the same side of the diagonal with the same color. Yellow shading 
indicates statistical significance (p < 0.05) after controlling for multiple comparisons. 
Classifiers are separated along black diagonals according to state or stimulation 
comparisons, or measure (LFP power or Φ*) comparisons. For example, for the LFP 
Power stimulation classifier (middle gray), Ps (column feature) leads to a significantly 
higher MDA than Fm (row feature, t = 4.14), but an insignificantly lower MDA than Fs (t = 
-1.85). 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.07.030429doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.030429


 

49 
 

Linear Regression (Δ Power ~ Δ consciousness level) 

n = 163 δ θ α β γL γH 
β t β t β t β t β t β t 

C -0.05 -1.30 -0.05 -1.48 -0.05 -1.45 -0.02 -0.57 0.00 0.00 -0.04 1.00 
Pd 0.07 1.56 0.04 0.95 0.02 0.52 0.02 0.42 0.02 0.50 0.01 0.33 
Pm 0.02 0.33 0.02 0.32 0.01 0.30 0.00 0.12 0.02 0.43 0.00 -0.02 
Ps -0.05 -0.98 -0.05 -1.07 -0.06 -1.36 -0.05 -1.36 -0.01 -0.25 -0.03 -0.68 
Fd 0.05 1.08 0.04 0.88 0.03 0.67 0.04 0.85 0.03 0.92 0.04 1.10 
Fm -0.01 -0.31 0.00 -0.11 -0.01 -0.14 0.01 0.15 0.03 0.84 0.01 0.30 
Fs 0.06 1.27 0.05 1.09 0.03 0.62 0.02 0.46 0.02 0.48 0.03 0.72 

Table S2. Statistical results for all LFP power linear regression correlation analyses 
(related to Fig. 3, B-H). Values are β slopes and t statistics for the regression of changes 
in normalized power of each brain area (during – pre-stimulation) and change in level of 
consciousness (during – pre-stimulation). Columns, frequency bands; rows, brain areas: 
caudate (C), superficial (s), middle (m) or deep (d) layers of parietal (P) or frontal (F) 
ROIs. Positive β slopes or t values indicate an increase in power related to an increase 
in consciousness level. No tests were statistically significant (p > .05).  
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Φ* Stimulation:  System Membership 
n = 372 Fm Fd Ps Pm Pd C Area 

T  0.16 2.92 6.95 5.26 15.10 13.18 Fs 
C 14.33  2.74 6.77 5.08 14.95 13.11 Fm 
Pd 16.14 1.29  3.97 2.29 11.95 10.49 Fd 
Pm 20.72 7.14 5.90  -1.62 7.36 5.55 Ps 
Ps 21.58 7.69 6.47 0.51  8.95 7.29 Pm 
Fd 21.79 8.29 7.11 1.27 0.76  -2.32 Pd 
Fm 23.54 9.47 8.23 2.30 1.79 1.02  C 
Fs 23.54 9.29 8.05 2.10 1.59 0.82 -0.20 

n = 378 Area T C Pd Pm Ps Fd Fm 
Φ* State:  System Membership 

Table S3. Statistical results for pairwise comparisons of the influence of brain area 
subsystem membership on Φ* (related to Fig. 4, A and C). Values are t statistics for 
pairwise comparisons of Φ* generated by subsystems containing the column area but not 
the row area and vice versa. Positive values when the column area-containing 
subsystems had higher Φ* than the row area-containing subsystems on the same side of 
the diagonal with the same color. Yellow shading indicates statistical significance (p <.05) 
after controlling for multiple comparisons. State comparisons correspond to areas on 
white background, whereas stimulations correspond to areas on gray background. For 
example, for the Φ* stimulation data (gray), C (column area) yields significantly higher Φ* 
than Ps (row area, t = 5.55), but insignificantly lower Φ* than Pd (row area, t = -2.32). 
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