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Abstract:  
We trained a sensitive machine learning tool to infer the distribution of histone marks using maps 
of nascent transcription. Transcription captured the variation in active histone marks and complex 
chromatin states, like bivalent promoters, down to single-nucleosome resolution and at an 
accuracy that rivaled the correspondence between independent ChIP-seq experiments. The 
relationship between active histone marks and transcription was conserved in all cell types 
examined, allowing individual labs to annotate active functional elements in mammals with similar 
richness as major consortia. Using imputation as an interpretative tool uncovered cell-type 
specific differences in how the PRC2-dependent repressive mark, H3K27me3, corresponds to 
transcription, and revealed that transcription initiation requires both chromatin accessibility and 
an active chromatin environment demonstrating that initiation is less promiscuous than previously 
thought.  
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Introduction 

The discovery that core histones are post-transcriptionally modified fueled nearly six 

decades of speculation about the role that histone modifications play in transcriptional regulation 

by RNA polymerase II (Pol II) (1). Many of the best-studied histone modifications are deeply 

conserved within eukaryotes, indicating important functional roles (2–4). Indeed numerous 

examples illustrate how the disruption of histone modifications, or their associated writer and 

eraser enzymes, lead to defects in transcription and cellular phenotypes (5–8). Histone 

modifications are found in highly stereotyped patterns across functional elements, including 

promoters, enhancers, and over the body of transcribed genes and non-coding RNAs. Promoters 

and enhancers are associated with a pattern of chromatin organization consisting of a 

nucleosome depleted core flanked by +1 and -1 nucleosomes marked with specific histone 

modifications, including histone 3 lysine 4 trimethylation (H3K4me3), lysine 27 acetylation 

(H3K27ac), and lysine 4 monomethylation (H3K4me1) (9–15). Actively transcribed gene bodies 

are marked by histone 3 lysine 36 trimethylation (H3K36me3), lysine 79 trimethylation 

(H3K79me3), and histone 4 lysine 20 monomethylation (H4K20me1) (9, 16). Finally, two 

modifications are enriched in transcriptionally depleted regions, including histone 3 lysine 27 

trimethylation (H3K27me3) and lysine 9 trimethylation (H3K9me3) (16). 

The stereotyped pattern of histone modifications makes them useful in the annotation of 

functional elements in eukaryotic genomes. A collection of 11 histone modifications, first used to 

broadly analyze different cell types by the ENCODE project, has been applied to identify functional 

elements in metazoans (2, 16–18). Numerous studies have used histone modifications to reveal 

the location of enhancers, lincRNAs, and other types of functional elements  (10, 19–22). Histone 

modifications aid in interpreting phenotype-associated genetic variation (23, 24) and discovering 

molecular changes in disease (25–30). Likewise, histone modifications have been proposed for 

applications in selecting individualized therapeutic strategies (31). Applications such as these 

have led to genome annotation efforts in a myriad of mammals (32), plants (33–35), and other 

eukaryotic organisms (36). New annotation efforts will be launched alongside moonshot goals to 

sequence and annotate genomes across the tree of life (37). However, despite extensive efforts 

to decrease cost and improve the throughput of experimental methods (38–42), and to “impute” 

(or guess) the abundance of marks that were not directly observed (43, 44), genome annotation 

still requires concerted efforts of large, well-funded, interdisciplinary consortia.  

Despite the widespread use of histone modifications in genome annotation, the precise 

nature of the relationship between histone modifications and transcription remains unknown. As 

a topic of singular importance, the extent to which specific histone modifications have a direct role 

in transcriptional regulation or an indirect role as “cogs” in the transcription machinery, remains 

debated (45). Certain combinations of histone modifications, most notably the bivalent chromatin 

signature consisting of H3K4me3 and H3K27me3, are speculated to mark specific genes for 

transcriptional activation in later developmental stages (46). In another example, the  balance 

between H3K4me1 and H3K4me3, which has long been known to correlate with enhancer and 

promoter activity (10), has been proposed to establish these two regulatory roles (47). Another 

question which remains heavily debated is the extent to which distinct histone modifications mark 

DNA sequence elements that otherwise have similar functional activities. H3K27ac, H3K64ac, 

and H3K122ac are all reported to denote distinct sets of enhancers (48). The nature of the 

quantitative relationship between transcription and histone modification lies at the crux of both of 
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these open questions. Large amounts of histone modification that are not explained by current 

transcription events leaves open the possibility that marks serve as a placeholder which might 

contribute to transcriptional regulation in a distinct cellular state. Alternatively, if histone 

modifications serve as “cogs” in the transcriptional machinery, we might expect that they are 

nearly completely correlated with on-going transcription.  

Here we trained sensitive machine learning models that decompose maps of primary 

transcription into ChIP-seq profiles representing 10 distinct histone modifications. We show that 

transcription measured using precision run-on and sequencing (PRO-seq) (49–51) can recover 

the pattern of active histone modifications at nucleosome resolution and with an accuracy that 

rivals the correlation between independent ChIP-seq experiments in holdout cell types. 

Surprisingly, transcription also recovered the distribution of the repressive chromatin mark 

H3K27me3. However, unlike active marks, H3K27me3 was found in two distinct patterns in 

different cell types: one pattern in fully differentiated cells covered broad regions with low levels 

of transcription, and a second pattern in stem cells was associated with transcription start sites of 

weakly transcribed genes. Transcription accurately identified bivalent promoters in embryonic 

stem cells. Although transcription accurately predicted nearly all histone modifications, we found 

a subset of DNase-I hypersensitive sites that were refractory to prediction. Collectively, our results 

(1) support models in which histone modifications are “cogs” with a supportive role, rather than a 

direct regulatory role, in transcription, (2) preclude models in which transcription initiates 

pervasively as a consequence of open chromatin, and (3) provide a new strategy for genome 

annotation using a single functional assay that is tractable for a single lab to perform.  
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Figure 1. dHIT imputes histone modifications using nascent transcription.
(A) Schematic of the dHIT algorithm. PRO-seq and ChIP-seq data in K562 cells was used to train a support vector regression (SVR)
classifier to impute 10 different histone modifications.
(B) Genome-browser compares experimental and predicted histone modifications on a holdout chromosome (chr22). PRO-seq data
used to generate each imputation is shown on top.
(C) Genome-browser compares experimental and predicted histone marks near the promoter of EIF3D. PRO-seq data used to gen-
erate each imputation is shown on top.
(D) Heatmaps show the distribution of transcription (left) and histone modifications (right) measured using MNase ChIP-seq or pre-
dicted using transcription. Rows represent transcription initiation domains in K562 cells. Heatmaps were ordered by the distance
between the most frequently used TSS in each transcription initiation domain on the plus and minus strand.
(E) Pearson’s correlation between predicted and expected values for nine histone modifications. Values are computed on the holdout
chromosome (chr22) in humans, chr1 in horse, and chr1 in mice. Empty cells indicate that no experimental data is available for com-
parison in the cell type shown.
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Results  

 

Accurate imputation of histone modifications at nucleosome resolution using 

nascent transcription 

The primary goal of discriminative histone imputation using transcription (dHIT) is to use 

the shape and abundance of RNA polymerase, measured using PRO-seq, GRO-seq, or ChRO-

seq data (henceforth referred to simply as PRO-seq), to impute the level of histone modifications 

genome-wide. dHIT passes transformed PRO-seq data to a support vector regression (SVR) (see 

Methods). During a training phase, the SVR optimized a function which mapped PRO-seq signal 

to the quantity of ChIP-seq signal at each position of the genome (Fig. 1a; see Methods). Once 

a dHIT model was trained using existing ChIP-seq data, it can impute steady state histone 

modifications in any cell type, provided that the relationship between histone modification and 

transcription is preserved. We trained dHIT to impute the levels of 10 different histone 

modifications that are widely deployed to analyze chromatin state (Fig. 1a) (16, 17, 52, 53). To 

avoid overfitting to batch-specific features in a single run-on and sequencing dataset (53), training 

was performed using seven datasets in K562 cells that exemplify the range of variation commonly 

observed between data in library quality, sequencing depth, run-on strategy (PRO-seq or GRO-

seq), and pausing index (Supplementary Table 2). 

We evaluated the accuracy of each dHIT imputation model on a holdout chromosome in 

one of the training datasets (chr22; Fig. 1b; Supplementary Fig. 1). Histone modification signal 

intensity imputed using dHIT was highly correlated with experimental data for a variety of marks 

with different genomic distributions, including marks with focused signal on promoter or enhancer 

regions (e.g., H3K4me1/2/3, H3K27ac, H3K9ac), marks spread across active gene bodies 

(H3K36me3, H4K20me1), and over large domains of PRC2-dependent repressive 

heterochromatin (H3K27me3). In addition to well-studied and commonly used histone marks, we 

also obtained a high degree of correspondence for less widely studied histone modifications. For 

instance, acetylation of lysine 122 (H3K122ac), a residue on the lateral surface of the H3 globular 

domain (54), was reported to mark a distinct set of enhancers compared with H3K27ac (48). 

Nevertheless, dHIT models trained to impute H3K122ac had a high correlation on the holdout 

chromosome (Fig. 1b). Of the marks for which we attempted to train models, only the repressive 

mark H3K9me3 did not perform well. 

In many cases imputation captured the fine-scale distribution of histone mark signal near 

the transcription start site (TSS) of annotated genes or enhancers (Fig. 1c; Supplementary Fig. 

2). To explore the limit of the resolution for histone mark imputation using transcription, we 

obtained new ChIP-seq data for four active marks whose distribution correlates with enhancers 

and promoters (H3K4me1, H3K4me2, H3K4me3, and H3K27ac) at nucleosome resolution by 

using MNase to fragment DNA. We also analyzed two gene body marks, H3K36me3 and 

H3K79me3, that are depleted near the TSS (9). We trained new SVR models in K562 cells that 

take advantage of the higher-resolution MNase ChIP-seq data, excluding chromosome 22 as a 

holdout to confirm a high correlation (Supplementary Fig. 3). Examination of genome-browser 

traces near the TSS of genes on the holdout chromosome confirmed that dHIT could impute 

active marks with a high resolution (Supplementary Fig. 4).  

Genome-wide, several aspects of chromatin organization were correlated with the precise 

location of TSSs and Pol II pause sites. These features are readily apparent when sorting by the 

adapt this material for any purpose without crediting the original authors. 
(which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or 

The copyright holder has placed this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.032730doi: bioRxiv preprint 

https://paperpile.com/c/n4QK7r/HDbs+qj1G+nRux+cbZU
https://paperpile.com/c/n4QK7r/HDbs+qj1G+nRux+cbZU
https://paperpile.com/c/n4QK7r/HDbs+qj1G+nRux+cbZU
https://paperpile.com/c/n4QK7r/HDbs+qj1G+nRux+cbZU
https://paperpile.com/c/n4QK7r/HDbs+qj1G+nRux+cbZU
https://paperpile.com/c/n4QK7r/HDbs+qj1G+nRux+cbZU
https://paperpile.com/c/n4QK7r/HDbs+qj1G+nRux+cbZU
https://paperpile.com/c/n4QK7r/HDbs+qj1G+nRux+cbZU
https://paperpile.com/c/n4QK7r/HDbs+qj1G+nRux+cbZU
https://paperpile.com/c/n4QK7r/cbZU
https://paperpile.com/c/n4QK7r/cbZU
https://paperpile.com/c/n4QK7r/cbZU
https://paperpile.com/c/n4QK7r/Ab97
https://paperpile.com/c/n4QK7r/Ab97
https://paperpile.com/c/n4QK7r/Ab97
https://paperpile.com/c/n4QK7r/wgY7
https://paperpile.com/c/n4QK7r/wgY7
https://paperpile.com/c/n4QK7r/wgY7
https://paperpile.com/c/n4QK7r/MqKH
https://paperpile.com/c/n4QK7r/MqKH
https://paperpile.com/c/n4QK7r/MqKH
https://doi.org/10.1101/2020.04.08.032730


 

 

distance between the strongest TSS on the plus and minus strand (13–15) (Fig. 1d). First, when 

the distance between the maximal sense and divergent TSS was larger than ~600 bp, we 

observed a nucleosome between start sites that was marked predominantly with H3K4me3 and 

H3K27ac, but depleted for H3K4me1. Second, H3K4me3 and H3K27ac signal were highest on 

the +1 nucleosome, as well as the nucleosome found inside of the initiation domain. Third, 

H3K4me2 was highest on the -1 nucleosome. Fourth, gene body marks H3K36me3 and 

H3K79me2 were depleted at the promoter, and enriched in the body of transcribed genes 

(Supplementary Fig. 5). Each of these correlations between TSSs and chromatin were also 

observed to varying degrees in genome-wide imputation in K562 cells (Fig. 1d), and imputation 

data in a complete holdout cell type, GM12878 (Supplementary Fig. 6). Thus, dHIT receovered 

the placement of nucleosomes constrained to ordered arrays whose position correlated with 

transcription initiation.  

 

Histone imputation can often generalize to new cell types, with important 

exceptions 

We asked whether the relationship between transcription and histone modifications is a 

general feature that is shared across mammalian cell types. We computed the correlation 

between imputed and experimental histone marks in five holdout datasets without retraining the 

model. Holdout datasets were selected to represent a range of cultured cells, primary cells, and 

tissues from multiple mammalian species (Supplementary Table 1). Holdout data also explored 

a range of technical variation in both run-on assays and ChIP-seq validation experiments, 

including data collected by different labs, different fragmentation methods, and, for the run-on 

experiment, using different variants of a run-on assay (Supplementary Table 1-2). 

Despite a variety of technical differences between ChIP-seq in holdout cell types and the 

ENCODE training dataset (Supplementary Table 1), active marks were recovered with a similar 

fidelity in holdout cell types as observed for K562 (Fig 1e, Supplementary Fig. 7a-c). At 1 kb 

resolution, dHIT recovered active marks indicative of promoters, enhancers, and gene-bodies at 

a median Pearson correlation of 0.73 (Pearson’s R = 0.38-0.84), substantially higher than copying 

values from the training dataset (Supplementary Fig. 7d). Lower correlations were generally 

observed when the experimental ChIP-seq data (certain CD4+ T-cell datasets) or the PRO-seq 

data (HeLa) had fewer sequenced reads. For marks that were distributed across broad genomic 

regions (H3K36me3 and H3K27me3), dHIT imputation identified broad regions of high signal with 

reasonably high accuracy, but smoothed over fine-scale variation (Fig. 1e; Supplementary Fig. 

1a-b). Thus, dHIT accurately recovered the distribution of active histone marks in a way that 

generalized to all new cell types examined here.  

To place correlations observed between imputed and experimental data into context, we 

compared correlations between imputed and ChIP-seq data to those observed between different 

ChIP-seq datasets in K562 and GM12878, two cell lines for which multiple experimental datasets 

exist for each mark. For active marks, and for H3K27me3, correlations between dHIT imputation 

and experimental data were often within the range observed between experimental datasets 

(Supplementary Fig. 8). These data suggest that imputation performs similar to ChIP-seq 

experimental replication.  

We identified one important exception on the extent to which histone imputation 

generalized between cell types. The repressive mark, H3K27me3, had a higher variation among 
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holdout samples than observed for active marks, with a reasonably high correlation in K562, 

GM12878, and horse liver (median Pearson’s R = 0.31), but a much weaker correlation in mouse 

embryonic stem cells (mESCs, R = 0.06). Examination of signal tracks showed that the distribution 

of H3K27me3 differed dramatically from the K562 cell dataset. Whereas in K562, H3K27me3 was 

broadly distributed across large regions that span tens to hundreds of kilobases, in mESCs 

H3K27me3 appears over punctate regions near weakly transcribed promoters (Fig. 2A). Analysis 

of H3K27me3 in 375 high-quality samples showed that stem, germ, and certain progenitor cells 

usually had a punctate pattern, whereas most somatic cell types had the broadly distributed 

pattern (Supplemental Fig. 9). Although we cannot completely discount the possibility that 

technical factors contribute to this difference in H3K27me3 distribution (55–57), we noted the 

discovery of both punctate and broad H3K27me3 distributions even when libraries were prepared 

by the same lab (Supplemental Fig. 9; and ref (58)). These observations suggest that H3K27me3 

can occur in at least two distinct profiles, both of which appear linked to features of active 

transcription. 

 

Imputation of bivalent promoters and other chromatin “states” 

We next asked whether dHIT could impute complex chromatin states consisting of multiple 

histone marks. The bivalent chromatin state consists of nucleosomes near gene promoters 

marked with H3K4me3 and H3K27me3, which are associated with gene activation and 

repression, respectively (46). The bivalent chromatin state is best described in ESCs and germ 

cells, and tends to mark the promoter of genes with developmental importance (46, 59–61). We 

used dHIT models trained on ENCODE ChIP-seq data in K562 cells to impute H3K4me3 and 

H3K27me3 based on a GRO-seq dataset in mESCs (62). Despite the difference in H3K27me3 

distribution between K562 and mESCs (noted above), we observed a strong tendency for bivalent 

promoters in mESCs to retain weak activity while occurring inside regions of high H3K27me3. For 

example, Prox1 is located inside of a broad H3K27me3 domain, which the imputation recognized 

based on low transcription levels from Prox1 and surrounding regions (Fig. 2A). Nevertheless, 

the Prox1 promoter is weakly transcribed, and the imputation correctly places a peak of 

H3K4me3. The general pattern where bivalent genes were transcribed within H3K27me3-high 

domains was consistent enough that nearly 80% of bivalent gene promoters could be separated 

from promoters associated with either mark alone, or neither mark, with a precision of 80%, using 

a random forest on holdout data (Fig. 2B). Notably, promoters that carry the H3K27me3 mark in 

mESCs were distinguished accurately from those carrying no mark, indicating that promoters 

carrying the H3K27me3 mark are generally not transcriptionally silent. Taken together, these 

results demonstrate that bivalent genes can be identified based on the distribution of active 

transcription alone.   

To generalize our observations on bivalent genes to other chromatin states, we asked 

whether chromatin marks imputed using transcription can infer chromatin states defined by 

chromHMM (63). We used a previously reported chromHMM model that defined 18 distinct 

chromatin states using ChIP-seq data from six marks for which we trained imputation models 

(H3K4me3, H3K27ac, H3K4me1, H3K36me3, H3K9me3, and H3K27me3) (17, 64). Examination 

on the WashU epigenome browser revealed that chromatin states were highly similar, regardless 

of whether they were defined using experimental data from ENCODE or dHIT imputation (Fig. 

3A). Each chromHMM state was enriched near the TSS of annotated genes to a similar degree 
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Figure 2. dHIT identifies bivalent H3K4me3, H3K27me3 marked genes.
(A) Genome-browser shows PRO-seq data and histone modification data measured by ChIP-seq or predicted using PRO-seq in the
Prox1 locus. Prox1 is marked by bivalent H3K4me3 and H3K27me3 histone modifications in mESCs.
(B) Precision recall curve illustrates the accuracy of bivalent gene classification by a random forest classifier using ChIP-seq data (green)
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bivalent, 50% not bivalent) that was held out during random forest training.

adapt this material for any purpose without crediting the original authors. 
(which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or 

The copyright holder has placed this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.032730doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032730


 

 

when using experimental or dHIT imputed data as input (Fig 3B, Supplementary Fig. 10). To 

determine the concordance expected between chromatin states defined using independent 

collections of experimental data, we applied chromHMM to a distinct collection of ChIP-seq data 

in the same cell type (Supplementary Table 1). Jaccard distances between imputed and 

experimental data were highly correlated with those observed between other ChIP-seq datasets 

(Fig. 3C, Supplementary Fig. 11). Taken together, these results suggest that transcription alone 

is sufficient to infer complex chromatin states, especially active chromatin states.  

 

Genome annotation using a single functional assay 

To illustrate the utility of chromHMM using dHIT imputed data, we analyzed chromatin 

states in 20 primary glioblastomas recently analyzed using ChRO-seq (51). ChromHMM analysis 

revealed both broad similarities and putative differences in chromatin states between different 

GBMs. For instance, a subset of samples were characterized by active transcription in ADM2 and 

MIOX, and a subset carried marks of the polycomb repressed states (Fig. 3D). Analysis of this 

same dataset would have taken 120 separate ChIP-seq experiments (Fig. 3E). Moreover, sample 

quantity and quality would have limited independent ChIP-seq experiments to fewer than 9 

modifications, especially if using conventional ChIP-seq instead of low-input alternatives (40).  

Another critical application is to efficiently annotate functional elements in diverse tissues 

from understudied species. To illustrate this use of dHIT, we obtained ChRO-seq data from the 

liver of two horses that serve as the focus of the Functional Annotation of Animal Genomes 

(FAANG) project (32, 65, 66). Using dHIT and models trained in K562 cells to impute histone 

modifications, we obtained patterns of H3K27ac, H3K4me3, H3K4me1, and H3K27me3 that were 

highly correlated with experimental data from the same tissues (Fig. 1E; Supplementary Fig. 

12A). In addition to those histone marks measured by FAANG, dHIT also imputed patterns for 

five additional histone marks, providing new information about chromatin state that was not 

obtained by the FAANG consortium. Next, we prepared ChRO-seq libraries in nine tissues taken 

from mice (Supplementary Fig. 12B; Supplementary Fig. 13). After accounting for biological 

replication in this experiment (7 replicates x 9 tissues x 9 histone marks), it would have taken 567 

ChIP-seq assays to prepare this same dataset.  

Thus, using dHIT to interpret ChRO-seq data provides individual labs access to 

consortium scale annotation of functional elements in mammalian genomes, and this information 

has potential applications in precision diagnostic medicine and genome annotation. 

 

Transcription predicts active marks better than combinations of multiple ChIP-

seq datasets 

 Many applications would benefit from data collected using the assay that provides the 

most information about chromatin state using the fewest experiments. To identify the best assay 

for this task, we trained SVR imputation models that use either PRO-seq or ChIP-seq data for 

each of the 10 different histone marks to predict each of the other experimental ChIP-seq 

datasets. We evaluated performance using the L1 norm, defined as the average of the median 

centered distance between imputed and experimental marks in 10bp windows on a holdout 

chromosome (see Methods). PRO-seq achieved a lower median L1 norm than any other 

individual assay by a fairly wide margin (Fig. 4, black). Examining imputation tracks led us to 

attribute the relative success of PRO-seq to two features. First, PRO-seq captured the boundaries 
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Figure 3. Inference of chromatin states defined by chromHMM using transcription.
(A) Genome-browser in K562 cells shows 18 state chromHMM model using either ChIP-seq data used to train the model (Broad), alternative
ChIP-seq data in K562 (other), or based on imputation (dHIT predicted). PRO-seq data used during dHIT imputation is shown on top.
(B) Enrichment in each of 18 chromatin states as a function of distance from RefSeq annotated transcription start sites.
(C) Jaccard distance between chromHMM states inferred using ChIP-seq from Broad and predicted data (y-axis) and states inferred using
ChIP-seq from Broad and an alternative compilation of high-quality ChIP-seq data (x-axis).
(D) ChromHMM states inferred using ChRO-seq data from 20 primary glioblastomas.
(E) The number of unique ChRO-seq or ChIP-seq libraries required to analyze chromatin states in 20 primary glioblastomas.
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and direction of gene bodies in a manner that could not be achieved by other marks 

(Supplementary Fig. 14A). Second, PRO-seq was the most accurate at recovering the relative 

distribution of signal intensities in focal marks near the TSS (Supplementary Fig. 14B). Thus, 

we conclude that PRO-seq improved the accuracy of histone mark imputation by encoding signals 

from multiple functional regions and by improving spatial resolution compared with ChIP-seq data.  

We next trained SVRs using combinations of multiple histone marks to determine whether 

training on multiple experimental datasets improved imputation performance. Because the space 

of potential histone mark combinations was extremely large and training was time consuming, we 

manually selected combinations of histone marks that provide orthogonal information to each 

other. We first selected H3K4me2 and H3K36me3, which combines a mark denoting promoter/ 

enhancer regions with one denoting gene bodies (9, 67). The pair of experimental datasets 

together slightly improved the imputation of most ChIP-seq marks relative to the best performing 

individual mark, for instance H3K4me1 and H3K9me3 (Fig. 4, right). However, the median L1 

norm was still worse than PRO-seq. We tested combinations where larger numbers of marks 

were observed by adding H3K27ac, H3K27me3, and H3K9me3, and evaluating the accuracy with 

which imputation could recover experimental marks. In most cases using additional marks made 

only a minor difference in performance (Fig. 4). Although we observed a decrease in the median 

accuracy using multiple marks (Fig. 4, black), this was explained largely by replacing the worst 

performing marks with experimental data. Our results therefore suggest that capturing information 

about the relative position of TSSs and gene bodies was enough to saturate performance using 

our current framework. Thus, PRO-seq data predicted ChIP-seq signals of unobserved active 

histone marks at least as well as ChIP-seq data for five different histone marks.  

 

Chromatin accessibility is not sufficient for transcription initiation 

In classical models, gene regulation in eukaryotes primarily involves removing 

nucleosomes from the promoter of active genes, at which point Pol II initiates in an indiscriminate 

manner (68). More recent studies support such accessibility models by observations that Pol II 

initiates at nearly all types of open chromatin regions (69, 70). We used imputation to ask whether 

transcription initiates stochastically at any accessible DNA sequence, as previously proposed (69, 

70), or specifically at well-defined enhancer and promoter regions. We trained an SVR to impute 

smoothed DNase-I-seq data using PRO-seq in the same manner as we used for histone 

modifications. The best model predicted a holdout chromosome (chr22) with an accuracy of 0.61 

or 0.77 (R2) at resolutions of 100 and 1,000 bp (Fig. 5A-C), consistent with a strong correlation 

between chromatin accessibility and transcription initiation (13, 69).  

Nevertheless a substantial number of DNase-I hypersensitive sites had predicted values 

near zero, indicating a subset of sites that were refractory to prediction (Fig. 5a, red arrow). 

Intersecting experimental and imputed DNase-I-seq intensities (100 bp windows) with ChIP-seq 

data revealed that poorly performing windows were enriched for binding of CTCF (Fig. 5c), or to 

a lesser extent for transcriptional repressors and co-repressors such as REST, RFX5, or HDAC2 

(Supplementary Fig. 15). In contrast H3K27ac peaks were depleted for 100 bp windows with 

poor matches between experimental and imputed DNase-I-seq data (Fig. 5b).  

To confirm the absence of transcription, and further investigate the chromatin environment 

at each of these sites, we divided 100 bp windows into those in which DNase-I-seq was predicted 

well by PRO-seq, and those for which it was predicted poorly (Fig. 5b-c, red boxes). Windows in 
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which DNase-I-seq was predicted well by dHIT for both CTCF and H3K27ac had a high signal for 

transcription initiation in GRO-cap data and active histone modifications (H3K27ac, H3K4me3, 

and H3K4me1) (Fig. 5d-k). Windows in which DNase-I-seq was predicted poorly had a high CTCF 

signal, but virtually no evidence of transcription initiation based on GRO-cap, and weak signal for 

active histone modifications (Fig. 5l-o). Yet despite substantial differences in histone marks, the 

quantity of DNase-I-seq signal was similar in these regions (Fig. 5g,k,o). Thus, a substantial 

portion of DNase-I accessible regions show no robust evidence of transcription initiation. Our 

analysis supports a model in which both chromatin accessibility and chromatin environment are 

important factors to facilitate transcription initiation by Pol II.  
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Figure 5. Chromatin accessibility is not sufficient for transcription initiation.
(A-C) Scatterplots show experimental DNase-I hypersensitivity (x-axis) as a function of predicted DNase-I hypersensitivity (y-axis) in 100
bp windows intersected with DNase-I hypersensitive sites (A), H3K27ac peaks (B), or CTCF peaks (C) on a holdout chromosome (chr22).
(D-G) Meta plots show GRO-cap, histone modifications, CTCF binding, and DNase-I hypersensitivity signal near H3K27ac peaks in which
DNase-I hypersensitivity signal was accurately predicted by transcription.
(H-K) Meta plots show GRO-cap, histone modifications, CTCF binding, and DNase-I hypersensitivity signal near CTCF peaks in which
DNase-I hypersensitivity signal was accurately predicted by transcription.
(L-O) Meta plots show GRO-cap, histone modifications, CTCF binding, and DNase-I hypersensitivity signal near CTCF peaks in which
DNase-I hypersensitivity signal was not accurately predicted by transcription.
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Discussion 

Currently genome annotation requires conducting assays for multiple independent histone 

modifications to identify functional elements. Since functional elements are known to be highly 

tissue specific and their activity is dependent on environmental conditions, assays must be 

performed in numerous tissues and conditions to exhaustively identify functional elements. As a 

result, genome annotation efforts still benefit greatly from the coordinated efforts of large 

consortia. However, consortium efforts are not tractable to apply in all species and tissues, 

especially as major efforts to sequence eukaryotic organisms begin to produce large numbers of 

high-quality reference genomes (37). This creates a great need for individual communities to 

annotate functional elements using the most efficient molecular and computational tools. We 

show here that nascent transcription measured using PRO-seq provides at least as much 

information about chromatin state as the combination of multiple ChIP-seq datasets. In addition 

to chromatin state, nascent transcription is also known to provide direct information about gene 

expression (71), transcription factor binding (72), the location of transcription start sites, and the 

grammar of transcription initiation domains (11, 15, 53, 73). Moreover, the  introduction of new 

biochemical tools that allow the application of PRO-seq techniques with greater ease in solid 

tissue samples and other samples that have proven challenging to measure using conventional 

genomic techniques has the potential to further democratize these technologies (51, 74). Thus, 

using dHIT to decompose PRO-seq data into separate information about active chromatin 

modifications is a supremely efficient strategy to gain information about functional elements using 

a single molecular assay for each tissue and condition.  

The high correlation between histone modifications and transcription has important 

consequences for the way we understand the role of histone modifications. Despite decades of 

speculation about the regulatory role of many histone modifications, recent studies depleting 

histone modifications widely believed to be critical for transcription result in surprisingly limited 

effects on gene expression (75–77). Our incomplete knowledge about the role that histone 

modifications play in transcription results in part from a lack of information about precisely how 

strong the correspondence between histone modifications and transcription actually is. For 

instance, do histone modifications serve in part to “bookmark” critical functional elements for later 

activation by developmental or environmental processes? We show here that the correlation 

between histone modifications and transcription is nearly as strong as the correlation between 

biological replicates of experimental histone modification ChIP-seq data. Our findings likely 

underestimate the actual correlation between transcription and histone modifications, due to 

technical factors including imperfections in the model fit and biological differences between cells 

cultured in different labs.  

The strong correspondence between histone modification and transcription is not 

compatible with models where histone modifications routinely encode future transcription events 

that are not already reflected in the current cellular environment. Although our work does not 

directly rule out histone modifications encoding transcription programs which are currently in use, 

a regulatory role implies that histone modifications must be stable and inherited through 

successive cell divisions. Numerous reports indicate active histone modifications are unstable 

due to a continual dynamic competition between writers and erasers (78, 79). Therefore our data, 

in conjunction with published work, is most compatible with models in which histone modifications 

serve as cogs in the transcription machinery.  
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Our results also have implications for the debate about whether transcription initiates 

pervasively at open chromatin regions. Classical models of gene regulation during the 1970s held 

that histones were general suppressor proteins that passively silenced gene expression (68). 

Although the importance of chromatin has been recognized since the discovery of histone 

modifications in 1964 (1), recent variations on this basic theme posit that all nucleosome depleted 

regions initiate transcription with some frequency, regardless of whether they show histone 

modifications or regulatory activity (69). We show that, unlike histone modifications, there were a 

substantial number of DNase-I accessible open chromatin regions that were not identified by dHIT 

imputation. These DNase-I accessible regions had no evidence of either transcription or histone 

modifications, but were enriched for other chromatin binding proteins like CTCF. Our findings 

indicate that transcription requires not just chromatin accessibility, but it also requires the correct 

chromatin environment for transcription initiation.  

 

 

Methods 
 

Experimental methods 

 

Cell culture: K562 cells (ATCC, CCL-243) were cultured at 37oC, 5% CO2  at a density between 

0.3-1 x 106cells/mL in RPMI medium (VWR 45000-396) topped up with 10% Fetal Bovine Serum 

(Genesee Scientific, cat: #25-514).  Cells were split at a consistent interval of 3 days, when the 

cells reach 106 cells/mL. 

 

Cells culture for Triptolide time course: 24h prior to Triptolide treatment, K562 cells were 

resuspended in fresh (RPMI) medium at a density of 0.6 x 106 cells/mL. On the day of the 

experiment, cells were recounted, aliquoted in equal cell numbers to 6 T-100 ThermoFisher 

Tissue Culture Flasks (each flask corresponding to one time point) and treated with Triptolide 

(Sigma-Aldrich, T3652-1MG) to a final concentration of 500 nM Triptolide. The Triptolide 

treatment was performed for 0 min, 15 min, 30 min, 1h, 2h, and respectively 4h. 

 

Cells cross-linking for ChIP: After Triptolide treatment, K562 cells were cross-linked in 1% CH2O 

freshly prepared  in 1x PBS on the day of the experiment to reach the final concentration of 0.1% 

CH2O in the media. Following a 5 min incubation at room temperature on a rocking platform, the 

cross-linker was quenched with 1M Glycine to reach a final concentration of 0.135 M Glycine. 

Lastly, cells were washed twice in 1x PBS, then harvested and snap frozen on dry ice. 

 

MNase ChIP-seq - chromatin extraction: We prepared MNase ChIP-seq data for seven histone 

marks in K562 cells, including H3K4me1 (ab8895, lot: GR3206285-1), H3K4me2 (ab7766, lot: 

GR102810-4), H3K4me3 (ab8580, lot: GR3197347-1), H3K27ac (ab4729, lot: GR3231937-1), 

H3K36me3 (ab9050, lot: GR3257952-2), H3K79me3 (ab2621, lot: GR3173217), and H3K27me3 

(ab6002, lot: GR3228496-2). All buffers and solutions used were provided by Cell Signaling 

Technology (91820S Simple ChIP kit) 
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Cross-linked K562 cells were thawed on ice and resuspended in 1 mL cold Buffer A,  mixed well, 

and centrifuged at 2000x g for 5 min at 4oC. The pellet was then mixed in 0.5 mL cold Buffer B, 

centrifuged at 2000x g for 5 min at 4oC andresspended again in Buffer B. While still in Buffer B, 

chromatin was digested with 0.5 uL MNase for 13 min at 37oC. Tubes were inverted every 2 min 

during the incubation time. Finally, the reaction was stopped by the addition of 40 uL 0.5 M EDTA, 

and the tubes were moved to 4oC. The cell suspension got topped up with 1.5 mL cold ChIP 

Buffer, transferred to a 7 mL glass dounce homogenizer, and dounced ~30 times with a tight 

pestle to release the chromatin. The chromatin was further diluted with 1 mL cold ChIP Buffer and 

aliquoted to 1.5 mL Eppendorf tubes to be centrifuged at 12000x g for 10 min at 4oC. The 

supernatant was collected and total chromatin quantified before each immunoprecipitation.  

 

MNase ChIP-seq - Immunoprecipitation: Total digested chromatin was diluted to a total volume 

of 1 mL in cold ChIP Buffer. ChIP samples were incubated with 3ug anti-histone antibody at 4oC 

overnight rotating, then incubated for an extra 2h at 4oC with 20 ug magnetic beads (50% protein 

A, 50% protein G). After incubation, samples were placed on a magnetic rack and washed three 

times with 1 mL Low Salt Wash Buffer for 5 min at 4oC, and three times with High Salt Wash 

Buffer for 5 min at 4oC. Lastly, the beads were resuspended in 150 uL Elution Buffer and incubated 

on a shaking Thermomixer for 1.5 h at 65oC. The eluted fractions were saved, treated with 2 uL 

5M NaCl and 10 uL Proteinase K, and incubated overnight at 65oC to reverse the cross-linker. 

Samples were cleaned up, the DNA quantified with Qubit, and library prep was performed using 

the NEBNext Ultra II DNA Library Prep Kit for Illumina (E7645S). The barcodes used were 

purchased from NEB:NEBNext Multiplex Oligos for Illumina (E6440S). Before Bioanalyzer and 

Illumina sequencing, all libraries were size selected by being run on a 6% Native PAGE. The 

fragments corresponding to 200-700 bp were cut out of the gel and the DNA extracted from the 

polyacrylamide using 3 volumes of a DNA extraction buffer (10mM Trip pH=8, 300mM NaAc, 

20mM MgCl2, 1mM EDTA, 0.1% SDS) per gram gel slice. The tubes were closed, covered with 

parafilm, and incubated overnight at 50oC shaking, on a Thermomixer. The following day, Spin-X 

columns (CLS8160, Millipore Sigma) were used to remove gel bits from the eluate which got 

Phenol/Chloroform precipitated. The precipitated DNA was resuspended in a 15 uL nuclease-free 

H2O and the library quantified using Qubit.         

 

PRO-seq/ ChRO-seq library prep: New PRO-seq or ChRO-seq libraries were prepared from 

cultured K562 cells, and from equine liver tissue samples. We prepared PRO-seq libraries in K562 

cells, matched to the MNase ChIP-seq.  

 

Training dHIT SVRs to predict histone marks using PRO-seq, GRO-seq or ChRO-seq data 

 

Overview: The primary goal of dHIT is to map the signal intensity and “shape” in a run-on and 

sequencing dataset (PRO-seq, GRO-seq or ChROseq; henceforth referred to simply as PRO-

seq) to the specific quantity of a histone modification at each position in the reference genome. 

The dHIT algorithm passes standardized read count data to a support vector regression (SVR) 

classifier. During a training phase, the SVR model optimized an objective function which mapped 

PRO-seq signal to the quantity of ChIP-seq signal at each position of the genome. Once a dHIT 

model is trained using existing ChIP-seq data, it can impute steady state histone modifications in 

adapt this material for any purpose without crediting the original authors. 
(which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or 

The copyright holder has placed this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.032730doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032730


 

 

any cell type, provided that the relationship between histone modification and transcription is 

preserved. 

 

Training dataset: We trained each model using five different run-on and sequencing datasets that 

were generated by different laboratories, thereby reducing the potential for overfitting to batch-

specific features of a single dataset (see Supplementary Table 2) (53). Training data was 

distributed between PRO-seq and GRO-seq data. Sequencing depth of the training data ranged 

from 18 to 374 million uniquely mapped reads, and all five training datasets were highly correlated 

when comparing RPKM normalized read counts in gene bodies (53).  

We trained SVR models for ten different histone modifications in K562 cells, primarily 

using data from the ENCODE project (16). Data for H3K122ac ChIP-seq in K562 cells was 

obtained from a recent paper (48). Lastly, we trained models to recognize high-resolution ChIP-

seq data using an MNase ChIP-seq protocol for H3K4me1, H3K4me2, H3K4me3, H3K27ac, 

H3K36me3, and H3K79me3. For validation in holdout cell types, we obtained ChIP-seq data from 

six additional cell types from a variety of sources. All ChIP-seq data used in training or for 

validation is listed in Supplementary Tables 1 and 2. 

 

SVR feature vector: We passed dHIT PRO-seq data from non-overlapping windows of multiple 

sizes that were centered on the position for which ChIP-seq signal intensity was being imputed. 

We passed data from windows at multiple size scales, including 10, 50, 500, and 5,000 bp 

windows (n = 10, 20, 20, and 20 windows, respectively), representing read data as far as 100 KB 

from the genomic region in question. PRO-seq data was standardized across each length scale 

in a similar fashion as we use for dREG  (73), using a logistic function, F(t), to transform raw read 

counts using two free parameters, α and β: 

 

F(t) = 1/ (1 + e-α(t-β)) 

 

Where t denotes the read counts in each window. Tuning parameters α and β were defined in 

terms of two parameters, x and y. Intuitively, y gives the value of the logistic function at a read 

count of 0, and x represents the fraction of the maximal read count at which the logistic function 

approaches 1. Values of x and y are related to the parameters α and β by the following equations:  

 

β = x max(t) 

 

α = ( 1 / β ) log( 1 / y - 1) 

 

We have previously found that x = 0.05 and y = 0.01 optimized the discovery of transcription 

initiation regions (TIRs) (73), and these values were used throughout this study.  

 

Selecting training positions: We trained models using 3 million training examples divided evenly 

among five K562 training datasets (n = 600 thousand positions in each dataset). In all cases, 

human chromosome 22 was excluded from training to use as a holdout.  

We found it convenient to use heuristics that identify regions with a high PRO-seq signal 

intensity when choosing training samples. We broke the genome into non-overlapping 10bp 
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windows. 10bp windows were defined as “informative positions” when the window had more than 

3 reads within 100 bp on the single strand or at least one read within 1000 bp on both the positive 

and negative strands. Within the five training datasets, informative positions accounted for 27.3% 

(855.9M), 6.7% (209.4M), 14.7% (460.0M), 13.8% (433.9M), and 9.4% (294.0M) of 10 bp 

windows, respectively.  

Training examples were selected at random, according to the following criteria: In order to 

increase the frequency of windows with a strong signal intensity in the training dataset, we 

selected 5% of the training data from positions in the informative positions pool (defined above) 

that also intersected a transcription start site (TSS), defined using GRO-cap (11), and a DNase-I 

hypersensitive site (16), 93% from the non-TSS informative sites, and the remaining 2% from the 

non-informative position pool. This was done to enrich the frequency of GRO-cap TSSs (these 

were 0.78% of hg19), and to increase the frequency of regions with substantial PRO-seq signal 

intensity, in the training dataset.  
Training computations were conducted using Rgtsvm, a fast, GPU-based SVR 

implementation (80). We trained 3M samples with 360 features for each sample from 5 data sets 

with an average training time of 27.9 hours (18.0~37.8 hours) on an NVIDIA Tesla TITAN XP 

GPU. Training achieved an average Pearson correlation of 0.48 (0.109~0.725) on holdout 

positions that matched the training dataset at 10bp resolution. 

 

SVR imputation: We imputed histone modifications every 10 bp using the run-on and sequencing 

datasets outlined in Supplementary Table 2. We tested the accuracy of imputation on human 

chr22 (which was withheld during training) in four holdout cell lines HCT116, HeLa, and CD4+ T-

cells (81–83). Imputation was conducted using ChRO-seq data from 20 primary glioblastoma 

cases (51). We also imputed data from two additional mammals: mouse embryonic stem cells 

(mESCs) (62) and horse liver (new data). Computing imputed values on human chr22 (5.1M loci) 

took 3-5 hours on a Tesla TITAN XP GPU.  

 

Training models that impute histone marks using other histone marks 

We selected 1M samples from chromosome 1 to train SVR models in which histone marks were 

used to predict other histone marks. In order to make a fair comparison with models trained to 

predict histone marks using PRO-seq data, we also trained new models from PRO-seq (using the 

dataset G1) using 1M samples. To select training positions when training models using histone 

marks, we calculated the maximum read count in every 50 bp windows on chr1 (4.99M regions), 

and selected 1/3 of the samples from regions that contain more read counts than median value 

in either the training or the experimental data (for instance, if using H3K4me1 to predict H3K4me3, 

we selected 33% of training positions that had higher read counts than the median H3K4me1 or 

H3K4me3 signal). We selected another 1/3 from regions which contained read counts that were 

less than 20% of the median value in either the training or the experimental data. We selected 

the last 1/3 of the training regions from remaining regions at random. To obtain training datasets 

when multiple histone marks were used to jointly predict a histone mark, we merged multiple 

experimental histone mark data together and sampled windows as described above. The feature 

vector and standardization for histone marks were identical to those used for PRO-seq data (see 

above). When generating the feature vectors for multiple histone marks, we concatenated the 

feature vectors extracted from multiple experimental histone marks together.  
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We compared the difference between imputation and original experimental data using the 

L1 norm, by median centering and scaling each dataset, as follows: 

 

L1_norm === abs(((xi - median(x)) / sd(x)) - ((yi - median(y)) / sd(y))) 

 

Where xi is the imputed signal, and yi is the experimental signal for a particular comparison, and i 

represents the set of all genomic positions on chr22. We use sd() to denote the standard deviation 

of the mark.  

 

Computing performance metrics using dHIT SVRs  

Imputed profiles for 10 histone modifications in seven cell lines were compared to a variety of 

publicly available and newly generated ChIP-seq data available from ENCODE, Epigenome 

Roadmap, and a variety of other sources, as outlined in Supplementary Table 1. When 

measuring correlations, we subtracted the background (median) value from all positions, and 

applied a series of filters that were designed to remove artifacts of mappability or repeat content. 

Filters used to compute correlations include: 1) We masked all positions in which 30bp, the size 

of many of the older ENCODE ChIP-seq datasets, can not map uniquely to the reference genome; 

2) We removed ENCODE blacklist regions in hg19 and mm9 genomes, in which they were defined 

(84); 3) We identified and masked “spikes” in the data, caused by putative experimental or 

mapping artifacts, that were not filtered by the above two criteria. Our filter identified blocks with 

a high signal intensity (top 2%) for which the sum of the absolute value of the two maximal 

derivatives was higher than the number of read counts in the region (i.e., [abs(d1) + abs(d2)] > h, 

where d1 and d2 are the maximal and second highest change in ChIP-seq signal intensity, and h 

is the total read density between the positions at which d1 and d2 occur). When comparing 

performance metrics between two experimental datasets, this filter was applied to both ChIP-seq 

datasets. 

After masking the types of regions indicated above, we divided the whole genome or the 

entire chromosome into four granularities, 10 bp windows, 100 bp windows, 1,000 bp windows, 

and 10,000 bp windows.  After collecting the sum of the read counts from experimental data and 

imputed data in each window, we compared the relationship between two datasets using four 

statistics: Pearson correlation, Spearman correlation, MAD, and JSD. Windows with 0 counts 

were removed from estimates of Pearson and Spearman correlation when using 10kb windows, 

as large regions without any ChIP-seq signal were likely driven by mappability issues.  

 

ChromHMM analysis 

Chromatin state annotations were generated using ChromHMM (63). We used the 18 state core 

model (model_18_core_K27ac) trained using ENCODE data (52), because we had already 

imputed all of the histone modifications used in this model. To convert imputed histone 

modifications into data that met the requirements of ChromHMM, we fit the sum of imputed signal 

in 200 bp windows to a Poisson distribution, and identified windows with values higher than the 

0.999th quantile. Chromatin segmentation was performed using the MakeSegmentation 

command, following the instructions from the authors (64). We also made chromatin 

segmentations using an alternative source of experimental data for six histone marks, including 

H3K27ac, H3K27me3, H3K36me3, H3K4m1, H3K4me3,  and H3K9me3 from ENCODE and other 
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sources, as outlined in Supplementary Table 1. Chromatin segmentations were compared 

between experimental datasets, and between imputed and experimental data, using the Jaccard 

distance between each pair of states. All computations were performed with bedtools (85). When 

comparing enrichments of each state to those expected at random, we randomized the position 

of each state using bedtools random.  

 

Predicting bivalent TSSs 

Bivalent genes in mESCs were identified using data from ref (59) and converted into mm9 

coordinates using liftOver. Bivalent transcription start sites were predicted using a random forest. 

We used features representing H3K4me3 within 1,000 bp in 250 bp bins and H3K27me3 within 

60,000 bp in 15,000 bp bins surrounding each promoter. All imputed histone modification data 

was based on models trained in K562 cells. We trained on a matched set of 100 bivalent and 100 

non-bivalent promoters. The model was tested on a random set of 100 bivalent and 100 non-

bivalent promoters that excluded promoters held out during training.  
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