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Section 1. Orphan gene identification   

To stratify the phylostrata level for each gene/ORF, we used a total of 124 species, 17 of which are 
speices within Saccharomycotina. Specifically, we used 10 species with high quality genomes for the 
clade Saccharomycotina, and 7 species with high quality genomes for the clade Saccharomyces ssp.  To 
account for potential incomplete gene annotation in Saccharomyces, we included  as input data the 
translation products of all ORFs for each Saccharomyces species, as well as all the annotated proteins.  
Thus, if a (translated) ORF in S. cerevisiae had homology to a (translated) ORF, it was assigned to that 
clade, rather than as an orphan-ORF. This provided a stringent  and more conservative determination of 
orphan-ORFs. 

Figure S1. Orphan-ORF detection by phylostratr (Arendsee et al, 2019).  The phylostrata of the 36,046 genes and 
ORFs in S. cerevisiae (determined by phylostratr (Arendsee et al., 2019)) by pairwise BLAST of the proteins of S. 
cerevisiae compared to other 123 species (see species.xlsx); E-value cutoff to infer homology, 0.001. The default 
NCBI clade tree was used except for species within Saccharomyces.  For these species, we revised the clade tree 
manually to reflect current knowledge of yeast phylogeny (Borneman et al., 2015). Genes/ORFs were assigned to 
the phylostratum level associated with the deepest clade with inferred homolog.  Genes/ORFs were inferred to be 
orphans if they had no homologs in the any of the other 123 species. Note that, for ease of comparison among the 
literature, throughout this study when we are specifically comparing groups of ORFS, we refer to “smORFs” 
(Carvunis et a., 2012) and “txCDS” (Lu et al.,2017) by the names designated in the papers that described them; the 
ORFs we identify in this study we designate as ORFS >150 nt.  If we are not dividing into groups, we refer to them 
as ORFs.  smORF, small ORFs with translation evidence identified by ribosomal profiling (Carvunis et al., 2012); 
ORFs, unannotated ORFs of ≥ 150 nt (excluding smORFs);  txCDS, ORFs < 150 nt with transcription evidence 
identified by TIF-seq (Lu et al., 2017);  



 4 

Section 2. CDS/ORF length and GC content across phylostrata          
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S2B.

 

 

 

Figure S2. CDS length and GC content of transcripts note fig 2B by phylostrata for SGD annotated genes, 
transcribed unannotated ORFs and non-transcribed/minimally transcribed unannotated ORFs. From left, 
phylogenetic tree; first vertical panel, SGD-annotated genes (6,692); second vertical panel, Q3-transcribed ORFs, 
first quantile of most highly expressed unannotated ORFs (based on mean expression value/sample) (8,193); third 
vertical panel, no/low expressed unannotated ORFs (21,161). (A) Boxplots of CDS or ORF length. Orphan SGD genes 
and Q3-transcribed orphan-ORFs are significant shorter than conserved genes/ORFs. (B) Boxplots of GC content of 
CDS or ORF. No statistically significant for GC content between orphan and conserved genes/ORFs.  The numbers 
of genes and ORFs in each phylostratum level are indicated in small font on left side of each vertical panel 
(numbers of genes and ORFs in each phylostratum level are identical for panel A and B).  
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Section 3. RNA-Seq expression for different categories of transcripts 

Figure S3. RNA-Seq expression heatmap for all transcripts across 3,457 RNA-Seq runs.  Each group of transcripts is 
ordered independently by its mean cpm across 3,457 runs, in descending order. Each transcript is independently 
sorted (descending order) by cpm in sample. EdgeR was used for transcript normalization.  (A) Heatmap of 
expression values for transcripts across 3,457 samples. Panels (top to bottom):  6,692 SGD-annotated genes: 6,419 
non-orphan genes; 273 orphan genes; smORFs: 1,139 (Carvunis et al., 2012); all unannotated ORFs (28,215) 
(including 15,805 orphan-ORFs, 11,942 genus-specific ORFS, and 1,606 more highly conserved ORFS). Note: the 
proportion of orphans among the annotated orphan genes is very small and hard to distinguish.  (B) High-
resolution (blown-up) heatmap of the area within the tiny blue boxes in panel A (Areas marked in panel A are larger 
than actual area shown in panel B, for visibility). Each square corresponds to the expression value for a gene or 
ORF in a given sample. Panels (top to bottom): non-orphan SGD-annotated genes (#=70); non-orphan smORFs 
(#=48); orphan smORFs (#=22); orphan-ORFs (#=70).   
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To evaluate the distribution of mean expression values among the annotated genes and Q3-transcribed 
unannotated ORFs, we made density plots for mean expression across the 3,457 samples (Figure 4 in 
manuscript). We grouped SGD-annotated genes and ORFs according to their assignment to orphan 
versus all non-orphan (“conserved”) phylostrata. The orphan-ORFs have two density peaks (Figure 4 in 
manuscript). When the ORFs are sub-divided further and then plotted, (Figure S4), it is clear that 
smORFs have lower expression other groups of ORFs. Because the smORFs are generally shorter, we 
evaluated whether the lower expression might be due to a bias of kallisto in aligning/quantifying shorter 
ORFs. To do this, we divided each type of ORF into four quantiles according to their length in nt, with Q1 
being the shortest (Table S1).  A density plot (Figure S5) shows that every length range of smORFs has a 
lower expression than any other group of ORFs; e.g., the mean of Q4 smORF expression is lower than 
any for txCDS despite that Q1 and Q2 txCDSs are shorter in length. Hence, the low expression of smORFs 
does not appear to be due to a technical bias in quantification of shorter reads.  

Table S1. Quantile of mean expression level for each group of transcripts. Groups of transcripts are compared 
relative to the quantiles of mean expression of conserved SGD-annotated genes.  Mean expression level is the 
mean across  the 3,457 RNA-Seq samples  (A) Conserved SGD-annotated genes, orphan SGD-annotated genes, 
conserved ORFs, orphan-ORFs. (B) Subdivisions of ORFS:  conserved-ORFs (≥150nt), orphan-ORFs (≥150nt), 
conserved-smORF, orphan-smORF, conserved-txCDS, and orphan-txCDS.     

 

Table S2. Quantile of mean length for each group of transcripts. smORFs, txCDSs, and ORFs (≥150nt) were divided 
into quantiles according to mean length of ORF. Mean length, mean length for each quantile range; number of 
ORFs, number of ORFs in each quantile range. 
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Figure S4. Density plot for mean expression level of transcripts separated by different types of ORFs.  X-axis, 
edgeR-normalized mean expression of ORFs across 3,457 samples.  The area under the curve of the density 
function represents the probability of a range of mean cpm.  

Figure S5. Density plot showing mean expression level for each length range of different groups of ORFs.  X-axis, 
edgeR-normalized mean expression of transcripts in cpm across 3,457 samples.  The area under the curve of 
density function represents the probability of a range of mean cpm. ORFs are classified by length: Q1 to Q4 refers 
to the range of length in nt, from short (Q1) to long (Q4). ORF mean length (nt) and number of ORFs in that 
category are given in parentheses. 
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Section 4. Transcription levels for ORFs relative to genomic context. 

To investigate whether the trasncription level of unannotated ORFs was different relative to their 
genomic context, we divided the 29,354 ORFs into seven groups, according their relation to annotated 
CDSs. These groups are: 1) ORFs within the interval between annotated CDSs, 2) ORFs overlapping two 
(or more) annotated CDSs that express in the same and reverse orientation compared to the ORF, 3) 
ORFs overlapping annotated CDSs that express in the reverse orientation compared to the ORF, 4) ORFs 
overlap annotated CDSs that express in the same orientation as the ORFs, 5) ORFs within two (or more) 
annotated CDSs which express in the same and reverse orientations comparing to the ORFs, 6) ORFs 
within annotated CDSs that express in the reverse orientation comparing to the ORFs, 7) ORFs within 
annotated CDSs that express in the same orientation as the ORFs. The mean expression level and 
number of ORFs in each group are shown in Figure S6. ORFs overlapping annotated CDSs have a higher 
median of mean transcription (Wilcoxon rank-sum test, p-value < 0.001). Of the 6,742 ORFs with 
transcription and translation evidence according to the mRNA-Seq and Ribo-Seq analysis, 31% are in the 
interval between annotated CDS, and most of these are orphan-ORFs (Figure 5 in manuscript). In 
contrast, among the 289 orphan-ORFs which have mean expression higher than 25% of the conserved 
SGD-annotated genes, the proportion of orphan-ORFs overlapping CDSs is significantly higher than other 
ORFs (p-value < 0.001, Fisher’s exact test) (Figure S7).  

Figure S6. Boxplot for mean expression level of ORFs, based on genomic context. The median of mean expression 
is 5-fold greater for ORFs that overlap CDS.  Most ORFs are located within annotated CDS.  X-axis, classes of ORFs in 
relation to annotated  CDSs. Y-axis, mean cpm across 3,457 RNA-Seq samples. Green boxes, overlaps or within 
annotated CDSs that express in the reverse (convergent or divergent) orientation. Blue boxes, ORFs overlap or 
within annotated CDSs that express in the same orientation (co-orientation).  Pink boxes, ORFs overlap or are 
within two (or more) annotated CDSs that express in both the reverse and co-orientation. Yellow box, within the 
interval between two annotated CDSs. (See Figure S7 for orientation explanation)   
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Figure S7. Transcription evidence for orphan-ORFs with mean expression more than 25% of the conserved 
annotated genes, based on genomic context.  The 289 orphan-ORFs with mean expression higher than 25% of the 
conserved SGD-annotated genes were divided into different groups according to their relationship to adjacent or 
overlapping CDS (as in Figure S6).  The number is shown for each group. Although in general most ORFs are located 
within CDS (Figure S6), the vast majority of these highly-expressed orphan-ORFs are either overlapping or outside 
annotated CDS.   X-axis, groups of ORFs. Y-axis, counts of orphan-ORFs.   
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Section 5. Ribo-Seq analysis 

Figure S8. Mean raw counts across 302 Ribo-Seq samples for different groups of genes/ORFs.  Translation 
evidence for the Q3 ORFs is similar in counts to that of the annotated genes. X-axis, PS (phylostrata) from 1 to 15 
means from ancient to orphan. Orphan, PS=15; genus-specific, PS=10-14; more conserved, PS=1-9. Y-axis, mean 
raw counts across 302 Ribo-Seq samples for each group, the y-axis for no transcribed ORFs is different than other 
three groups. Yellow segment, standard error bar. An ORF is considered to have translation evidence if the mean 
value is greater than 0.3. Note: only 49 ORFs are non-transcribed, all in PS=15.  Their mean count is less than 1, and 
the bar is too small to shown in the figure.   
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Section 6. Data, metadata download and RNA-Seq raw data processing. 

The RNA-Seq data analysis workflow is shown as Figure S9. All the transcriptomic metadata and raw 
data were collected from public database. First, we collected SRR run IDs from (National Center for 
Biotechnology Information-Sequence Read Archive) (NCBI-SRA) using SRA advanced search builder. We 
chose all runs with S.cerevisiae taxon ID 4932, Illumina platform, and paired layout, and then filtered out 
the runs with miRNA-Seq, ncRNA-Seq, and RIP-Seq library strategy. In all, we collected 3,457 RNA-Seq 
runs from 177 studies. We used R packages SRAdb (Zhu et al., 213) and GEOmetadb (Zhu et al., 2008) to 
download RNA-Seq metadata from SRA and GEO database. SRA toolkit was used to download the raw 
RNA-Seq reads from the SRA database.  

 

Figure S9. RNA-Seq data analysis workflow. 1) Raw reads and metadata for 3,457 samples (runs) of RNA-Seq were 
downloaded from SRA. 2) RNA-Seq reads were mapped to a transcriptome of genes and ORFs and abundance was 
quantified by kallisto. 3)  TMM normalization (Robinson & Oshlack, 2010) by edgeR was applied to minimize 
technical variability of the data, with cpm as units. 4) A Pearson correlation matrix was calculated and MCL 
clustering analysis was performed using a home script (See code in GitHub. 5) GO enrichment analysis was 
conducted for clusters of five or more transcripts. 6) Full data and metadata were interactively statistically 
analysed and visualized in MOG (Singh et al., 2020) to explore and infer functions of selected transcripts. 
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Section 7. Co-expression cutoff determinations, clustering, and GO enrichment 

To determine a cutoff range for Pearson Correlation Coefficient (PCC), we evaluated the largest 
connected component and the network density for multiple PCC cutoffs (Figure S10.A). The largest 
connected component decreased with an increasing PCC cutoff, a linear decrease in the largest 
connected component occurs between 0.6 and 0.8.  Network density rapidly increases when the cutoff 
is below 0.7, indicating that the available nodes become more densely connected with the increase in 
the network density below this cutoff. Thus, this method indicates a PCC cutoff of between 0.6 and 0.7. 
We also applied findThreshold function in coexnet (R package) (Henao et al., 2017), this method 
determines the optimal cutoff at 0.74 (Figure S10.B). Therefore, we tested the performance of 0.6, 0.7, 
and 0.8 as PCC cutoffs for the networks used in MCL clustering.   

PCC co-expression matrices for the SGD and SGD+ORF datasets were transformed into a binary matrix 
by replacing the values of all correlations larger than the selected cutoff value by 1, and assigning the 
others as 0.  The matrices were provided to MCL clustering software. A Spark JAVA script was used for 
network inference and MCL clustering (https://github.com/lijing28101/SPARK_MCL); this script is faster 
than R and can handle larger datasets. The power and inflation parameters for MCL analysis were set as 
2. 

For GO enrichment analysis of the resultant clusters, yeast genes were mapped to GO terms 
downloaded from the SGD database. The over-representation values for GO terms in each cluster were 
obtained by enricher in clusterProfiler (R package) (Yu et al., 2012); the maximal size of genes for a GO 
term was set as 500, and the minimal size was set as 1. 

In a random test distribution of GO enrichment analysis (Mentzen and Wurtele, 2008), the experimental 
data has smaller p-values than any random data for networks derived using any of three cutoffs. 
However, cutoffs of 0.6 and 0.7 perform better, since the distance of experimental data from the 
random distribution is larger than for cutoff 0.8 (Figure S11). Then, we compared MCL analysis of 
networks based on cutoffs 0.6 and 0.7 using mean of the lowest p-value for each cluster of the 
experimental data (Mentzen and Wurtele, 2008), and the Z-score between the experimental data and 
random distribution data (Table S3). The mean of the lowest p- values for experimental data are very 
similar for these two cutoffs, but the Z-scores for GO molecular function (MF) and biological process (BP) 
of PCC 0.6 are better than those of 0.7. Moreover, PCC 0.6 cutoff resulted in more orphan genes in the 
clusters. Thus, we choose 0.6 as the MCL clustering cutoff for the further analysis. 
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Figure S10. Pearson correlation coefficient cutoff determination. (A) Graph of the number of nodes in the largest 
connected component and network density for each Pearson correlation coefficient (PCC) cutoff. (B) The Pearson 
correlation coefficient cutoff determined by coexnet (Henao et al., 2017).  X-axis, Pearson correlation coefficient 
(the optimized threshold is 0.74). Y-axis, the difference of clustering coefficient between the current threshold 
value under test and simulated random network. 
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Figure S11. Experimental versus random set distribution of GO enrichment analysis for SGD genes at three PCC 
cutoffs. Red arrow, best p-value for the experimental data.  Random distribution (black bars), results from 100 
randomly-obtained datasets with the same size and number of clusters as the experimental data. The best p-value 
is the mean of best adjusted p-value of GO terms across all clusters in a random set or experiment data.  

 

 

 

 

 

Table S3. Network PCC cutoff comparison for GO enrichment analysis. BP, biological process; CC, cellular 
component; MF, molecular function. 

*Z-score=
|𝑝𝑝���𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(�̅�𝑝𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)|

𝑠𝑠𝑠𝑠(�̅�𝑝𝑟𝑟𝑟𝑟𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚)
 

**distance=|𝑝𝑝�𝑚𝑚𝑒𝑒𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(�̅�𝑝𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)| 
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Section 8. Comparison of normalization by EdgeR and SCnorm 

Performance of the EdgeR and SCnorm normalization methods was assessed.  EdgeR (Robinson et al., 
2010) is a commonly applied package based on TMM normalization. We used M and A values to 
estimate scaling factors (Robinson et al., 2010), and then used counts per million (cpm) as units. SCnorm 
(Bacher et al., 2017) is a method developed for normalization of single cell RNA-Seq data. Groups are 
formed based on each gene’s median expression; a quantile regression was applied to estimate scaling 
factors, based on each gene’s count-depth relationship within each group; we are not aware of SCnorm 
having been applied to “standard’ RNA-Seq data.   

We evaluated the edgeR and SCnorm normalization by comparing boxplot of each samples among raw 
counts and two normalization methods (Figure S12), creating Pearson correlation matrices from the 
normalized data, applying a PCC cutoff of 0.6, followed by MCL clustering and GO term enrichment 
analysis. After MCL analysis, SCnorm normalization yielded more clusters and contained more 
transcripts, especially more orphan transcripts in the clusters than edgeR (Table S4). On the downside, 
SCnorm result had more transcripts in the largest cluster, and also included more small clusters with 5-
10 genes and no GO term overrepresentation assignments.  

We used ARI and Jaccard indices to compare the MCL clusters obtained from raw cpm data and after 
edgeR and SCnorm normalization.  There was only partial overlap among the clusters obtained by these 
two methods. Clusters from the SGD+ORF dataset were less similar than SGD dataset (Table S5). GO 
enrichment analysis results for the two methods indicate more significant GO terms are found after 
edgeR normalization (Table S4).  edgeR normalization performed better than SCnorm based on GO 
enrichment analysis of MCL clusters using datasets composed of only SGD annotated genes (SGD 
dataset) and composed of SGD-annotated genes and all unannotated ORFs (SGD+ORF dataset) (Figure 
S13). Hence, for our data, edgeR normalization yielded the best results, and was used for subsequent 
analysis. 

 

 

Table S4. Comparison of MCL clustering results for edgeR and SCnorm normalization. Purple font, MCL results for 
SGD-annotated genes. Blue font, MCL results for SGD+ORF transcripts. 
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Figure S12. Comparison of boxplots of each RNA-Seq run after edgeR and SCnorm normalization. Values for SDG-
annotated genes plotted across 3,457 samples are shown. X-axis, 3,457 RNA-Seq runs (split into 4 plots for ease of 
viewing). Y-axis, log transformed normalized counts.  (A) Raw counts. (B) edgeR-normalized counts. (C) SCnorm-
normalized counts.  
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Table S5. Comparison of MCL clustering results for edgeR and SCnorm normalization using ARI and Jaccard 
indices.  These analyses evaluate similarity of clustering results across normalization methods. Adjusted index (ARI) 
(Rand et al., 1971); Jaccard index (Jaccard et al., 1901).  SGD, SGD-annotated genes; Combined transcripts, SGD-
annotated genes plus all ORFS (smORFs, txCDSs, + ORFs>150 nt). Raw, raw counts dataset; TMM, EdgeR 
normalization dataset; SCnorm, SCnorm normalization dataset 

  

                         Jaccard index =  

 
 

 

 
Figure S13. Random set distribution of GO enrichment analysis for SGD genes and SGD+ORF combined 
transcripts for two normalization methods. The red arrow is the best p-value for the experimental data. Random 
distribution, black bars, best p-value of GO terms from 100 randomly-obtained sets with the same size and number 
of clusters as the experimental data.  Best p-value, mean of lowest adjusted p-value of GO terms across all clusters 
in a random set or in the experiment data (Mentzen and Wurtele, 2008).  
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Section 9. Study case:  Cluster317 

 Cluster317 contains 25 highly conserved (phylostratum level 1 or 2) SGD-annotated genes and 5 
Saccharomyces-specific ORFs. Twenty-three of the 25 conserved genes encode ribosomal proteins (P1 
Alpha, large, or small subunits). Another gene encodes a zuotin, a ribosome-associated chaperone that 
functions in ribosome biogenesis. The remaining gene encodes guanylate kinase; a gene with nine edges 
in common with the other genes in this cluster of the co-expression network. In red alga, guanylate 
kinase and chloroplastic ribosomal proteins are co-regulated by the regulatory kinase, TOR, although the 
reason for this is not understood (Imamura et al., 2018). Each of the five ORFs share many highly 
correlated edges with other transcripts (Figure S14, left). GO enrichment analysis identified nine highly 
over-represented GO terms (Figure S14, right) each relating to ribosomes or translation. The expression 
pattern of the genes in Cluster317 is similar across the 3,457 RNA-Seq runs (Figure S14). The top panel of 
Figure S15 shows the expression level of Cluster317 in study ERP008497, which compares wild type and 
temperature-sensitive ubc9-1 mutant yeast in a DMSO control group vs. rapamycin treatment 
(Chymkowitch et al., 2015). In yeast, TOR, regulates ribosome biogenesis , along with cell proliferation, 
mRNA translation, responses to nutrients, autophagy, and mating (Cardenas et al., 1999). Thus, 
rapamycin represses the expression of yeast ribosomal protein genes. All the transcripts in this cluster 
have decreased expression following rapamycin treatment, irrespective of the yeast genotype. 
Combining this information, the five ORFs in Cluster317 might encode proteins associated with the 
ribosome, or be involved in the translation process. 

 

Figure S14. Co-expression network and significant GO terms for Cluster317.  Cluster317 is composed of ribosomal 
related genes and five ORFs. Left, the network of Cluster317. Edge color, yellow to red, maps to Pearson 
correlations of 0.6 to 1. Light blue nodes, SGD-annotated genes; pink nodes, unannotated ORFs. Right, significantly 
enriched GO terms in Cluster317.  Twenty-four of the 25 SGD-annotated genes in this cluster are assigned to GO 
terms in this table. 
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Figure S15. The 41 genes and ORFs in Cluster317 are repressed in response to rapamycin. Bottom panel, 3,457-
samples. Expression pattern are similar for all transcripts. Top panel, high resolution of Study ERP008497: 
"Sumoylation of Rap1 mediates recruitment of the basal transcription machinery to promote transcription of 
Ribosomal Protein genes". Dimethyl sulfoxide (DMSO), control treatment. Rapamycin could repress expression of 
ribosomal protein. 
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Section 10. Other supplementary materials available online: 

All of the supplementary data (include mog files, cluster information, UTR results, phylostratr heatmap, 
Ribo-Seq metadata and results): https://datahub.io/lijing28101/yeast_supplementary 

MOG file of Sacchromyces cerevisea RNA-Seq expression (S.cerevisiae_RNA-seq_3457_27.mog): 
http://metnetweb.gdcb.iastate.edu/MetNet_MetaOmGraph.htm 

MetaOmGraph software: https://github.com/urmi-21/MetaOmGraph 

Data processing code: https://github.com/lijing28101/yeast_supplementary 
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Section 12.  Saccharomyces sequence source 

file download 
date 

release date version 

Saccharomyces cerevisiae R64 gene model GFF3  10/17/2017 7/22/2017 R64-1-1 

Saccharomyces cerevisiae R64 genomic sequence  10/17/2017 7/22/2017 R64-1-1 

Saccharomyces cerevisiae amino acid  10/19/2017 7/22/2017 R64-1-1 

smORF annotation 10/19/2017 7/19/2012 R56 

Saccharomyces cerevisiae R56 genomic sequence 10/19/2017 4/6/2007 R56 

Saccharomyces arboricola genomic sequence  10/19/2017 1/15/2015 SacArb1.0 

Saccharomyces arboricola protein sequence  10/19/2017 1/15/2015 SacArb1.0 

Saccharomyces bayanus genomic sequence  10/19/2017 6/15/2016 ASM16703v1 

Saccharomyces bayanus protein sequence  
   

Saccharomyces eubayanus genomic sequence  10/19/2017 7/30/2017 SEUB3.0 

Saccharomyces eubayanus protein sequence  10/19/2017 7/30/2017 SEUB3.0 

Saccharomyces kudriavzevii genomic sequence  10/19/2017 8/4/2014 IFO1802_v1.0 

Saccharomyces kudriavzevii protein sequence  10/19/2017 6/15/2016 IFO1802_v1.0 

Saccharomyces mikatae genomic sequence  10/19/2017 8/1/2014 ASM16697v1 

Saccharomyces mikatae protein sequence  
   

Saccharomyces paradoxus genomic sequence  10/19/2017 6/15/2016 ASM16695v1 

Saccharomyces paradoxus protein sequence  
   

Saccharomyces uvarum genomic sequence  10/19/2017 6/15/2016 ASM16699v1 

Saccharomyces uvarum protein sequence  
   

 

file source 

Saccharomyces 
cerevisiae R64 
gene model GFF3  

ftp://ftp.ensembl.org/pub/release-
90/gff3/saccharomyces_cerevisiae/Saccharomyces_cerevisiae.R64-1-
1.90.gff3.gz 

Saccharomyces 
cerevisiae R64 
genomic sequence  

ftp://ftp.ensembl.org/pub/release-
90/fasta/saccharomyces_cerevisiae/dna/Saccharomyces_cerevisiae.R64-1-
1.dna_sm.toplevel.fa.gz 

Saccharomyces 
cerevisiae amino 
acid  

ftp://ftp.ensembl.org/pub/release-
90/fasta/saccharomyces_cerevisiae/pep/Saccharomyces_cerevisiae.R64-1-
1.pep.all.fa.gz 

smORF annotation Carvunis at al., 2012 
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Saccharomyces 
cerevisiae R56 
genomic sequence 

https://downloads.yeastgenome.org/sequence/S288C_reference/genome_relea
ses/S288C_reference_genome_R56-1-1_20070406.tgz 

Saccharomyces 
arboricola 
genomic sequence  

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/292/725/GCF_000292725.1_Sa
cArb1.0/GCF_000292725.1_SacArb1.0_genomic.fna.gz 

Saccharomyces 
arboricola protein 
sequence  

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/292/725/GCF_000292725.1_Sa
cArb1.0/GCF_000292725.1_SacArb1.0_protein.faa.gz 

Saccharomyces 
bayanus genomic 
sequence  

ftp://ftp.ncbi.nih.gov/genomes/genbank/fungi/Saccharomyces_bayanus/latest_
assembly_versions/GCA_000167035.1_ASM16703v1/GCA_000167035.1_ASM16
703v1_genomic.fna.gz 

Saccharomyces 
bayanus protein 
sequence  

Annotated and created by Braker 

Saccharomyces 
eubayanus 
genomic sequence  

ftp://ftp.ncbi.nih.gov/genomes/genbank/fungi/Saccharomyces_eubayanus/lates
t_assembly_versions/GCA_001298625.1_SEUB3.0/GCA_001298625.1_SEUB3.0_
genomic.fna.gz 

Saccharomyces 
eubayanus protein 
sequence  

ftp://ftp.ncbi.nih.gov/genomes/genbank/fungi/Saccharomyces_eubayanus/lates
t_assembly_versions/GCA_001298625.1_SEUB3.0/GCA_001298625.1_SEUB3.0_
protein.faa.gz 

Saccharomyces 
kudriavzevii 
genomic sequence  

ftp://ftp.ncbi.nih.gov/genomes/genbank/fungi/Saccharomyces_kudriavzevii/late
st_assembly_versions/GCA_000167075.2_Saccharomyces_kudriavzevii_strain_IF
O1802_v1.0/GCA_000167075.2_Saccharomyces_kudriavzevii_strain_IFO1802_v
1.0_genomic.fna.gz 

Saccharomyces 
kudriavzevii 
protein sequence  

ftp://ftp.ncbi.nih.gov/genomes/genbank/fungi/Saccharomyces_kudriavzevii/late
st_assembly_versions/GCA_000167075.2_Saccharomyces_kudriavzevii_strain_IF
O1802_v1.0/GCA_000167075.2_Saccharomyces_kudriavzevii_strain_IFO1802_v
1.0_protein.faa.gz 

Saccharomyces 
mikatae genomic 
sequence  

ftp://ftp.ncbi.nih.gov/genomes/genbank/fungi/Saccharomyces_mikatae/latest_
assembly_versions/GCA_000166975.1_ASM16697v1/GCA_000166975.1_ASM16
697v1_genomic.fna.gz 

Saccharomyces 
mikatae protein 
sequence  

Annotated and created by Braker 

Saccharomyces 
paradoxus 
genomic sequence  

ftp://ftp.ncbi.nih.gov/genomes/genbank/fungi/Saccharomyces_paradoxus/lates
t_assembly_versions/GCA_000166955.1_ASM16695v1/GCA_000166955.1_ASM
16695v1_genomic.fna.gz 

Saccharomyces 
paradoxus protein 
sequence  

Annotated and created by Braker 
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Saccharomyces 
uvarum genomic 
sequence  

ftp://ftp.ncbi.nih.gov/genomes/genbank/fungi/Saccharomyces_uvarum/latest_a
ssembly_versions/GCA_000166995.1_ASM16699v1/GCA_000166995.1_ASM166
99v1_genomic.fna.gz 

Saccharomyces 
uvarum protein 
sequence  

Annotated and created by Braker 
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Section 13. 124 species for phylostratr 

Species PS Phylostratum name 
Aliifodinibius roseus 1 cellular organisms 

Caldithrix sp. RBG_13_44_9 1 cellular organisms 
Aminobacterium colombiense DSM 12261 1 cellular organisms 

Treponema brennaborense DSM 12168 1 cellular organisms 
Thermodesulfatator indicus DSM 15286 1 cellular organisms 

Desulfurispirillum indicum S5 1 cellular organisms 
Denitrovibrio acetiphilus DSM 12809 1 cellular organisms 

Mesotoga prima 1 cellular organisms 
Thermocrinis albus DSM 14484 1 cellular organisms 

Elusimicrobium minutum Pei191 1 cellular organisms 
Dictyoglomus turgidum DSM 6724 1 cellular organisms 

Caldisericum exile AZM16c01 1 cellular organisms 
Chloracidobacterium thermophilum B 1 cellular organisms 

Candidatus Solibacter usitatus Ellin6076 1 cellular organisms 
Nitrospira japonica 1 cellular organisms 

Fusobacterium mortiferum ATCC 9817 1 cellular organisms 
Hydrogenophilaceae bacterium CG1_02_62_390 1 cellular organisms 

Acidithiobacillales bacterium SM1_46 1 cellular organisms 
Bdellovibrionales bacterium GWA2_49_15 1 cellular organisms 

Mariprofundus ferrooxydans PV−1 1 cellular organisms 
Amantichitinum ursilacus 1 cellular organisms 

Alphaproteobacteria bacterium RIFCSPHIGHO2_02_FULL_46_13 1 cellular organisms 
Rhodanobacter sp. B04 1 cellular organisms 

Acholeplasma laidlawii PG−8A 1 cellular organisms 
Solirubrobacterales bacterium 67−14 1 cellular organisms 

Collinsella sp. CAG:289 1 cellular organisms 
Rubrobacter xylanophilus DSM 9941 1 cellular organisms 

Ferrimicrobium acidiphilum DSM 19497 1 cellular organisms 
Streptomyces cattleya NRRL 8057 = DSM 46488 1 cellular organisms 

Ardenticatena maritima 1 cellular organisms 
Caldilinea aerophila DSM 14535 = NBRC 104270 1 cellular organisms 

Ktedonobacter sp. 13_2_20CM_2_56_8 1 cellular organisms 
Dehalococcoidia bacterium SM23_28_2 1 cellular organisms 

Longilinea arvoryzae 1 cellular organisms 
Sphaerobacter thermophilus DSM 20745 1 cellular organisms 

Roseiflexus sp. RS−1 1 cellular organisms 
Fimbriimonas ginsengisoli Gsoil 348 1 cellular organisms 

Chthonomonas calidirosea T49 1 cellular organisms 
Deinococcus peraridilitoris DSM 19664 1 cellular organisms 

Peptoniphilus asaccharolyticus DSM 20463 1 cellular organisms 
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Species PS Phylostratum name 
Limnochorda pilosa 1 cellular organisms 

Dialister micraerophilus DSM 19965 1 cellular organisms 
Eubacterium sp. CAG:252 1 cellular organisms 

Streptococcus dysgalactiae subsp. equisimilis RE378 1 cellular organisms 
Gemmatimonadaceae bacterium 4484_173 1 cellular organisms 

Chitinispirillum alkaliphilum 1 cellular organisms 
Chitinivibrio alkaliphilus ACht1 1 cellular organisms 

Fibrobacter sp. UWH6 1 cellular organisms 
Lentisphaera araneosa HTCC2155 1 cellular organisms 
Criblamydia sequanensis CRIB−18 1 cellular organisms 

Phycisphaera mikurensis NBRC 102666 1 cellular organisms 
Paludisphaera borealis 1 cellular organisms 

Kiritimatiella glycovorans 1 cellular organisms 
Methylacidiphilum infernorum V4 1 cellular organisms 

Coraliomargarita sp. CAG:312 1 cellular organisms 
Pedosphaera parvula Ellin514 1 cellular organisms 
Chthoniobacter flavus Ellin428 1 cellular organisms 

Campylobacter concisus 1 cellular organisms 
Archangium gephyra 1 cellular organisms 

Ignavibacteria bacterium RBG_16_36_9 1 cellular organisms 
Chlorobium ferrooxidans DSM 13031 1 cellular organisms 

Phaeodactylibacter xiamenensis 1 cellular organisms 
Chitinophaga eiseniae 1 cellular organisms 

Cytophagaceae bacterium SCN 52−12 1 cellular organisms 
Porphyromonas gingivalis W83 1 cellular organisms 

Sphingobacterium spiritivorum ATCC 33861 1 cellular organisms 
Flavobacterium sp. A45 1 cellular organisms 

Theionarchaea archaeon DG−70 1 cellular organisms 
Hadesarchaea archaeon DG−33−1 1 cellular organisms 
Methanocella arvoryzae MRE50 1 cellular organisms 

Methanopyrus kandleri AV19 1 cellular organisms 
Archaeoglobus sulfaticallidus PM70−1 1 cellular organisms 

Pyrococcus furiosus DSM 3638 1 cellular organisms 
methanogenic archaeon ISO4−H5 1 cellular organisms 

Natrinema pellirubrum DSM 15624 1 cellular organisms 
Methanococcus aeolicus Nankai−3 1 cellular organisms 

Methanothermobacter thermautotrophicus str. Delta H 1 cellular organisms 
Candidatus Methanohalarchaeum thermophilum 1 cellular organisms 

Candidatus Nitrososphaera gargensis Ga9.2 1 cellular organisms 
Thermofilum adornatus 1 cellular organisms 

Aphanomyces astaci 2 Eukaryota 
Oryza sativa Indica Group 2 Eukaryota 
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Species PS Phylostratum name 
Leishmania donovani BPK282A1 2 Eukaryota 

Acanthisitta chloris 3 Opisthokonta 
Gorilla gorilla gorilla 3 Opisthokonta 

Poecilia formosa 3 Opisthokonta 
Anopheles arabiensis 3 Opisthokonta 

Echinococcus granulosus 3 Opisthokonta 
Mucor circinelloides f. circinelloides 1006PhL 4 Fungi 

Nematocida parisii ERTm1 4 Fungi 
Encephalitozoon cuniculi GB−M1 4 Fungi 

Smittium culicis 4 Fungi 
Agaricus bisporus var. burnettii JB137−S8 5 Dikarya 

Trametes cinnabarina 5 Dikarya 
Cryptococcus gattii CA1280 5 Dikarya 
Moesziomyces antarcticus 5 Dikarya 

Microbotryum intermedium 5 Dikarya 
Neolecta irregularis DAH−3 6 Ascomycota 
Pneumocystis jirovecii RU7 6 Ascomycota 
Protomyces lactucaedebilis 6 Ascomycota 

Saitoella complicata NRRL Y−17804 6 Ascomycota 
Schizosaccharomyces cryophilus OY26 6 Ascomycota 

Bipolaris maydis ATCC 48331 7 Saccharomyceta 
Zymoseptoria tritici ST99CH_1A5 7 Saccharomyceta 

Acremonium chrysogenum ATCC 11550 7 Saccharomyceta 
Neurospora tetrasperma FGSC 2508 7 Saccharomyceta 

Blastomyces dermatitidis ATCC 18188 7 Saccharomyceta 
Candida albicans SC5314 8 Saccharomycetales 

Candida arabinofermentans NRRL YB−2248 8 Saccharomycetales 
[Candida] auris 8 Saccharomycetales 

Cyberlindnera fabianii 8 Saccharomycetales 
Hanseniaspora guilliermondii 8 Saccharomycetales 

Saccharomycetaceae sp. 'Ashbya aceri' 9 Saccharomycetaceae 
Eremothecium gossypii ATCC 10895 9 Saccharomycetaceae 

Kazachstania africana CBS 2517 9 Saccharomycetaceae 
Kluyveromyces dobzhanskii CBS 2104 9 Saccharomycetaceae 

Lachancea dasiensis CBS 10888 9 Saccharomycetaceae 
Saccharomyces eubayanus 10 Saccharomyces 

Saccharomyces uvarum 10 Saccharomyces 
Saccharomyces arboricola 11 s5 

Saccharomyces kudriavzevii 12 s4 
Saccharomyces mikatae 13 s3 

Saccharomyces paradoxus 14 s2 
Saccharomyces cerevisiae 15 orphan 



 29 

 


	Section 1. Orphan gene identification
	Section 2.  CDS/ORF length and GC content across phylostrata
	Section 3. RNA-Seq expression for different categories of transcripts
	Section 4. Transcription levels for ORFs relative to genomic context.
	Section 5. Ribo-Seq analysis
	Section 6. Data, metadata download and RNA-Seq raw data processing.
	Section 7. Co-expression cutoff determinations, clustering, and GO enrichment
	Section 8. Comparison of normalization by EdgeR and SCnorm
	Section 9. Study case:  Cluster317
	Section 10. Other supplementary materials available online:
	Section 11. References
	Section 12.  Saccharomyces sequence source
	Section 13. 124 species for phylostratr

